1
|
Larson-Casey JL, Gu L, Fiehn O, Carter AB. Cadmium-mediated lung injury is exacerbated by the persistence of classically activated macrophages. J Biol Chem 2020; 295:15754-15766. [PMID: 32917723 DOI: 10.1074/jbc.ra120.013632] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Heavy metals released into the environment have a significant effect on respiratory health. Lung macrophages are important in mounting an inflammatory response to injury, but they are also involved in repair of injury. Macrophages develop mixed phenotypes in complex pathological conditions and polarize to a predominant phenotype depending on the duration and stage of injury and/or repair. Little is known about the reprogramming required for lung macrophages to switch between these divergent functions; therefore, understanding the mechanism(s) by which macrophages promote metabolic reprogramming to regulate lung injury is essential. Here, we show that lung macrophages polarize to a pro-inflammatory, classically activated phenotype after cadmium-mediated lung injury. Because metabolic adaptation provides energy for the diverse macrophage functions, these classically activated macrophages show metabolic reprogramming to glycolysis. RNA-Seq revealed up-regulation of glycolytic enzymes and transcription factors regulating glycolytic flux in lung macrophages from cadmium-exposed mice. Moreover, cadmium exposure promoted increased macrophage glycolytic function with enhanced extracellular acidification rate, glycolytic metabolites, and lactate excretion. These observations suggest that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Sakai Y, Yamamori T, Yoshikawa Y, Bo T, Suzuki M, Yamamoto K, Ago T, Inanami O. NADPH oxidase 4 mediates ROS production in radiation-induced senescent cells and promotes migration of inflammatory cells. Free Radic Res 2017; 52:92-102. [PMID: 29228832 DOI: 10.1080/10715762.2017.1416112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive DNA damage induced by ionising radiation (IR) to normal tissue cells is known to trigger cellular senescence, a process termed stress-induced premature senescence (SIPS). SIPS is often accompanied by the production of reactive oxygen species (ROS), and this is reported to be important for the initiation and maintenance of SIPS. However, the source of ROS during SIPS after IR and their significance in radiation-induced normal tissue damage remain elusive. In the present study, we tested the hypothesis that the NADPH oxidase (NOX) family of proteins mediates ROS production in SIPS-induced cells after IR and plays a role in SIPS-associated biological events. X-irradiation of primary mouse embryonic fibroblasts (MEFs) resulted in cellular senescence and the concomitant increase of intracellular ROS. Among all six murine NOX isoforms (NOX1-4 and DUOX1/2), only NOX4 was detectable under basal conditions and was upregulated following IR. In addition, radiation-induced ROS production was diminished by genetic or pharmacological inhibition of NOX4. Meanwhile, NOX4 deficiency did not affect the induction of cellular senescence after IR. Furthermore, the migration of human monocytic U937 cells to the culture medium collected from irradiated MEFs was significantly reduced by NOX4 inhibition, suggesting that NOX4 promotes the recruitment of inflammatory cells. Collectively, our findings imply that NOX4 mediates ROS production in radiation-induced senescent cells and contributes to normal tissue damage after IR via the recruitment of inflammatory cells and the exacerbation of tissue inflammation.
