1
|
Matsuda N, Machida T, Hattori Y. [Molecular mechanisms underlying the pathogenesis of septic multiple organ failure]. Nihon Yakurigaku Zasshi 2024; 159:101-106. [PMID: 38432917 DOI: 10.1254/fpj.23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Sepsis is defined as the body's overwhelming and life-threatening response to infection that can lead to tissue damage, organ failure, and death. Since bacterial infection is one of the main causes of sepsis, appropriate antimicrobial therapy remains the cornerstone of sepsis and septic shock management. However, since sepsis is a multifaceted chaos involving inflammation and anti-inflammation disbalance leading to the unregulated widespread release of inflammatory mediators, cytokines, and pathogen-related molecules leading to system-wide organ dysfunction, the whole body control to prevent the progression of organ dysfunction is needed. In sepsis and septic shock, pathogen-associated molecular patterns (PAMPs), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host. PAMPs are recognized by pattern recognizing receptors (PRRs) expressed on immune-reactive cells. PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Thus, most PRRs respond to PAMPs or DAMPs by triggering activation of transcriptional factors, NF-κB, AP1, and STAT-3. On the other hand, sepsis leads to immune (lymphocytes and macrophages) and nonimmune (endothelial and epithelial cells) cell death. Apoptosis has been the major focus of research on cell death in sepsis, but autophagy, necrosis, necroptosis, pyroptosis, NETosis, and ferroptosis may also play an important role in this critical situation. The recent development in our understanding regarding the cellular pathogenesis of sepsis will help in developing new treatment of sepsis.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Emergency & Critical Care Medicine, Nagoya University Graduate School of Medicine
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido
| |
Collapse
|
2
|
Abu Y, Vitari N, Yan Y, Roy S. Opioids and Sepsis: Elucidating the Role of the Microbiome and microRNA-146. Int J Mol Sci 2022; 23:1097. [PMID: 35163021 PMCID: PMC8835205 DOI: 10.3390/ijms23031097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis has recently been defined as life-threatening organ dysfunction caused by the dysregulated host response to an ongoing or suspected infection. To date, sepsis continues to be a leading cause of morbidity and mortality amongst hospitalized patients. Many risk factors contribute to development of sepsis, including pain-relieving drugs like opioids, which are frequently prescribed post-operatively. In light of the opioid crisis, understanding the interactions between opioid use and the development of sepsis has become extremely relevant, as opioid use is associated with increased risk of infection. Given that the intestinal tract is a major site of origin of sepsis-causing microbes, there has been an increasing focus on how alterations in the gut microbiome may predispose towards sepsis and mediate immune dysregulation. MicroRNAs, in particular, have emerged as key modulators of the inflammatory response during sepsis by tempering the immune response, thereby mediating the interaction between host and microbiome. In this review, we elucidate contributing roles of microRNA 146 in modulating sepsis pathogenesis and end with a discussion of therapeutic targeting of the gut microbiome in controlling immune dysregulation in sepsis.
Collapse
Affiliation(s)
- Yaa Abu
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nicolas Vitari
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Yan Yan
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Sabita Roy
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Hattori K, Matsuda N, Hattori Y. [Vascular hyperpermeable molecules potentially contributing to the development of pulmonary edema in sepsis-associated ARDS]. Nihon Yakurigaku Zasshi 2022; 157:226-231. [PMID: 35781449 DOI: 10.1254/fpj.22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is an important cause of respiratory failure in critically ill patients and may become a life-threatening condition where inflammation of the lungs may begin in one lung but eventually affects both, leading to damage to the alveoli and surrounding small blood vessels. ARDS is particularly characterized by noncardiogenic pulmonary edema caused by an increase in pulmonary capillary permeability. Several clinical disorders can precipitate in ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. The most common cause of ARDS is sepsis, which is a serious and widespread infection of the bloodstream and is now defined as life-threatening organ dysfunction due to a dysregulated reponse of the host to infection. In sepsis, a number of vascular hyperpermeable factors, such as histamine, nitric oxide, thromboxane A2, and vascular endothelial growth factor, can be overproducted and contribute to the development of pulmonary edema. Given that sepsis can be regarded as a gene-related disorder, the nucleic-acid based gene therapeutic strategy to regulate some transcription factors involved in expression of vascular hyperpermeable genes may be considered to be a promising novel approach for treatment of ARDS in sepsis.
Collapse
Affiliation(s)
- Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido
| |
Collapse
|
4
|
Allylpyrocatechol ameliorates sepsis-induced lung injury via SIRT1-mediated suppression of p65 and nucleocytoplasmic translocation of HMGB1. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. J Control Release 2021; 337:629-644. [PMID: 34375688 DOI: 10.1016/j.jconrel.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.
