1
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
2
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Cho SH, Jo A, Casale T, Jeong SJ, Hong SJ, Cho JK, Holbrook JT, Kumar R, Smith LJ. Soy isoflavones reduce asthma exacerbation in asthmatic patients with high PAI-1-producing genotypes. J Allergy Clin Immunol 2019; 144:109-117.e4. [PMID: 30707970 PMCID: PMC6612283 DOI: 10.1016/j.jaci.2019.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The 4G4G genotype of plasminogen activator inhibitor 1 (PAI-1) is associated with increased plasma PAI-1 levels and poor asthma control. Previous studies suggest that soy isoflavones can reduce PAI-1 levels. OBJECTIVE We sought to investigate PAI-1 genotype-specific differences of the soy isoflavone response in asthma outcomes. METHODS A PAI-1 functional polymorphism (rs1799768, 4G5G) was characterized in subjects with poorly controlled asthma enrolled in a randomized clinical trial of soy isoflavones (n = 265). Genotype-specific treatment responses on asthma outcomes were compared between soy isoflavones and placebo. Normal human bronchial epithelial cells were cultured with or without TGF-β1, genistein, or both, and PAI-1 levels were measured. RESULTS The 4G4G/4G5G genotype was associated with a greater risk for allergy-related worsened asthma symptoms and eczema at baseline compared with the 5G5G genotype. There was a significant interaction between the genotype and soy isoflavone intervention on oral corticosteroid use for asthma exacerbation (P = .005). In a subgroup analysis soy isoflavones significantly reduced the use of oral corticosteroids (number of events/person-year) by 4-fold compared with placebo in the 4G4G/4G5G genotype (0.2 vs 0.8; relative risk, 0.28; P < .001) but not in the 5G5G genotype. Soy isoflavones reduced plasma PAI-1 levels compared with placebo. Genistein treatment reduced TGF-β1-induced PAI-1 production in normal human bronchial epithelial cells. CONCLUSIONS This study demonstrates that soy isoflavone treatment provides a significant benefit in reducing the number of severe asthma exacerbations in asthmatic patients with the high PAI-1-producing genotype. PAI-1 polymorphisms can be used as a genetic biomarker for soy isoflavone-responsive patients with asthma.
Collapse
Affiliation(s)
- Seong H Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla; Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea.
| | - Ara Jo
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Thomas Casale
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Su J Jeong
- Department of Statistics Support, Medical Science Research Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung-Jae Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Joong K Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Janet T Holbrook
- Center for Clinical Trials and Evidence Synthesis Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Rajesh Kumar
- Division of Allergy-Immunology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Lewis J Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| |
Collapse
|
5
|
Jo A, Lee SH, Kim DY, Hong SJ, Teng MN, Kolliputi N, Lockey RF, Schleimer RP, Cho SH. Mast cell-derived plasminogen activator inhibitor type 1 promotes airway inflammation and remodeling in a murine model of asthma. J Allergy Clin Immunol 2018; 142:294-297.e5. [PMID: 29477725 DOI: 10.1016/j.jaci.2018.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/01/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ara Jo
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Sun H Lee
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill
| | - Dong-Young Kim
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill
| | - Seung-Jae Hong
- Division of Allergy-Immunology, James A. Haley Veterans' Hospital, Tampa, Fla
| | - Michael N Teng
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Narasaiah Kolliputi
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Richard F Lockey
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill
| | - Seong H Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla; Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, James A. Haley Veterans' Hospital, Tampa, Fla; Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
6
|
Gombedza F, Kondeti V, Al-Azzam N, Koppes S, Duah E, Patil P, Hexter M, Phillips D, Thodeti CK, Paruchuri S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation. FASEB J 2017; 31:1556-1570. [PMID: 28073835 DOI: 10.1096/fj.201601045r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