Collapse
Affiliation(s)
- Yuri Sakai
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tohru Yamamori
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yoji Yoshikawa
- b Department of Medicine and Clinical Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Tomoki Bo
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Motofumi Suzuki
- c Radiation and Cancer Biology Team , National Institutes for Quantum and Radiobiological Science and Technology , Chiba , Japan
| | - Kumiko Yamamoto
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tetsuro Ago
- b Department of Medicine and Clinical Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Osamu Inanami
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
3
|
Larson-Casey JL, Murthy S, Ryan AJ, Carter AB. Modulation of the mevalonate pathway by akt regulates macrophage survival and development of pulmonary fibrosis. J Biol Chem 2014; 289:36204-19. [PMID: 25378391 DOI: 10.1074/jbc.m114.593285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein kinase B (Akt) is a key effector of multiple cellular processes, including cell survival. Akt, a serine/threonine kinase, is known to increase cell survival by regulation of the intrinsic pathway for apoptosis. In this study, we found that Akt modulated the mevalonate pathway, which is also linked to cell survival, by increasing Rho GTPase activation. Akt modulated the pathway by phosphorylating mevalonate diphosphate decarboxylase (MDD) at Ser(96). This phosphorylation in macrophages increased activation of Rac1, which enhanced macrophage survival because mutation of MDD (MDDS96A) induced apoptosis. Akt-mediated activation in macrophages was specific for Rac1 because Akt did not increase activity of other Rho GTP-binding proteins. The relationship between Akt and Rac1 was biologically relevant because Akt(+/-) mice had significantly less active Rac1 in alveolar macrophages, and macrophages from Akt(+/-) mice had an increase in active caspase-9 and -3. More importantly, Akt(+/-) mice were significantly protected from the development of pulmonary fibrosis, suggesting that macrophage survival is associated with the fibrotic phenotype. These observations for the first time suggest that Akt plays a critical role in the development and progression of pulmonary fibrosis by enhancing macrophage survival via modulation of the mevalonate pathway.
Collapse
Affiliation(s)
| | - Shubha Murthy
- the Department of Internal Medicine, Carver College of Medicine, and
| | - Alan J Ryan
- the Department of Internal Medicine, Carver College of Medicine, and
| | - A Brent Carter
- From the Department of Radiation Oncology and Program in Free Radical and Radiation Biology, the Department of Internal Medicine, Carver College of Medicine, and the Department of Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa 52242 and the Iowa City Veterans Affairs Health Care System, Iowa City, Iowa 52242
| |
Collapse
|
4
|
Zhang L, He YL, Li QZ, Hao XH, Zhang ZF, Yuan JX, Bai YP, Jin YL, Liu N, Chen G, Yun X, Yao SQ. N-acetylcysteine alleviated silica-induced lung fibrosis in rats by down-regulation of ROS and mitochondrial apoptosis signaling. Toxicol Mech Methods 2014; 24:212-9. [PMID: 24392833 DOI: 10.3109/15376516.2013.879974] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) is a normal metabolic product of cellular respiration, but too much ROS can induce cell apoptosis. Here, we used N-acetylcysteine (NAC) to inhibit ROS activity to explore the effects of NAC on silica-induced pulmonary fibrosis in rats and provide evidence for study on the mechanism of silicosis. 24 adult male Sprague-Dawley rats weighing 180-220 g were randomly divided into three groups with eight rats in each group. Silicosis model group and NAC group were adopted non-tracheal exposure method of disposable intrapulmonary injection of 50 g/L, silica suspension 1 mL to establish animal silicosis model, NAC group treated with 600 mg/kg NAC by gavage from the right day of modeling, all animals were sacrificed after 28 days. The level of ROS contents and mitochondrial transmembrane potential changes of AM, the mRNA expression level of type I and type III procollagen, cytochrome C, cysteinyl aspartate specific protease-9 and caspase-3 were detected. The severity of pathological changes and pulmonary fibrosis were observed by pathologic specimens. It was showed that ROS contents and MTP changes were lower in the NAC group compared with the silicosis model group, other indexes were lower in the NAC group than the model group, but higher than those of the control group, the degree of lung fibrotic lesions observed from the pathological slices showed the same trend. These data indicated that NAC can reduce ROS content of AM in silica exposure rats, the mitochondrial apoptosis pathway can also be inhibited, the severity of pulmonary fibrosis alleviated as a result.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Hebei United University , Tangshan, Hebei , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Caraballo JC, Borcherding J, Rector M, Hornick E, Stoltz D, Zabner J, Comellas AP. Role of PON in anoxia-reoxygenation injury: a Drosophila melanogaster transgenic model. PLoS One 2014; 9:e84434. [PMID: 24400090 PMCID: PMC3882223 DOI: 10.1371/journal.pone.0084434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/22/2013] [Indexed: 11/25/2022] Open