Collapse
|
6
|
Tomita K, Saito Y, Suzuki T, Imbaby S, Hattori K, Matsuda N, Hattori Y. Vascular endothelial growth factor contributes to lung vascular hyperpermeability in sepsis-associated acute lung injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2365-2374. [PMID: 32696151 PMCID: PMC7371837 DOI: 10.1007/s00210-020-01947-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a prime regulator of vascular permeability. Acute lung injury (ALI) is characterized by high-permeability pulmonary edema in addition to refractory hypoxemia and diffuse pulmonary infiltrates. In this study, we examined whether VEGF can be implicated as a pulmonary vascular permeability factor in sepsis-associated ALI. We found that a great increase in lung vascular leak occurred in mice instilled intranasally with lipopolysaccharide (LPS), as assessed by IgM levels in bronchoalveolar lavage fluid. Treatment with the VEGF-neutralizing monoclonal antibody bevacizumab significantly reduced this hyperpermeability response, suggesting active participation of VEGF in non-cardiogenic lung edema associated with LPS-induced ALI. However, this was not solely attributable to excessive levels of intrapulmonary VEGF. Expression levels of VEGF were significantly reduced in lung tissues from mice with both intranasal LPS administration and cecal ligation and puncture (CLP)-induced sepsis, which may stem from decreases in non-endothelial cells-dependent VEGF production in the lungs. In support of this assumption, stimulation with LPS and interferon-γ (IFN-γ) significantly increased VEGF in human pulmonary microvascular endothelial cells (HPMECs) at mRNA and protein levels. Furthermore, a significant rise in plasma VEGF levels was observed in CLP-induced septic mice. The increase in VEGF released from HPMECs after LPS/IFN-γ challenge was completely blocked by either specific inhibitor of mitogen-activated protein kinase (MAPK) subgroups. Taken together, our results indicate that VEGF can contribute to the development of non-cardiogenic lung edema in sepsis-associated ALI due to increased VEGF secretion from pulmonary vascular endothelial cells through multiple MAPK-dependent pathways.
Collapse
Affiliation(s)
- Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Medical Environment Engineering Group, Center for Environmental Engineering, Shimizu Corporation, Institute of Technology, Tokyo, 135-0044, Japan
| | - Yuna Saito
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Center for Clinical Training, Juntendo University Urayasu Hospital, Urayasu, 279-0021, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- J-Pharma Co., Ltd., Yokohama, 230-0046, Japan
| | - Samar Imbaby
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan.
| |
Collapse
|
7
|
Beneficial effect of STAT3 decoy oligodeoxynucleotide transfection on organ injury and mortality in mice with cecal ligation and puncture-induced sepsis. Sci Rep 2020; 10:15316. [PMID: 32943679 PMCID: PMC7498613 DOI: 10.1038/s41598-020-72136-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a major clinical challenge with unacceptably high mortality. The signal transducers and activators of transcription (STAT) family of transcription factors is known to activate critical mediators of cytokine responses, and, among this family, STAT3 is implicated to be a key transcription factor in both immunity and inflammatory pathways. We investigated whether in vivo introduction of synthetic double-stranded STAT3 decoy oligodeoxynucleotides (ODNs) can provide benefits for reducing organ injury and mortality in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. We found that STAT3 was rapidly activated in major end-organ tissues following CLP, which was accompanied by activation of the upstream kinase JAK2. Transfection of STAT3 decoy ODNs downregulated pro-inflammatory cytokine/chemokine overproduction in CLP mice. Moreover, STAT3 decoy ODN transfection significantly reduced the increases in tissue mRNAs and proteins of high mobility group box 1 (HMGB1) and strongly suppressed the excessive elevation in serum HMGB1 levels in CLP mice. Finally, STAT3 decoy ODN administration minimized the development of sepsis-driven major end-organ injury and led to a significant survival advantage in mice after CLP. Our results suggest a critical role of STAT3 in the sepsis pathophysiology and the potential usefulness of STAT3 decoy ODNs for sepsis gene therapy.
Collapse
|
8
|
Activator Protein-1 Decoy Oligodeoxynucleotide Transfection Is Beneficial in Reducing Organ Injury and Mortality in Septic Mice. Crit Care Med 2019; 46:e435-e442. [PMID: 29406423 DOI: 10.1097/ccm.0000000000003009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Inflammation and apoptosis are decisive mechanisms for the development of end-organ injury in sepsis. Activator protein-1 may play a key role in regulating expression of harmful genes responsible for the pathophysiology of septic end-organ injury along with the major transcription factor nuclear factor-κB. We investigated whether in vivo introduction of circular dumbbell activator protein-1 decoy oligodeoxynucleotides can provide benefits for reducing septic end-organ injury. DESIGN Laboratory and animal/cell research. SETTINGS University research laboratory. SUBJECTS Male BALB/c mice (8-10 wk old). INTERVENTIONS Activator protein-1 decoy oligodeoxynucleotides were effectively delivered into tissues of septic mice in vivo by preparing into a complex with atelocollagen given 1 hour after surgery. MATERIALS AND MAIN RESULTS Polymicrobial sepsis was induced by cecal ligation and puncture in mice. Activator protein-1 decoy oligodeoxynucleotide transfection inhibited abnormal production of proinflammatory and chemotactic cytokines after cecal ligation and puncture. Histopathologic changes in lung, liver, and kidney tissues after cecal ligation and puncture were improved by activator protein-1 decoy oligodeoxynucleotide administration. When activator protein-1 decoy oligodeoxynucleotides were given, apoptosis induction was strikingly suppressed in lungs, livers, kidneys, and spleens of cecal ligation and puncture mice. These beneficial effects of activator protein-1 decoy oligodeoxynucleotides led to a significant survival advantage in mice after cecal ligation and puncture. Apoptotic gene profiling indicated that activator protein-1 activation was involved in the up-regulation of many of proapoptotic and antiapoptotic genes in cecal ligation and puncture-induced sepsis. CONCLUSIONS Our results indicate a detrimental role of activator protein-1 in the sepsis pathophysiology and the potential usefulness of activator protein-1 decoy oligodeoxynucleotides for the prevention and treatment of septic end-organ failure.
