1
|
Lin J, Gettings SM, Talbi K, Schreiber R, Taggart MJ, Preller M, Kunzelmann K, Althaus M, Gray MA. Pharmacological inhibitors of the cystic fibrosis transmembrane conductance regulator exert off-target effects on epithelial cation channels. Pflugers Arch 2023; 475:167-179. [PMID: 36205782 PMCID: PMC9849171 DOI: 10.1007/s00424-022-02758-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αβγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δβγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.
Collapse
Affiliation(s)
- JinHeng Lin
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | - Sean M. Gettings
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Khaoula Talbi
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Schreiber
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Michael J. Taggart
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Matthias Preller
- grid.425058.e0000 0004 0473 3519Department of Natural Sciences/Institute for Functional Gene Analytics, Structural Biology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Karl Kunzelmann
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Mike Althaus
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK ,grid.425058.e0000 0004 0473 3519Present Address: Department of Natural Sciences /Institute for Functional Gene Analytics, Ion Transport Physiology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Michael A. Gray
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
2
|
Im J, Hillenaar T, Yeoh HY, Sahasrabudhe P, Mijnders M, van Willigen M, Hagos A, de Mattos E, van der Sluijs P, Braakman I. ABC-transporter CFTR folds with high fidelity through a modular, stepwise pathway. Cell Mol Life Sci 2023; 80:33. [PMID: 36609925 PMCID: PMC9825563 DOI: 10.1007/s00018-022-04671-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023]
Abstract
The question how proteins fold is especially pointed for large multi-domain, multi-spanning membrane proteins with complex topologies. We have uncovered the sequence of events that encompass proper folding of the ABC transporter CFTR in live cells by combining kinetic radiolabeling with protease-susceptibility assays. We found that CFTR folds in two clearly distinct stages. The first, co-translational, stage involves folding of the 2 transmembrane domains TMD1 and TMD2, plus one nucleotide-binding domain, NBD1. The second stage is a simultaneous, post-translational increase in protease resistance for both TMDs and NBD2, caused by assembly of these domains onto NBD1. Our assays probe every 2-3 residues (on average) in CFTR. This in-depth analysis at amino-acid level allows detailed analysis of domain folding and importantly also the next level: assembly of the domains into native, folded CFTR. Defects and changes brought about by medicines, chaperones, or mutations also are amenable to analysis. We here show that the well-known disease-causing mutation F508del, which established cystic fibrosis as protein-folding disease, caused co-translational misfolding of NBD1 but not TMD1 nor TMD2 in stage 1, leading to absence of stage-2 folding. Corrector drugs rescued stage 2 without rescuing NBD1. Likewise, the DxD motif in NBD1 that was identified to be required for export of CFTR from the ER we found to be required already upstream of export as CFTR mutated in this motif phenocopies F508del CFTR. The highly modular and stepwise folding process of such a large, complex protein explains the relatively high fidelity and correctability of its folding.
Collapse
Affiliation(s)
- Jisu Im
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tamara Hillenaar
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hui Ying Yeoh
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Priyanka Sahasrabudhe
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Navigo Proteins GmbH, 06120 Halle, Germany
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Marcel van Willigen
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Julius Clinical Ltd, 3703 CD Zeist, The Netherlands
| | - Azib Hagos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
3
|
Raraigh KS, Paul KC, Goralski JL, Worthington EN, Faino AV, Sciortino S, Wang Y, Aksit MA, Ling H, Osorio DL, Onchiri FM, Patel SU, Merlo CA, Montemayor K, Gibson RL, West NE, Thakerar A, Bridges RJ, Sheppard DN, Sharma N, Cutting GR. CFTR bearing variant p.Phe312del exhibits function inconsistent with phenotype and negligible response to ivacaftor. JCI Insight 2022; 7:148841. [PMID: 35315358 PMCID: PMC8986068 DOI: 10.1172/jci.insight.148841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
The chloride channel dysfunction caused by deleterious cystic fibrosis transmembrane conductance regulator (CFTR) variants generally correlates with severity of cystic fibrosis (CF). However, 3 adults bearing the common severe variant p.Phe508del (legacy: F508del) and a deletion variant in an ivacaftor binding region of CFTR (p.Phe312del; legacy: F312del) manifested only elevated sweat chloride concentration (sw[Cl-]; 87-105 mEq/L). A database review of 25 individuals with F312del and a CF-causing variant revealed elevated sw[Cl-] (75-123 mEq/L) and variable CF features. F312del occurs at a higher-than-expected frequency in the general population, confirming that individuals with F312del and a CF-causing variant do not consistently develop overt CF features. In primary nasal cells, CFTR bearing F312del and F508del generated substantial chloride transport (66.0% ± 4.5% of WT-CFTR) but did not respond to ivacaftor. Single-channel analysis demonstrated that F312del did not affect current flow through CFTR, minimally altered gating, and ablated the ivacaftor response. When expressed stably in CF bronchial epithelial (CFBE41o-) cells, F312del-CFTR demonstrated residual function (50.9% ± 3.3% WT-CFTR) and a subtle decrease in forskolin response compared with WT-CFTR. F312del provides an exception to the established correlation between CFTR chloride transport and CF phenotype and informs our molecular understanding of ivacaftor response.