Abstract
Background Paraoxonase 1 (PON1) is a protein found associated with high density lipoprotein (HDL), thought to prevent oxidative modification of low-density lipoprotein (LDL). This enzyme has been implicated in lowering the risk of cardiovascular disease. Anoxia-reoxygenation and oxidative stress are important elements in cardiovascular and cerebrovascular disease. However, the role of PON1 in anoxia-reoxygenation or anoxic injury is unclear. We hypothesize that PON1 prevents anoxia-reoxygenation injury. We set out to determine whether PON1 expression in Drosophila melanogaster protects against anoxia-reoxygenation (A-R) induced injury. Methods Wild type (WT) and transgenic PON1 flies were exposed to anoxia (100% Nitrogen) for different time intervals (from 1 to 24 hours). After the anoxic period, flies were placed in room air for reoxygenation. Activity and survival of flies was then recorded. Results Within 5 minutes of anoxia, all flies fell into a stupor state. After reoxygenation, survivor flies resumed activity with some delay. Interestingly, transgenic flies recovered from stupor later than WT. PON1 transgenic flies had a significant survival advantage after A-R stress compared with WT. The protection conferred by PON1 expression was present regardless of the age or dietary restriction. Furthermore, PON1 expression exclusively in CNS conferred protection. Conclusion Our results support the hypothesis that PON1 has a protective role in anoxia-reoxygenation injury, and its expression in the CNS is sufficient and necessary to provide a 100% survival protection.
Collapse
Affiliation(s)
- Juan Carlos Caraballo
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| | - Jennifer Borcherding
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael Rector
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Emma Hornick
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Alejandro P. Comellas
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
6
|
He C, Ryan AJ, Murthy S, Carter AB. Accelerated development of pulmonary fibrosis via Cu,Zn-superoxide dismutase-induced alternative activation of macrophages. J Biol Chem 2013; 288:20745-57. [PMID: 23720777 DOI: 10.1074/jbc.m112.410720] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages not only initiate and accentuate inflammation after tissue injury, but they are also involved in resolution and repair. This difference in macrophage activity is the result of a differentiation process to either M1 or M2 phenotypes. M1 macrophages are pro-inflammatory and have microbicidal and tumoricidal activity, whereas the M2 macrophages are involved in tumor progression and tissue remodeling and can be profibrotic in certain conditions. Because mitochondrial Cu,Zn-superoxide dismutase (Cu,Zn-SOD)-mediated H2O2 is crucial for development of pulmonary fibrosis, we hypothesized that Cu,Zn-SOD modulated the macrophage phenotype. In this study, we demonstrate that Cu,Zn-SOD polarized macrophages to an M2 phenotype, and Cu,Zn-SOD-mediated H2O2 levels modulated M2 gene expression at the transcriptional level by redox regulation of a critical cysteine in STAT6. Furthermore, overexpression of Cu,Zn-SOD in mice resulted in a profibrotic environment and accelerated the development of pulmonary fibrosis, whereas polarization of macrophages to the M1 phenotype attenuated pulmonary fibrosis. Taken together, these observations provide a novel mechanism of Cu,Zn-SOD-mediated and Th2-independent M2 polarization and provide a potential therapeutic target for attenuating the accelerated development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chao He
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
7
|
Tateno N, Matsumoto N, Motowaki T, Suzuki K, Aratani Y. Myeloperoxidase deficiency induces MIP-2 production via ERK activation in zymosan-stimulated mouse neutrophils. Free Radic Res 2013; 47:376-85. [DOI: 10.3109/10715762.2013.778990] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Pezzulo AA, Hornick EE, Rector MV, Estin M, Reisetter AC, Taft PJ, Butcher SC, Carter AB, Manak JR, Stoltz DA, Zabner J. Expression of human paraoxonase 1 decreases superoxide levels and alters bacterial colonization in the gut of Drosophila melanogaster. PLoS One 2012; 7:e43777. [PMID: 22952763 PMCID: PMC3431398 DOI: 10.1371/journal.pone.0043777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 12/17/2022] Open