Contributions of mechanical signals to airway remodeling during asthma are poorly understood. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, has been implicated in cardiac and pulmonary fibrosis; however, its role in asthma remains elusive. Employing a Dermatophagoides farinae-induced asthma model, we report here that TRPV4-knockout mice were protected from D. farinae-induced airway remodeling. Furthermore, lung fibroblasts that were isolated from TRPV4-knockout mice showed diminished differentiation potential compared with wild-type mice. Fibroblasts from asthmatic lung exhibited increased TRPV4 activity and enhanced differentiation potential compared with normal human lung fibroblasts. Of interest, TGF-β1 treatment enhanced TRPV4 activation in a PI3K-dependent manner in normal human lung fibroblasts in vitro Mechanistically, TRPV4 modulated matrix remodeling in the lung via 2 distinct but dependent pathways: one enhances matrix deposition by fibrotic gene activation, whereas the other slows down matrix degradation by increased plasminogen activator inhibitor 1. Of importance, both pathways are regulated by Rho/myocardin-related transcription factor-A and contribute to fibroblast differentiation and matrix remodeling in the lung. Thus, our results support a unique role for TRPV4 in D. farinae-induced airway remodeling and warrant further studies in humans for it to be used as a novel therapeutic target in the treatment of asthma.-Gombedza, F., Kondeti, V., Al-Azzam, N., Koppes, S., Duah, E., Patil, P., Hexter, M., Phillips, D., Thodeti, C. K., Paruchuri, S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation.
Collapse
Affiliation(s)
- Farai Gombedza
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Vinay Kondeti
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Nosayba Al-Azzam
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Stephanie Koppes
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Ernest Duah
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Prachi Patil
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Madison Hexter
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Daniel Phillips
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | |
Collapse
|
7
|
Wang H, Yang T, Li D, Wu Y, Zhang X, Pang C, Zhang J, Ying B, Wang T, Wen F. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2016; 11:2369-2376. [PMID: 27713627 PMCID: PMC5044991 DOI: 10.2147/copd.s107409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Plasminogen activator inhibitor-1 (PAI-1) and soluble urokinase-type plasminogen activator receptor (suPAR) participate in inflammation and tissue remolding in various diseases, but their roles in chronic obstructive pulmonary disease (COPD) are not yet clear. This study aimed to investigate if PAI-1 and suPAR were involved in systemic inflammation and small airway obstruction (SAO) in COPD. Methods Demographic and clinical characteristics, spirometry examination, and blood samples were obtained from 84 COPD patients and 51 healthy volunteers. Serum concentrations of PAI-1, suPAR, tissue inhibitor of metalloproteinase-1 (TIMP-1), Matrix metalloproteinase-9 (MMP-9), and C-reactive protein (CRP) were detected with Magnetic Luminex Screening Assay. Differences between groups were statistically analyzed using one-way analysis of variance or chi-square test. Pearson’s partial correlation test (adjusted for age, sex, body mass index, cigarette status, and passive smoke exposure) and multivariable linear analysis were used to explore the relationships between circulating PAI-1 and indicators of COPD. Results First, we found that serum PAI-1 levels but not suPAR levels were significantly increased in COPD patients compared with healthy volunteers (125.56±51.74 ng/mL versus 102.98±36.62 ng/mL, P=0.007). Then, the correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC), FEV1/Pre (justified r=−0.308, P<0.001; justified r=−0.295, P=0.001, respectively) and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=−0.289, P=0.001; justified r=−0.273, P=0.002, respectively), but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001), the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively). Besides, multivariable linear analysis showed that FEV1/FVC, CRP, and TIMP-1 were independent parameters associated with PAI-1. Conclusion Our findings first illustrate that elevated serum PAI-1 levels are related to the lung function decline, systemic