Collapse
|
9
|
miR-146a targeted to splenic macrophages prevents sepsis-induced multiple organ injury. J Transl Med 2019; 99:1130-1142. [PMID: 30700845 DOI: 10.1038/s41374-019-0190-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
Development of a novel agent against life-threatening sepsis requires the in-depth understanding of the relevant pathophysiology and therapeutic targets. Given the function of microRNAs (miRNAs) as potent oligonucleotide therapeutics, here we investigated the pathophysiological role of exogenously applied miRNA in sepsis-induced multiple organ injury. In vitro, miR-16, miR-126, miR-146a, and miR-200b suppressed the production of pro-inflammatory cytokines in RAW264.7 macrophage cells after lipopolysaccharide (LPS) stimulation. Of these, miR-146a displayed the most highly suppressive effect, wherein the transcriptional activity of nuclear factor kappa B (NF-κB) was decreased via targeting of interleukin 1 receptor-associated kinase 1 and tumor necrosis receptor-associated factor 6. Sepsis was induced in mice via cecal ligation and puncture (CLP) and an intravenous injection of a complex of miR-146a-expressing plasmid and polyethyleneimine. Treatment with this complex significantly decreased the level of serum inflammatory cytokines, attenuated organ injury including kidney injury, and led to increased survival from polymicrobial sepsis induced by CLP. miR-146a-expressing plasmid was abundantly distributed in splenic macrophages, but not in renal parenchymal cells. CLP mice treated with miR-146a displayed significantly decreased NF-κB activation and splenocyte apoptosis. Splenectomy diminished the anti-inflammatory effects of miR-146a. The collective results support the conclusion that the induction of miR-146a expression in splenic macrophages prevents excessive inflammation and sepsis-induced multiple organ injury. This study establishes a novel and critical pathophysiological role for splenic macrophage interference in sepsis-related organ injury.
Collapse
|
10
|
Activation of SIRT1 ameliorates LPS-induced lung injury in mice via decreasing endothelial tight junction permeability. Acta Pharmacol Sin 2019; 40:630-641. [PMID: 30022154 DOI: 10.1038/s41401-018-0045-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 05/12/2018] [Indexed: 01/22/2023] Open
Abstract
The integrity of the endothelial barrier is a determinant of the prognosis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). In this study, we investigated whether and how Sirtuin 1 (SIRT1) maintained the vascular integrity during ALI. An experimental model of ALI was established in mice through intratracheal administration of LPS (10 mg/kg). LPS stimulation significantly increased the pulmonary permeability and decreased the expression of SIRT1 and tight junction proteins (TJs), including occludin, claudin-5, tight junction protein 1 and tight junction protein 2. Morphological studies showed that LPS induced obvious lung injury with inflammatory cell infiltration in the interstitial and alveolar space, hemorrhage, edema, and the thickened alveolar wall compared to the control mice. Intratracheal administration of the selective SIRT1 activator SRT1720 (6.25 mg/kg) significantly attenuated LPS-induced lung injury, lung hyper-permeability and increased TJs expression, whereas intratracheal administration of the selective SIRT1 inhibitor EX527 (6.25 mg/kg) aggravated LPS-induced ALI. Similar protective effects of SIRT1 on pulmonary cellular permeability were observed in primary human pulmonary microvascular endothelial cells treated with LPS (2 mg/mL) in vitro. We further demonstrated that the RhoA/ROCK signaling pathway was activated in SIRT1 regulation of tight junction permeability. The RhoA/ROCK inhibitor Y-27632 (10 μM) increased the expression of TJs and reversed LPS- or EX527-induced hyper-permeability. In conclusion, SIRT1 ameliorates LPS-induced lung injury via decreasing endothelial tight junction permeability, possibly via RhoA/ROCK signaling pathway. This finding may contribute to the development of new therapeutic approaches for lung injury.
Collapse
|
11
|
Zeng J. Values of detection of NF-κB activation level combined with IL-6 and TNF-α levels in peripheral neutrophils in the prediction of multiple organ dysfunction syndrome in patients with severe multiple trauma. Exp Ther Med 2018; 16:2478-2482. [PMID: 30210598 PMCID: PMC6122592 DOI: 10.3892/etm.2018.6472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to analyze the dynamic changes and predictive values of nuclear factor-κB (NF-κB) combined with interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in peripheral blood in multiple organ dysfunction syndrome (MODS) in patients with severe multiple trauma. Seventy patients diagnosed with severe multiple trauma in Emergency Department of Sichuan Provincial People's Hospital (Chengdu, China) from April 2014 to April 2016 were selected and retrospectively analyzed. The patients enrolled were divided into the MODS group (n=25) and the non-MODS group (n=45). The injury severity scores (ISSs), acute physiology and chronic health evaluation II (APACHE II) scores, NF-κB, IL-6 and TNF-α levels in patients were detected at different time points (12, 24 and 48 h after admission), the changes in different indexes and the areas under the receiver operating characteristic (ROC) curve (AUC) were analyzed. The predictive values of different detection methods in MODS patients were discussed and compared. The ISS, APACHE II score, NF-κB, IL-6 and TNF-α levels in the MODS group at admission and 24 and 48 h after admission were higher than those in the non-MODS group (P<0.05). Those indexes in the deceased patients at 12, 24 and 48 h after admission were higher than those in survivors (P<0.05). The ISS, APACHE II score, NF-κB, IL-6 and TNF-α levels were not the risk factors of MODS in patients with severe multiple trauma (P>0.05). AUCs of ISS >22 points and APACHE II score >14 points in predicting MODS were lower than that of combined detection of NF-κB >1.20. In conclusion, the combined detection of NF-κB, IL-6 and TNF-α in peripheral blood of patients with acute multiple trauma is more helpful to predict the occurrence of MODS, which has a certain guiding significance for the prognosis of patients with MODS.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
12
|
Hattori Y, Hattori K, Suzuki T, Palikhe S, Matsuda N. Nucleic-acid based gene therapy approaches for sepsis. Eur J Pharmacol 2018; 833:403-410. [PMID: 29935173 DOI: 10.1016/j.ejphar.2018.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Despite advances in overall medical care, sepsis and its sequelae continue to be an embarrassing clinical entity with an unacceptably high mortality rate. The central reason for high morbidity and high mortality of sepsis and its sequelae is the lack of an effective treatment. Previous clinical trials have largely failed to identify an effective therapeutic target to improve clinical outcomes in sepsis. Thus, the key goal favoring the outcome of septic patients is to devise innovative and evolutionary therapeutic strategies. Gene therapy can be considered as one of the most promising novel therapeutic approaches for nasty disorders. Since a number of transcription factors, such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), play a pivotal role in the pathophysiology of sepsis that can be characterized by the induction of multiple genes and their products, sepsis may be regarded as a gene-related disorder and gene therapy may be considered a promising novel therapeutic approach for treatment of sepsis. In this review article, we provide an up-to-date summary of the gene-targeting approaches, which have been developed in animal models of sepsis. Our review sheds light on the molecular basis of sepsis pathology for the development of novel gene therapy approaches and leads to the conclusion that future research efforts may fully take into account gene therapy for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
13
|
Takatani Y, Ono K, Suzuki H, Inaba M, Sawada M, Matsuda N. Inducible nitric oxide synthase during the late phase of sepsis is associated with hypothermia and immune cell migration. J Transl Med 2018; 98:629-639. [PMID: 29449632 DOI: 10.1038/s41374-018-0021-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Hypothermia is a significant sign of sepsis, which is associated with poor prognosis, but few mechanisms underlying the regulation of hypothermia are known. Inducible nitric oxide synthase (iNOS) is a key inflammatory mediator of sepsis. However, the therapeutic benefit of iNOS inhibition in sepsis is still controversial, and requires elucidation in an accurate model system. In this study, wild-type (WT) mice showed temperature drops in a biphasic manner at the early and late phase of sepsis, and all mice died within 48 h of sepsis. In contrast, iNOS-knockout (KO) mice never showed the second temperature drop and exhibited improved mortality. Plasma nitric oxide (NO) levels of WT mice increased in the late phase of sepsis and correlated to hypothermia. The results indicate that iNOS-derived NO during the late phase of sepsis caused vasodilation-induced hypothermia and a lethal hypodynamic state. The expression of the iNOS mRNA was high in the lung of WT mice with sepsis, which reflects the pathology of acute respiratory distress syndrome (ARDS). We obtained the results in a modified keyhole-type cecal ligation and puncture model of septic shock induced by minimally invasive surgery. In this accurate and reproducible model system, we transplanted the bone marrow cells of GFP transgenic mice into WT and iNOS-KO mice, and evaluated the role of increased pulmonary iNOS expression in cell migration during the late phase of sepsis. We also investigated the quantity and type of bone marrow-derived cells (BMDCs) in the lung. The number of BMDCs in the lung of iNOS-KO mice was less than that in the lung of WT mice. The major BMDCs populations were CD11b-positive, iNOS-negative cells in WT mice, and Gr-1-positive cells in iNOS-KO mice that expressed iNOS. These results suggest that sustained hypothermia may be a beneficial guide for future iNOS-targeted therapy of sepsis, and that iNOS modulated the migratory efficiency and cell type of BMDCs in septic ARDS.
Collapse
Affiliation(s)
- Yudai Takatani
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan
| | - Kenji Ono
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Hiromi Suzuki
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Masato Inaba
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan
| | - Makoto Sawada
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan.