Abstract
Paraoxonases (PON) are a family of proteins (PON1, 2 and 3) with multiple enzymatic activities. PON1 interferes with homoserine lactone-mediated quorum sensing in bacteria and with reactive oxygen species (ROS) in humans and mice. PON1 gene mutations have been linked to multiple traits, including aging, and diseases of the cardiovascular, nervous and gastrointestinal system. The overlapping enzymatic activities in the PON family members and high linkage disequilibrium rates within their polymorphisms confound animal and human studies of PON1 function. In contrast, arthropods such as Drosophila melanogaster have no PON homologs, resulting in an ideal model to study interactions between PON genotype and host phenotypes. We hypothesized that expression of PON1 in D. melanogaster would alter ROS. We found that PON1 alters expression of multiple oxidative stress genes and decreases superoxide anion levels in normal and germ-free D. melanogaster. We also found differences in the composition of the gut microbiota, with a remarkable increase in levels of Lactobacillus plantarum and associated changes in expression of antimicrobial and cuticle-related genes. PON1 expression directly decreased superoxide anion levels and altered bacterial colonization of the gut and its gene expression profile, highlighting the complex nature of the interaction between host genotype and gut microbiota. We speculate that the interaction between some genotypes and human diseases may be mediated by the presence of certain gut bacteria that can induce specific immune responses in the gut and other host tissues.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Emma E. Hornick
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael V. Rector
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Miriam Estin
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anna C. Reisetter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peter J. Taft
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Stephen C. Butcher
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - A. Brent Carter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, Iowa, United States of America
| | - J. Robert Manak
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
9
|
Boots AW, Gerloff K, Bartholomé R, van Berlo D, Ledermann K, Haenen GRMM, Bast A, van Schooten FJ, Albrecht C, Schins RPF. Neutrophils augment LPS-mediated pro-inflammatory signaling in human lung epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1151-62. [PMID: 22575681 DOI: 10.1016/j.bbamcr.2012.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of polymorphonuclear neutrophils in pulmonary host defense is well recognized. The influence of a pre-existing inflammation driven by neutrophils (neutrophilic inflammation) on the airway epithelial response toward pro-inflammatory exogenous triggers, however, is still poorly addressed. Therefore, the aim of the present study is to investigate the effect of neutrophils on lipopolysaccharide (LPS)-induced pro-inflammatory signaling in lung epithelial cells. Additionally, underlying signaling pathways are examined. METHODS Human bronchial epithelial cells (BEAS-2B) were co-incubated with human peripheral blood neutrophils or bone-marrow derived neutrophils from either C57BL/6J wild type or nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase deficient (p47(phox-/-)) mice. Upon stimulation with LPS, interleukin (IL)-8 production and reactive oxygen species (ROS) generation were measured. Additionally, activation of the extracellular signal-regulated kinases (ERK) 1/2 and nuclear factor (NF)-κB signaling pathways was analyzed. RESULTS Our studies show that the presence of neutrophils synergistically increases LPS-induced IL-8 and ROS production by BEAS-2B cells without inducing cytotoxicity. The observed IL-8 response to endotoxin increases in proportion to time, LPS-concentration and the number of neutrophils present. Moreover, this synergistic IL-8 production strongly correlated with the chemotactic properties of the co-incubations and significantly depended on a functional neutrophilic NADPH oxidase. The presence of neutrophils also augments LPS-induced phosphorylation of ERK1/2 and IκBα as well as NF-κB RelA DNA binding activity in BEAS-2B cells. CONCLUSIONS Our results indicate that the pro-inflammatory effects of LPS toward lung epithelial cells are amplified during a pre-existing neutrophilic inflammation. These findings support the concept that patients suffering from pulmonary neutrophilic inflammation are more susceptible toward exogenous pro-inflammatory triggers.