inflammation, and SAO in COPD, suggesting that PAI-1 may play critical roles in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Diandian Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Caishuang Pang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Cho SH, Min JY, Kim DY, Oh SS, Torgerson DR, Pino-Yanes M, Hu D, Sen S, Huntsman S, Eng C, Farber HJ, Rodriguez-Cintron W, Rodriguez-Santana JR, Serebrisky D, Thyne SM, Borrell LN, Williams LK, DuPont W, Seibold MA, Burchard EG, Avila PC, Kumar R. Association of a PAI-1 Gene Polymorphism and Early Life Infections with Asthma Risk, Exacerbations, and Reduced Lung Function. PLoS One 2016; 11:e0157848. [PMID: 27556405 PMCID: PMC4996454 DOI: 10.1371/journal.pone.0157848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) is induced in airways by virus and may mediate asthmatic airway remodeling. We sought to evaluate if genetic variants and early life lower respiratory infections jointly affect asthma risk. METHODS We included Latino children, adolescents, and young adults aged 8-21 years (1736 subjects with physician-diagnosed asthma and 1747 healthy controls) from five U.S. centers and Puerto Rico after excluding subjects with incomplete clinical or genetic data. We evaluated the independent and joint effects of a PAI-1 gain of function polymorphism and bronchiolitis / Respiratory Syncytial Virus (RSV) or other lower respiratory infections (LRI) within the first 2 years of life on asthma risk, asthma exacerbations and lung function. RESULTS RSV infection (OR 9.9, 95%CI 4.9-20.2) and other LRI (OR 9.1, 95%CI 7.2-11.5) were independently associated with asthma, but PAI-1 genotype was not. There were joint effects on asthma risk for both genotype-RSV (OR 17.7, 95% CI 6.3-50.2) and genotype-LRI (OR 11.7, 95% CI 8.8-16.4). A joint effect of genotype-RSV resulted in a 3.1-fold increased risk for recurrent asthma hospitalizations. In genotype-respiratory infection joint effect analysis, FEV1% predicted and FEV1/FVC % predicted were further reduced in the genotype-LRI group (β -2.1, 95% CI -4.0 to -0.2; β -2.0, 95% CI -3.1 to -0.8 respectively). Similarly, lower FEV1% predicted was noted in genotype-RSV group (β -3.1, 95% CI -6.1 to -0.2) with a trend for lower FEV1/FVC % predicted. CONCLUSIONS A genetic variant of PAI-1 together with early life LRI such as RSV bronchiolitis is associated with an increased risk of asthma, morbidity, and reduced lung function in this Latino population.
Collapse
Affiliation(s)
- Seong H. Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Division of Allergy-Immunology, Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jin-Young Min
- Department of Otolaryngology, Northwestern University, Chicago, Illinois, United States of America
| | - Dong Young Kim
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sam S. Oh
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Dara R. Torgerson
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Maria Pino-Yanes
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Saunak Sen
- Division of Biostatistics, Department of Preventive Medicine, UTHSC, Memphis, Tennessee, United States of America
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Harold J. Farber
- Department of Pediatrics, Section of Pulmonology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | | | | | - Denise Serebrisky
- Pediatric Pulmonary Division, Jacobi Medical Center, Bronx, New York, United States of America
| | - Shannon M. Thyne
- Department of Pediatrics, University of California, San Francisco, California, United States of America
| | - Luisa N. Borrell
- Department of Health Sciences, Lehman College, CUNY, New York, New York, United States of America
| | - L. Keoki Williams
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan, United States of America
| | - William DuPont
- Department of Biostatistics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Max A. Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Pedro C. Avila
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rajesh Kumar
- Division of Allergy-Immunology, Department of Pediatrics, Northwestern University, Chicago, Illinois, United States of America
- The Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
Man DK, Chow MY, Casettari L, Gonzalez-Juarrero M, Lam JK. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis. Adv Drug Deliv Rev 2016; 102:21-32. [PMID: 27108702 DOI: 10.1016/j.addr.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment.