| |
Collapse
|
14
|
Hattori Y. [Role of histamine in sepsis-induced organ dysfunction: study using knockout mice of histamine-related genes]. Nihon Yakurigaku Zasshi 2018; 152:10-15. [PMID: 29998946 DOI: 10.1254/fpj.152.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sepsis is the leading cause of death in critically ill patients, and its incidence continues to rise. Sepsis is now defined as life-threatening organ dysfunction due to a dysregulated host response to infection. Histamine assumes a critical role as a major mediator of many pathologic disorders with inflammation and immune reactions. However, direct evidence has not been provided showing the involvement of histamine in the development of multiple organ dysfunction or failure in sepsis. We have found that sepsis-induced major end-organ (lung, liver, and kidney) injury is attenuated in histidine decarboxylase (HDC) gene knockout mice. H1/H2-receptor gene-double knockout mice apparently behave similar to HDC knockout mice in reducing sepsis-related pathologic changes. Here we provide an overview on the role of endogenous histamine as an aggregating mediator that could contribute to the development of major end-organ injury in sepsis.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
15
|
Wang L, Yu H, Zhang Y, Dong C, Liu B. Intravenous controlled-release hydrogen sulfide protects against ventilator-induced lung injury. Exp Lung Res 2017; 43:370-377. [PMID: 29206492 DOI: 10.1080/01902148.2017.1381780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lifeng Wang
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong Province, China
| | - Hao Yu
- Department of Anesthesiology, Changyi People's Hospital, Weifang, Shangdong Province, China
| | - Yana Zhang
- Department of Anesthesiology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong Province
| | - Caiyu Dong
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong Province, China
| | - Bo Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong Province, China
| |
Collapse
|
16
|
Hattori Y, Hattori K, Suzuki T, Matsuda N. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: Novel therapeutic implications and challenges. Pharmacol Ther 2017; 177:56-66. [DOI: 10.1016/j.pharmthera.2017.02.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Hattori M, Yamazaki M, Ohashi W, Tanaka S, Hattori K, Todoroki K, Fujimori T, Ohtsu H, Matsuda N, Hattori Y. Critical role of endogenous histamine in promoting end-organ tissue injury in sepsis. Intensive Care Med Exp 2016; 4:36. [PMID: 27822777 PMCID: PMC5099302 DOI: 10.1186/s40635-016-0109-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histamine assumes an important role as a major mediator in various pathologic disorders associated with inflammation and immune reactions. However, the involvement of histamine in the pathological conditions and symptoms of sepsis remains entirely unknown. In this study, we establish that histamine is identified as a contributory mediator to promoting the development of organ injury in sepsis. METHODS Histidine decarboxylase (HDC) gene knockout (HDC-/-) mice, histamine H1-/H2-receptor gene-double knockout (H1R-/-/H2R-/-) mice, and their littermate wild-type (WT) C57BL/6J mice underwent cecal ligation and puncture (CLP) or sham operation. Some WT mice were injected intraperitoneally with d-chlorpheniramine and famotidine 60 min before CLP to block H1- and H2-receptors, respectively. RESULTS In mice rendered septic by CLP, tissue histamine levels were elevated in association with increased HDC expression. Sepsis-induced abnormal cytokine production and multiple organ injury (lung, liver, and kidney) were significantly less pronounced in HDC-/- mice as compared with WT controls, and HDC deficiency had improved survival in sepsis. This benefit corresponded with a significant reduction in activation levels of the nuclear factor (NF)-κB signaling pathway. H1R-/-/H2R-/- mice apparently behaved similar to HDC knockout mice in reducing sepsis-related pathological changes. Pharmacological interventions with H1- and H2-receptor antagonists indicated that both H1- and H2-receptors were involved in septic lung and liver injury, whereas only H2-receptors contributed to septic kidney injury. CONCLUSIONS In the setting of sepsis, histamine, through activation of H1- and H2-receptors, serves as an aggravating mediator to contribute to the development of sepsis-driven major end-organ failure.
Collapse
Affiliation(s)
- Mizuki Hattori
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mitsuaki Yamazaki
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Tanaka
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Kenichiro Todoroki
- Department of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshio Fujimori
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroshi Ohtsu
- Department of Applied Quantum Medical Engineering, School of Engineering, Tohoku University, Sendai, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
18
|
Hu J, Al-Waili D, Hassan A, Fan GC, Xin M, Hao J. Inhibition of cerebral vascular inflammation by brain endothelium-targeted oligodeoxynucleotide complex. Neuroscience 2016; 329:30-42. [PMID: 27132231 DOI: 10.1016/j.neuroscience.2016.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
The present study generated a novel DNA complex to specifically target endothelial NF-κB to inhibit cerebral vascular inflammation. This DNA complex (GS24-NFκB) contains a DNA decoy which inhibits NF-κB activity, and a DNA aptamer (GS-24), a ligand of transferrin receptor (TfR), which allows for targeted delivery of the DNA decoy into cells. The results indicate that GS24-NFκB was successfully delivered into a murine brain-derived endothelial cell line, bEND5, and inhibited inflammatory responses induced by tumor necrosis factor α (TNF-α) or oxygen-glucose deprivation/re-oxygenation (OGD/R) via down-regulation of the nuclear NF-κB subunit, p65, as well as its downstream inflammatory cytokines, inter-cellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1). The inhibitory effect of the GS24-NFκB was demonstrated by a significant reduction in TNF-α or OGD/R induced monocyte adhesion to the bEND5 cells after GS24-NFκB treatment. Intravenous (i.v.) injection of GS24-'NFκB (15mg/kg) was able to inhibit the levels of phoseph-p65 and VCAM-1 in brain endothelial cells in a mouse lipopolysaccharide (LPS)-induced inflammatory model in vivo. In conclusion, our approach using DNA nanotechnology for DNA decoy delivery could potentially be utilized for inhibition of inflammation in ischemic stroke and other neuro-inflammatory diseases affecting cerebral vasculature.