Collapse
Affiliation(s)
- Agnes W Boots
- IUF-Leibniz Institut für Umweltmedizinische Forschung at the Heinrich Heine University, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Osborn-Heaford HL, Ryan AJ, Murthy S, Racila AM, He C, Sieren JC, Spitz DR, Carter AB. Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis. J Biol Chem 2012; 287:3301-12. [PMID: 22157762 PMCID: PMC3270985 DOI: 10.1074/jbc.m111.308387] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/21/2011] [Indexed: 12/22/2022] Open
Abstract
The generation of reactive oxygen species, particularly H(2)O(2), from alveolar macrophages is causally related to the development of pulmonary fibrosis. Rac1, a small GTPase, is known to increase mitochondrial H(2)O(2) generation in macrophages; however, the mechanism by which this occurs is not known. This study shows that Rac1 is localized in the mitochondria of alveolar macrophages from asbestosis patients, and mitochondrial import requires the C-terminal cysteine of Rac1 (Cys-189), which is post-translationally modified by geranylgeranylation. Furthermore, H(2)O(2) generation mediated by mitochondrial Rac1 requires electron transfer from cytochrome c to a cysteine residue on Rac1 (Cys-178). Asbestos-exposed mice harboring a conditional deletion of Rac1 in macrophages demonstrated decreased oxidative stress and were significantly protected from developing pulmonary fibrosis. These observations demonstrate that mitochondrial import and direct electron transfer from cytochrome c to Rac1 modulates mitochondrial H(2)O(2) production in alveolar macrophages pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Chao He
- Radiation Oncology, Free Radical and Radiation Biology Program, and
| | - Jessica C. Sieren
- Department of Radiology, University of Iowa Carver College of Medicine, and
| | - Douglas R. Spitz
- Radiation Oncology, Free Radical and Radiation Biology Program, and
| | - A. Brent Carter
- From the Departments of Internal Medicine and
- Radiation Oncology, Free Radical and Radiation Biology Program, and
- Human Toxicology Program, University of Iowa College of Public Health, Iowa City, Iowa 52242
| |
Collapse
|
11
|
He C, Murthy S, McCormick ML, Spitz DR, Ryan AJ, Carter AB. Mitochondrial Cu,Zn-superoxide dismutase mediates pulmonary fibrosis by augmenting H2O2 generation. J Biol Chem 2011; 286:15597-607. [PMID: 21393238 PMCID: PMC3083152 DOI: 10.1074/jbc.m110.187377] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/04/2011] [Indexed: 12/15/2022] Open
Abstract
The release of H(2)O(2) from alveolar macrophages has been linked to the development of pulmonary fibrosis, but little is known about its source or mechanism of production. We found that alveolar macrophages from asbestosis patients spontaneously produce high levels of H(2)O(2) and have high expression of Cu,Zn-superoxide dismutase (SOD). Because Cu,Zn-SOD is found in the mitochondrial intermembrane space (IMS), we hypothesized that mitochondrial Cu,Zn-SOD-mediated H(2)O(2) generation contributed to pulmonary fibrosis. Asbestos-induced translocation of Cu,Zn-SOD to the IMS was unique to macrophages and dependent on functional mitochondrial respiration and the presence of at least one of the conserved cysteines required for disulfide bond formation. These conserved cysteine residues were also necessary for enzyme activation and H(2)O(2) generation. Cu,Zn-SOD-mediated H(2)O(2) generation was inhibited by knockdown of the iron-sulfur protein, Rieske, in complex III. The role of Cu,Zn-SOD was biologically relevant in that Cu,Zn-SOD(-/-) mice generated significantly less H(2)O(2) and had less oxidant stress in bronchoalveolar lavage fluid and lung parenchyma. Furthermore, Cu,Zn-SOD(-/-) mice did not develop pulmonary fibrosis, and knockdown of Cu,Zn-SOD in monocytes attenuated collagen I deposition by lung fibroblasts. Our findings demonstrate a novel mechanism for the pathogenesis of pulmonary fibrosis where the antioxidant enzyme Cu,Zn-SOD translocates to the mitochondrial IMS to increase H(2)O(2) generation in alveolar macrophages.