Collapse
|
10
|
Liu RM, Eldridge S, Watanabe N, Deshane J, Kuo HC, Jiang C, Wang Y, Liu G, Schwiebert L, Miyata T, Thannickal VJ. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma. Am J Physiol Lung Cell Mol Physiol 2015; 310:L328-36. [PMID: 26702150 DOI: 10.1152/ajplung.00217.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/19/2015] [Indexed: 11/22/2022] Open
Abstract
Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Stephanie Eldridge
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nobuo Watanabe
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Jessy Deshane
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui-Chien Kuo
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa Schwiebert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Kim DY, Cho SH, Takabayashi T, Schleimer RP. Chronic Rhinosinusitis and the Coagulation System. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:421-30. [PMID: 26122502 PMCID: PMC4509654 DOI: 10.4168/aair.2015.7.5.421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Chronic rhinosinusitis (CRS) is one of the most common chronic diseases in adults and severely affects quality of life in patients. Although various etiologic and pathogenic mechanisms of CRS have been proposed, the causes of CRS remain uncertain. Abnormalities in the coagulation cascade may play an etiologic role in many diseases, such as asthma and other inflammatory conditions. While studies on the relationship between asthma and dysregulated coagulation have been reported, the role of the coagulation system in the pathogenesis of CRS has only been considered following recent reports. Excessive fibrin deposition is seen in nasal polyp (NP) tissue from patients with chronic rhinosinusitis with nasal polyp (CRSwNP) and is associated with activation of thrombin, reduction of tissue plasminogen activator (t-PA) and upregulation of coagulation factor XIII-A (FXIII-A), all events that can contribute to fibrin deposition and crosslinking. These findings were reproduced in a murine model of NP that was recently established. Elucidation of the mechanisms of fibrin deposition may enhance our understanding of tissue remodeling in the pathophysiology of NP and provide new targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Dong Young Kim
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong H Cho
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
12
|
IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators. PLoS One 2015; 10:e0121615. [PMID: 25785861 PMCID: PMC4364779 DOI: 10.1371/journal.pone.0121615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/02/2015] [Indexed: 12/13/2022] Open
Abstract
Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.
Collapse
|
13
|
Asai-Tajiri Y, Matsumoto K, Fukuyama S, Kan-O K, Nakano T, Tonai K, Ohno T, Azuma M, Inoue H, Nakanishi Y. Small interfering RNA against CD86 during allergen challenge blocks experimental allergic asthma. Respir Res 2014; 15:132. [PMID: 25344652 PMCID: PMC4216659 DOI: 10.1186/s12931-014-0132-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
Background CD86-CD28 interaction has been suggested as the principal costimulatory pathway for the activation and differentiation of naïve T cells in allergic inflammation. However, it remains uncertain whether this pathway also has an essential role in the effector phase. We sought to determine the contribution of CD86 on dendritic cells in the reactivation of allergen-specific Th2 cells. Methods We investigated the effects of the downregulation of CD86 by short interfering RNAs (siRNAs) on Th2 cytokine production in the effector phase in vitro and on asthma phenotypes in ovalbumin (OVA)-sensitized and -challenged mice. Results Treatment of bone marrow-derived dendritic cells (BMDCs) with CD86 siRNA attenuated LPS-induced upregulation of CD86. CD86 siRNA treatment impaired BMDCs’ ability to activate OVA-specific Th2 cells. Intratracheal administration of CD86 siRNA during OVA challenge downregulated CD86 expression in the airway mucosa. CD86 siRNA treatment ameliorated OVA-induced airway eosinophilia, airway hyperresponsiveness, and the elevations of OVA-specific IgE in the sera and IL-5, IL-13, and CCL17 in the bronchoalveolar lavage fluid, but not the goblet cell hyperplasia. Conclusion These results suggest that local administration of CD86 siRNA during the effector phase ameliorates lines of asthma phenotypes. Targeting airway dendritic cells with siRNA suppresses airway inflammation and hyperresponsiveness in an experimental model of allergic asthma.