Collapse
Affiliation(s)
- Jing Hu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniah Al-Waili
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Aishlin Hassan
- Department of Pediatrics, University of Cincinnati & Cincinnati Children's Hospital Medical Center, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mei Xin
- Department of Pediatrics, University of Cincinnati & Cincinnati Children's Hospital Medical Center, USA
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
19
|
Matsuda N. Alert cell strategy in SIRS-induced vasculitis: sepsis and endothelial cells. J Intensive Care 2016; 4:21. [PMID: 27011790 PMCID: PMC4804493 DOI: 10.1186/s40560-016-0147-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/04/2016] [Indexed: 11/10/2022] Open
Abstract
Sepsis refers to systemic inflammatory response syndrome and organ failure resulting from infection. Inflammatory receptors (e.g., Toll-like receptors and nucleotide oligomerization domain) recognize bacterial components as inflammatory ligands. These are expressed not only in leukocytes but also in major organs and vascular endothelial cells. "Alert cell" is defined as the cell that expresses the inflammatory receptor and intracellular signaling system to produce inflammatory mediators such as inflammatory cytokines, chemokines, nitric oxide, and prostanoids in organs and the vasculature. NF-κB and AP-1, which are the transcriptional factors of these inflammatory molecules, are important regulators of multiple organ failure in sepsis and systemic inflammation. The vascular endothelial injury would induce multiple organ failure as tissue ischemia and organ death. Drug discovery targeted at alert cells holds a promise for therapy of inflammation including sepsis.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Tsurumaicho 65, Showa-ku, Nagoya, 855-4660 Japan
| |
Collapse
|
20
|
Liao Y, Song H, Xu D, Jiao H, Yao F, Liu J, Wu Y, Zhong S, Yin H, Liu S, Wang X, Guo W, Sun B, Han B, Chin YE, Deng J. Gprc5a-deficiency confers susceptibility to endotoxin-induced acute lung injury via NF-κB pathway. Cell Cycle 2016; 14:1403-12. [PMID: 25714996 DOI: 10.1080/15384101.2015.1006006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Susceptibility to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) varies greatly among patients in sepsis/septic shock. The genetic and biochemical reasons for the difference are not fully understood. G protein coupled receptor family C group 5 member A (GPRC5A), a retinoic acid target gene, is predominately expressed in the bronchioalveolar epithelium of lung. We hypothesized that Gprc5a is important in controlling the susceptibility to ALI or ARDS. In this study, we examined the susceptibility of wild-type and Gprc5a-knockout (ko) mice to induced ALI. Administration of endotoxin LPS induced an increased pulmonary edema and injury in Gprc5a-ko mice, compared to wild-type counterparts. Consistently, LPS administration induced higher levels of inflammatory cytokines (IL-1β and TNFα) and chemokine (KC) in Gprc5a-ko mouse lungs than in wild-type. The enhanced pulmonary inflammatory responses were associated with dysregulated NF-κB signaling in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs. Importantly, selective inhibition of NF-κB through expression of the super-repressor IκBα in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs alleviated the LPS-induced pulmonary injury, and inflammatory response. Thus, Gprc5a is critical for lung homeostasis, and Gprc5a deficiency confers the susceptibility to endotoxin-induced pulmonary edema and injury, mainly through NF-κB signaling in bronchioalveolar epithelium of lung.
Collapse
Affiliation(s)
- Yueling Liao
- a Department of Pathophysiology; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education ; Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hattori Y, Hattori K, Matsuda N. Regulation of the Cardiovascular System by Histamine. Handb Exp Pharmacol 2016; 241:239-258. [PMID: 27838850 DOI: 10.1007/164_2016_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H1- and H2-receptors has become recognized adequately. Besides the recognized H1- and H2-receptor-mediated cardiovascular responses, novel roles of H3- and H4-receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H3- and H4-receptors, their potential mechanisms of action, and their pathological significance.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
MacLoughlin RJ, Higgins BD, Devaney J, O'Toole D, Laffey JG, O'Brien T. Aerosol-mediated delivery of AAV2/6-IκBα attenuates lipopolysaccharide-induced acute lung injury in rats. Hum Gene Ther 2015; 26:36-46. [PMID: 25382145 DOI: 10.1089/hum.2014.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibition of the proinflammatory transcription factor NF-κB has previously been shown to attenuate the inflammatory response in tissue after injury. However, the feasibility and efficacy of aerosolized adeno-associated viral (AAV) vector-delivered transgenes to inhibit the NF-κB pathway are less clear. Initial studies optimized the AAV vector for delivery of transgenes to the pulmonary epithelium. The effect of repeated nebulization on the integrity and transduction efficacy of the AAV vector was then examined. Subsequent in vivo studies examined the efficacy of aerosolized rAAV2/6 overexpressing the NF-κB inhibitor IκBα in a rodent endotoxin-induced lung injury model. Initial in vitro investigations indicated that rAAV2/6 was the most effective vector to transduce the lung epithelium, and maintained its integrity and transduction efficacy after repeated nebulization. In our in vivo studies, animals that received aerosolized rAAV2/6-IκBα demonstrated a significant increase in total IκBα levels in lung tissue relative to null vector-treated animals. Aerosolized rAAV2/6-IκBα attenuated endotoxin-induced bronchoalveolar lavage-detected neutrophilia, interleukin-6 and cytokine-induced neutrophil chemoattractant-1 levels, as well as total protein content, and decreased histologic indices of injury. These results demonstrate that aerosolized AAV vectors encoding human IκBα significantly attenuate endotoxin-mediated lung injury and may be a potential therapeutic candidate in the treatment of acute lung injury.