Collapse
Affiliation(s)
- Chao He
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
| | | | - Michael L. McCormick
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
| | - Douglas R. Spitz
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
| | | | - A. Brent Carter
- From the Departments of Internal Medicine and
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
- Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
12
|
Cillero-Pastor B, Martin MA, Arenas J, López-Armada MJ, Blanco FJ. Effect of nitric oxide on mitochondrial activity of human synovial cells. BMC Musculoskelet Disord 2011; 12:42. [PMID: 21303534 PMCID: PMC3045396 DOI: 10.1186/1471-2474-12-42] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/08/2011] [Indexed: 01/12/2023] Open
Abstract
Background Nitric oxide (NO) is a messenger implicated in the destruction and inflammation of joint tissues. Cartilage and synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) have high levels of NO. NO is known to modulate various cellular pathways and, thus, inhibit the activity of the mitochondrial respiratory chain (MRC) of chondrocytes and induce the generation of reactive oxygen species (ROS) and cell death in multiple cell types. For these reasons, and because of the importance of the synovial membrane in development of OA pathology, we investigated the effects of NO on survival, mitochondrial function, and activity of fibroblastic human OA synovial cells. Methods Human OA synovia were obtained from eight patients undergoing hip joint replacement. Sodium nitroprusside (SNP) was used as a NO donor compound and cell viability was evaluated by MTT assays. Mitochondrial function was evaluated by analyzing the mitochondrial membrane potential (Δψm) with flow cytometry using the fluorofore DePsipher. ATP levels were measured by luminescence assays, and the activities of the respiratory chain complexes (complex I: NADH CoQ1 reductase, complex II: succinate dehydrogenase, complex III: ubiquinol-cytochrome c reductase, complex IV: cytochrome c oxidase) and citrate synthase (CS) were measured by enzymatic assay. Protein expression analyses were performed by western blot. Results SNP at a concentration of 0.5 mM induced cell death, shown by the MTT method at different time points. The percentages of viable cells at 24, 48 and 72 hours were 86.11 ± 4.9%, 74.31 ± 3.35%, and 43.88 ± 1.43%, respectively, compared to the basal level of 100% (*p < 0.05). SNP at 0.5 mM induced depolarization of the mitochondrial membrane at 12 hours with a decrease in the ratio of polarized cells (basal = 2.48 ± 0.28; SNP 0.5 mM = 1.57 ± 0.11; *p < 0.01). The time course analyses of treatment with SNP at 0.5 mM demonstrated that treatment reliably and significantly reduced intracellular ATP production (68.34 ± 14.3% vs. basal = 100% at 6 hours; *p < 0.05). The analysis of the MRC at 48 hours showed that SNP at 0.5 mM increased the activity of complexes I (basal = 36.47 ± 3.92 mol/min/mg protein, SNP 0.5 mM = 58.08 ± 6.46 mol/min/mg protein; *p < 0.05) and III (basal = 63.87 ± 6.93 mol/min/mg protein, SNP 0.5 mM = 109.15 ± 30.37 mol/min/mg protein; *p < 0.05) but reduced CS activity (basal = 105.06 ± 10.72 mol/min/mg protein, SNP at 0.5 mM = 66.88 ± 6.08 mol/min/mg protein.; *p < 0.05), indicating a decrease in mitochondrial mass. Finally, SNP regulated the expression of proteins related to the cellular cycle; the NO donor decreased bcl-2, mcl-1 and procaspase-3 protein expression. Conclusions This study suggests that NO reduces the survival of OA synoviocytes by regulating mitochondrial functionality, as well as the proteins controlling the cell cycle.
Collapse
Affiliation(s)
- Berta Cillero-Pastor
- Osteoarticular and Aging Research Unit, Biomedical Research Center, INIBIC, CH Universitario da Coruña, Xubias 84, 15006, A Coruña, Spain
| | | | | | | | | |
Collapse
|
13
|
Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, Nzengue Y, Lamarre D, Vande Velde C, Grandvaux N. Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog 2010; 6:e1000930. [PMID: 20532218 PMCID: PMC2880583 DOI: 10.1371/journal.ppat.1000930] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/28/2010] [Indexed: 12/22/2022] Open
Abstract
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.