Collapse
Affiliation(s)
- Yukari Asai-Tajiri
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takako Nakano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiromasa Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
Mazzeo C, Gámez C, Rodriguez Marco A, de Zulueta A, Sanz V, Bilbao I, Ruiz-Cabello J, Zubeldia JM, del Pozo V. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PLoS One 2014; 9:e91996. [PMID: 24637581 PMCID: PMC3956882 DOI: 10.1371/journal.pone.0091996] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/16/2014] [Indexed: 12/03/2022] Open
Abstract
Suppresors of cytokine signaling (SOCS) proteins regulate cytokine responses and control immune balance. Several studies have confirmed that SOCS3 is increased in asthmatic patients, and SOCS3 expression is correlated with disease severity. The objective of this study was to evaluate if delivering of SOCS3 short interfering RNA (siRNA) intranasally in lungs could be a good therapeutic approach in an asthma chronic mouse model. Our results showed that intranasal treatment with SOCS3-siRNA led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion, a reduction in lung collagen, which are prominent features of airway remodeling. The mechanism implies JAK/STAT and RhoA/Rho-kinase signaling pathway, because we found a decreasing in STAT3 phosphorylation status and down regulation of RhoA/Rho-kinase protein expression. These results might lead to a new therapy for the treatment of chronic asthma.
Collapse
Affiliation(s)
- Ma Paz Zafra
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Carla Mazzeo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Cristina Gámez
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | | | - Ana de Zulueta
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Veronica Sanz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Izaskun Bilbao
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares, and Universidad Complutense Madrid, Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares, and Universidad Complutense Madrid, Madrid, Spain
| | - Jose M. Zubeldia
- Allergy Section and Experimental Medicine Unit, Gregorio Marañón Hospital, Madrid, Spain
| | - Victoria del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Cho SH, Hong SJ, Chen H, Habib A, Cho D, Lee SH, Kang J, Ward T, Boushey HA, Schleimer RP, Avila PC. Plasminogen activator inhibitor-1 in sputum and nasal lavage fluids increases in asthmatic patients during common colds. J Allergy Clin Immunol 2013; 133:1465-7, 1467.e1-2. [PMID: 24373352 PMCID: PMC4004714 DOI: 10.1016/j.jaci.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 10/04/2013] [Accepted: 11/13/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Seong H Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea.
| | - Seung J Hong
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Haimei Chen
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Ali Habib
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - David Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Sun H Lee
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Joseph Kang
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Theresa Ward
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, Calif
| | - Homer A Boushey
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, Calif
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Pedro C Avila
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
16
|
Ge XN, Greenberg Y, Hosseinkhani MR, Long EK, Bahaie NS, Rao A, Ha SG, Rao SP, Bernlohr DA, Sriramarao P. High-fat diet promotes lung fibrosis and attenuates airway eosinophilia after exposure to cockroach allergen in mice. Exp Lung Res 2013; 39:365-78. [PMID: 24102347 DOI: 10.3109/01902148.2013.829537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obesity is an important risk factor for asthma but the mechanistic basis for this association is not well understood. In the current study, the impact of obesity on lung inflammatory responses after allergen exposure was investigated. C57BL/6 mice maintained on a high-fat diet (HFD) or a normal diet (ND) after weaning were sensitized and challenged with cockroach allergen (CRA). Airway inflammation was assessed based on inflammatory cell recruitment, measurement of lung Th1-Th2 cytokines, chemokines, eicosanoids, and other proinflammatory mediators as well as airway hyperresponsiveness (AHR). CRA-challenged mice fed a HFD exhibited significantly decreased allergen-induced airway eosinophilia along with reduced lung IL-5, IL-13, LTC4, CCL11, and CCL2 levels as well as reduced mucus secretion and smooth muscle mass compared to ND fed mice. However, allergen-challenged HFD fed mice demonstrated significantly increased PAI-1 and reduced PGE2 levels in the lung relative to corresponding ND fed mice. Interestingly, saline-exposed HFD fed mice demonstrated elevated baseline levels of TGF-β1, arginase-1, hypoxia-inducible factor-1α, and lung collagen expression associated with decreased lung function compared to corresponding ND fed mice. These studies indicate that a HFD inhibits airway eosinophilia while altering levels of PAI-1 and PGE2 in response to CRA in mice. Further, a HFD can lead to the development of lung fibrosis even in the absence of allergen exposure which could be due to innate elevated levels of specific profibrotic factors, potentially affecting lung function during asthma.