Collapse
Affiliation(s)
- Ronan J MacLoughlin
- 1 Regenerative Medicine Institute (REMEDI), National University of Ireland , Galway, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Histamine receptor signaling in energy homeostasis. Neuropharmacology 2015; 106:13-9. [PMID: 26107117 DOI: 10.1016/j.neuropharm.2015.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 01/20/2023]
Abstract
Histamine modulates several aspects of energy homeostasis. By activating histamine receptors in the hypothalamus the bioamine influences thermoregulation, its circadian rhythm, energy expenditure and feeding. These actions are brought about by activation of different histamine receptors and/or the recruitment of distinct neural pathways. In this review we describe the signaling mechanisms activated by histamine in the hypothalamus, the evidence for its role in modulating energy homeostasis as well as recent advances in the understanding of the cellular and neural network mechanisms involved. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
|
24
|
McKenna S, Wright CJ. Inhibiting IκBβ-NFκB signaling attenuates the expression of select pro-inflammatory genes. J Cell Sci 2015; 128:2143-55. [PMID: 25908863 DOI: 10.1242/jcs.168351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
Multiple mediators of septic shock are regulated by the transcription factor nuclear factor κB (NFκB). However, complete NFκB inhibition can exacerbate disease, necessitating evaluation of targeted strategies to attenuate the pro-inflammatory response. Here, we demonstrate that in murine macrophages, low-dose NFκB inhibitors specifically attenuates lipopolysaccharide (LPS)-induced IκBβ degradation and the expression of a select subset of target genes (encoding IL1β, IL6, IL12β). Gain- and loss-of-function experiments demonstrate the necessary and sufficient role of inhibitor of NFκB family member IκBβ (also known as NFKBIB) in the expression of these genes. Furthermore, both fibroblasts and macrophages isolated from IκBβ overexpressing mice demonstrate attenuated LPS-induced IκBβ-NFκB signaling and IL1β, IL6 and IL12β expression. Further confirming the role of IκBβ and its NFκB subunit binding partner cRel in LPS-induced gene expression, pre-treatment of wild-type mouse embryonic fibroblasts with a cell-permeable peptide containing the cRel nuclear localization sequence attenuated IL6 expression. We prove that LPS-induced IκBβ-NFκB signaling can be selectively modulated to attenuate the expression of select pro-inflammatory target genes, thus providing therapeutic insights for patients exposed to systemic inflammatory stress.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Hayes M, Curley GF, Masterson C, Contreras M, Ansari B, Devaney J, O'Toole D, Laffey JG. Pulmonary overexpression of inhibitor κBα decreases the severity of ventilator-induced lung injury in a rat model. Br J Anaesth 2014; 113:1046-54. [PMID: 25053119 DOI: 10.1093/bja/aeu225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Activation of the nuclear factor-κB (NF-κB) pathway is central to the pathogenesis of lung injury and inflammation. We determined whether targeted overexpression of inhibitor-κBα (IκBα) in the lung could decrease the severity of ventilator-induced lung injury (VILI). METHODS Anaesthetized adult male Sprague-Dawley rats were randomly allocated to undergo intratracheal instillation of: (i) vehicle alone (surfactant, n=10); (ii) 1×10(10) adeno-associated virus encoding IκBα (AAV-IκBα, n=10); (iii) 5×10(10) AAV-IκBα (n=10); and (iv) 1×10(10) AAV-Null (n=5). This was followed by 4 h of injurious mechanical ventilation. Subsequent experiments examined the effect of IκBα overexpression in animals undergoing 'protective' mechanical ventilation. RESULTS IκBα overexpression increased survival duration at both the lower [3.8 h (0.4)] and higher [3.6 h (0.7)] doses compared with vehicle [2.7 h (1.0)] or the null transgene [2.2 h (0.8)]. IκBα overexpression reduced the alveolar-arterial oxygen gradient (kPa) at both the lower [53 (21)] and higher [52 (19)] doses compared with vehicle [75 (8.5)] or the null transgene [70 (15)], decreased alveolar neutrophil infiltration, and reduced alveolar concentrations of interleukin (IL)-1β and IL-10. The lower IκBα dose was as effective as the higher dose. IκBα overexpression had no effect in the setting of protective lung ventilation. CONCLUSIONS Inhibition of pulmonary NF-κB activity by IκBα overexpression reduced the severity of VILI in a rat model.
Collapse
Affiliation(s)
- M Hayes
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
| | - G F Curley
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Department of Anaesthesia, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - C Masterson
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
| | - M Contreras
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
| | - B Ansari
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
| | - J Devaney
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
| | - D O'Toole
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
| | - J G Laffey
- Lung Biology Group, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland Department of Anaesthesia, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Takebe M, Oishi H, Taguchi K, Aoki Y, Takashina M, Tomita K, Yokoo H, Takano Y, Yamazaki M, Hattori Y. Inhibition of histone deacetylases protects septic mice from lung and splenic apoptosis. J Surg Res 2014; 187:559-70. [DOI: 10.1016/j.jss.2013.10.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/20/2013] [Accepted: 10/24/2013] [Indexed: 12/28/2022]
|
27
|
Li T, Zhang J, Feng J, Li Q, Wu L, Ye Q, Sun J, Lin Y, Zhang M, Huang R, Cheng J, Cao Y, Xiang G, Zhang J, Wu Q. Resveratrol reduces acute lung injury in a LPS‑induced sepsis mouse model via activation of Sirt1. Mol Med Rep 2013; 7:1889-95. [PMID: 23625030 DOI: 10.3892/mmr.2013.1444] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/16/2013] [Indexed: 11/06/2022] Open
Abstract
The development of acute lung injury (ALI) during sepsis almost doubles the mortality rate of patients. The efficacy of current treatment strategies is low as treatment is usually initiated following the onset of symptoms. Inflammation is one of the main mechanisms of autoimmune disorders and is a common feature of sepsis. The suppression of inflammation is therefore an important mechanism for the treatment of sepsis. Sirtuin 1 (Sirt1) has been demonstrated to play a role in the regulation of inflammation. Resveratrol, a potent Sirt1 activator, exhibits anti‑inflammatory properties. However, the role of resveratrol for the treatment of ALI during sepsis is not fully understood. In the present study, the anti‑inflammatory role of Sirt1 in the lipopolysaccharide (LPS)‑induced TC‑1 cell line and its therapeutic role in ALI was investigated in a mouse model of sepsis. The upregulation of matrix metalloproteinase-9, interleukin (IL)‑1β, IL‑6 and inducible nitric oxide synthase was induced by LPS in the mouse model of sepsis and the TC‑1 cell line, and resveratrol suppressed the overexpression of these proinflammatory molecules in a dose‑dependent manner. Resveratrol decreased pulmonary edema in the mouse model of sepsis induced by LPS. In addition, resveratrol improved lung function and reduced pathological alterations in the mouse model of sepsis. Knockdown of Sirt1 by RNA interference resulted in an increased susceptibility of TC‑1 cells to LPS stimulation and diminished the anti‑inflammatory effect of resveratrol. These results demonstrated that resveratrol inhibits LPS‑induced ALI and inflammation via Sirt1, and indicated that Sirt1 is an efficient target for the regulation of LPS‑induced ALI and inflammation. The present study provides insights into the treatment of ALI during sepsis.