Collapse
Affiliation(s)
- Anton Soucy-Faulkner
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Espérance Mukawera
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Karin Fink
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Alexis Martel
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Loubna Jouan
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Yves Nzengue
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Christine Vande Velde
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Boots AW, Hristova M, Kasahara DI, Haenen GRMM, Bast A, van der Vliet A. ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J Biol Chem 2009; 284:17858-67. [PMID: 19386603 DOI: 10.1074/jbc.m809761200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the NADPH oxidase homolog dual oxidase 1 (DUOX1) within the airway epithelium represents a key mechanism of innate airway host defense, through enhanced production of H2O2, which mediates cellular signaling pathways that regulate the production of various inflammatory mediators. Production of the CXC chemokine interleukin (IL)-8/CXCL8 forms a common epithelial response to many diverse stimuli, including bacterial and viral triggers, environmental oxidants, and other biological mediators, suggesting the potential involvement of a common signaling pathway that may involve DUOX1-dependent H2O2 production. Following previous reports showing that DUOX1 is activated by extracellular ATP and purinergic receptor stimulation, this study demonstrates that airway epithelial IL-8 production in response to several bacterial stimuli involves ATP release and DUOX1 activation. ATP-mediated DUOX1 activation resulted in the activation of ERK1/2 and NF-kappaB pathways, which was associated with epidermal growth factor receptor (EGFR) ligand shedding by ADAM17 (a disintegrin and metalloproteinase-17). Although ATP-mediated ADAM17 activation and IL-8 release were not prevented by extracellular H2O2 scavenging by catalase, these responses were attenuated by intracellular scavengers of H2O2 or related oxidants, suggesting an intracellular redox signaling mechanism. Both ADAM17 activation and IL-8 release were suppressed by inhibitors of EGFR/ERK1/2 signaling, which can regulate ADAM17 activity by serine/threonine phosphorylation. Collectively, our results indicate that ATP-mediated DUOX1 activation represents a common response mechanism to several environmental stimuli, involving H2O2-dependent EGFR/ERK activation, ADAM17 activation, and EGFR ligand shedding, leading to amplified epithelial EGFR activation and IL-8 production.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
15
|
Perl M, Lomas-Neira J, Chung CS, Ayala A. Epithelial cell apoptosis and neutrophil recruitment in acute lung injury-a unifying hypothesis? What we have learned from small interfering RNAs. Mol Med 2008; 14:465-75. [PMID: 18368145 PMCID: PMC2274893 DOI: 10.2119/2008-00011.perl] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/17/2008] [Indexed: 01/11/2023] Open
Abstract
In spite of protective ventilatory strategies, Acute Lung Injury (ALI) remains associated with high morbidity and mortality. One reason for the lack of therapeutic options might be that ALI is a co-morbid event associated with a diverse family of diseases and, thus, may be the result of distinct pathological processes. Among them, activated neutrophil- (PMN-) induced tissue injury and epithelial cell apoptosis mediated lung damage represent two potentially important candidate pathomechanisms that have been put forward. Several approaches have been undertaken to test these hypotheses, with substantial success in the treatment of experimental forms of ALI. With this in mind, we will summarize these two current hypotheses of ALI briefly, emphasizing the role of apoptosis in regulating PMN and/or lung epithelial cell responses. In addition, the contribution that Fas-mediated inflammation may play as a potential biological link between lung cell apoptosis and PMN recruitment will be considered, as well as the in vivo application of small interfering RNA (siRNA) as a novel approach to the inhibition of ALI and its therapeutic implications.
Collapse
Affiliation(s)
- Mario Perl
- Department of Traumatology, Hand- and Reconstructive Surgery, University of Ulm Medical School, Ulm, Germany
| | | | | | | |
Collapse
|