Collapse
Affiliation(s)
| | | | - Jennifer L Goralski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin N Worthington
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna V Faino
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Stanley Sciortino
- California Department of Public Health, Genetic Disease Screening Program, Richmond, California, USA
| | - Yiting Wang
- University of Bristol, Bristol, United Kingdom
| | | | - Hua Ling
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | - Amita Thakerar
- Rosalind Franklin University of Medicine and Science, Center for Genetic Diseases, North Chicago, Illinois, USA
| | - Robert J Bridges
- Rosalind Franklin University of Medicine and Science, Center for Genetic Diseases, North Chicago, Illinois, USA
| | | | | | | |
Collapse
|
4
|
Haq I, Almulhem M, Soars S, Poulton D, Brodlie M. Precision Medicine Based on CFTR Genotype for People with Cystic Fibrosis. Pharmgenomics Pers Med 2022; 15:91-104. [PMID: 35153502 PMCID: PMC8828078 DOI: 10.2147/pgpm.s245603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic condition that is caused by variants in the cystic fibrosis transmembrane conductance regulator gene. This causes multisystem disease due to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel at the apical surface of epithelia. Until recently, treatment was directed at managing the downstream effects in affected organs, principally improving airway clearance and treating infection in the lungs and improving malabsorption in the gastrointestinal tract. Care delivered by multidisciplinary teams has yielded incremental improvements in outcomes. However, the development of small-molecule CFTR modulator drugs over the last decade has heralded a new era of CF therapeutics. Modulators target the underlying defect and improve CFTR function. Either monotherapy or a combination of modulators is used depending on the specific genotype and class of CFTR disease-causing variants that an individual has. Both ivacaftor and the ivacaftor/tezacaftor/elexacaftor combination have been demonstrated to be associated with clinically very significant benefits in randomised trials and have rapidly been made available as part of standard care in many countries. CFTR modulators represent one of the best examples of precision medicine to date. They are expensive, however, and equity of access to them worldwide remains an issue. Studies and approvals are also ongoing for children under the age of 6 years for ivacaftor/tezacaftor/elexacaftor. Furthermore, no modulators are available for around 10% of the people with CF. In this review, we firstly summarise the genetics, pathophysiology and clinical problems associated with CF. We then discuss the development of CFTR modulators and key clinical trials to support their use along with other potential future therapeutic approaches.
Collapse
Affiliation(s)
- Iram Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Maryam Almulhem
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simone Soars
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Poulton
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Paediatrics, Ninewells Hospital, NHS Tayside, Dundee, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Correspondence: Malcolm Brodlie, Paediatric Respiratory Medicine, Level 3, Clinical Resource Building, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK, Tel +44 191 2336161, Email
| |
Collapse
|
5
|
Gardner AI, Wu Y, Verhaegh R, Liu Y, Wilker B, Soddemann M, Keitsch S, Edwards MJ, Haq IJ, Kamler M, Becker KA, Brodlie M, Gulbins E. Interferon regulatory factor 8 regulates expression of acid ceramidase and infection susceptibility in cystic fibrosis. J Biol Chem 2021; 296:100650. [PMID: 33839155 PMCID: PMC8113888 DOI: 10.1016/j.jbc.2021.100650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.
Collapse
Affiliation(s)
- Aaron Ions Gardner
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yuqing Wu
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rabea Verhaegh
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yongjie Liu
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Iram J Haq
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Malcolm Brodlie
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK.
| | - Erich Gulbins
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|