Collapse
Affiliation(s)
- Xiao Na Ge
- 1Laboratory of Allergic Diseases and Inflammation, Department of Veterinary & Biomedical Sciences, University of Minnesota , St. Paul, Minnesota , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang YP, Wang WL, Liu J, Li WB, Bai LL, Yuan YD, Song SX. Plasminogen activator inhibitor-1 promotes the proliferation and inhibits the apoptosis of pulmonary fibroblasts by Ca2+ signaling. Thromb Res 2013; 131:64-71. [DOI: 10.1016/j.thromres.2012.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 01/21/2023]
|
18
|
Narumoto O, Matsuo Y, Sakaguchi M, Shoji S, Yamashita N, Schubert D, Abe K, Horiguchi K, Nagase T, Yamashita N. Suppressive effects of a pyrazole derivative of curcumin on airway inflammation and remodeling. Exp Mol Pathol 2012; 93:18-25. [PMID: 22542791 DOI: 10.1016/j.yexmp.2012.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/22/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
To advance the control of airway epithelial cell function and asthma, we investigated the effects of a new curcumin derivative, CNB001, which possesses improved pharmacological properties. Normal human bronchial epithelial (NHBE) cells were stimulated with synthetic double-stranded RNA, Poly(I:C). CNB001 significantly suppressed IL-6, TNF-α, and GM-CSF production by NHBE cells, and did so more effectively than did curcumin or dexamethasone (DEX). CNB001 significantly inhibited the decrease of E-cadherin mRNA expression and increase of vimentin mRNA expression observed in NHBE cells induced by a combination of TGF-β1 and TNF-α, which are markers of airway remodeling. In NHBE cells stimulated by TGF-β1, CNB001 significantly downregulated the level of active serine peptidase inhibitor clade E member (SERPINE) 1, which is also reported to be related to airway remodeling. Whereas DEX alone significantly increased the active SERPINE1 level, the combination of DEX and CNB001 significantly suppressed active SERPINE1. In addition, CNB001 significantly suppressed neutrophil infiltration, IL-6, TNF-α, IL-13 and active SERPINE1 production in bronchoalveolar lavage fluid of the murine asthma model, which was not observed in the case of DEX. In conclusion, the curcumin derivative, CNB001, is a promising candidate to treat asthma associated with neutrophilic airway inflammation and remodeling.
Collapse
Affiliation(s)
- Osamu Narumoto
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences Musashino University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 2012; 157:291-8. [PMID: 22360729 DOI: 10.1111/j.1365-2141.2012.09074.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/24/2012] [Indexed: 01/07/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1, also known as SERPINE1) is a member of the serine protease inhibitor (SERPIN) superfamily and is the primary physiological regulator of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) activity. Although the principal function of PAI-1 is the inhibition of fibrinolysis, PAI-1 possesses pleiotropic functions besides haemostasis. In the quarter century since its discovery, a number of studies have focused on improving our understanding of PAI-1 functions in vivo and in vitro. The use of Serpine1-deficient mice has particularly enhanced our understanding of the functions of PAI-1 in various physiological and pathophysiological conditions. In this review, the results of recent studies on PAI-1 and its role in clinical conditions are discussed.
Collapse
Affiliation(s)
- Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | |
Collapse
|
20
|
Lee SH, Eren M, Vaughan DE, Schleimer RP, Cho SH. A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma. Am J Respir Cell Mol Biol 2012; 46:842-6. [PMID: 22323366 DOI: 10.1165/rcmb.2011-0369oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma.
Collapse
Affiliation(s)
- Sun H Lee
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, 676 North St. Clair Street, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|