Collapse
Affiliation(s)
- Tongxun Li
- Stroke Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Devaney J, Curley GF, Hayes M, Masterson C, Ansari B, O'Brien T, O'Toole D, Laffey JG. Inhibition of pulmonary nuclear factor kappa-B decreases the severity of acute Escherichia coli pneumonia but worsens prolonged pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R82. [PMID: 23622108 PMCID: PMC4056114 DOI: 10.1186/cc12696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/27/2013] [Indexed: 12/19/2022]
Abstract
Introduction Nuclear factor (NF)-κB is central to the pathogenesis of inflammation in acute lung injury, but also to inflammation resolution and repair. We wished to determine whether overexpression of the NF-κB inhibitor IκBα could modulate the severity of acute and prolonged pneumonia-induced lung injury in a series of prospective randomized animal studies. Methods Adult male Sprague-Dawley rats were randomized to undergo intratracheal instillation of (a) 5 × 109 adenoassociated virus (AAV) vectors encoding the IκBα transgene (5 × 109 AAV-IκBα); (b) 1 × 1010 AAV-IκBα; (c) 5 × 1010 AAV-IκBα; or (d) vehicle alone. After intratracheal inoculation with Escherichia coli, the severity of the lung injury was measured in one series over a 4-hour period (acute pneumonia), and in a second series after 72 hours (prolonged pneumonia). Additional experiments examined the effects of IκBα and null-gene overexpression on E. coli-induced and sham pneumonia. Results In acute pneumonia, IκBα dose-dependently decreased lung injury, improving arterial oxygenation and lung static compliance, reducing alveolar protein leak and histologic injury, and decreasing alveolar IL-1β concentrations. Benefit was maximal at the intermediate (1 × 1010) IκBα vector dose; however, efficacy was diminished at the higher (5 × 1010) IκBα vector dose. In contrast, IκBα worsened prolonged pneumonia-induced lung injury, increased lung bacterial load, decreased lung compliance, and delayed resolution of the acute inflammatory response. Conclusions Inhibition of pulmonary NF-κB activity reduces early pneumonia-induced injury, but worsens injury and bacterial load during prolonged pneumonia.
Collapse
|
29
|
Wan L, Huang H, Fang D, Yu T. In vivo transfection of nuclear factor κB decoy protects pulmonary function against acute lung contusion in rabbits. J Trauma Acute Care Surg 2012; 73:843-9. [PMID: 23034529 DOI: 10.1097/ta.0b013e318256deeb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The transcription factor nuclear factor κB (NF-κB) regulates the expression of numerous proinflammatory factors that may exacerbate the response to acute injury. We investigated the effect of an inhibitory NF-κB decoy oligodeoxynucleotide on proinflammatory factor expression and pulmonary function after acute lung contusion in rabbits. METHODS Thirty-minutes after acute lung contusion, the NF-κB decoy or a scrambled control oligodeoxynucleotide was injected via the jugular vein. Blood samples were collected for blood gas analysis and plasma tumor necrosis factor α, interleukin 1β (IL-1β), IL-13, and IL-10 were measured by enzyme-linked immunosorbent assay at 1, 2, 3, and 4 hours after contusion. In addition, NF-κB protein expression in lung tissue was detected by Western blot analysis. RESULTS The blood PO2 decreased immediately after lung contusion, whereas PAO2 increased significantly, indicative of disrupted respiratory function. Respiratory function improved after sense NF-κB decoy injection but not after injection of the inactive scrambled form. Injection of NF-κB decoy resulted in significant inhibition of NF-κB protein expression in lung tissue and a reduction in the serum concentrations of proinflammatory cytokines tumor necrosis factor α and IL-1β compared with those of control rabbits injected with the scrambled decoy. In contrast, serum levels of the anti-inflammatory cytokines IL-10 and IL-13 increased after decoy injection compared with those of control animals and rabbits injected with the scrambled decoy. CONCLUSION The sense NF-κB decoy protected respiratory function and reduced serum proinflammatory factor secretion after acute lung contusion. Inhibition of NF-κB may allow for preservation of pulmonary function for patients with acute lung injury.
Collapse
Affiliation(s)
- Li Wan
- Departments of Anesthesia, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.
| | | | | | | |
Collapse
|
30
|
Choi JS, Lee HS, Seo KH, Na JO, Kim YH, Uh ST, Park CS, Oh MH, Lee SH, Kim YT. The effect of post-treatment N-acetylcysteine in LPS-induced acute lung injury of rats. Tuberc Respir Dis (Seoul) 2012; 73:22-31. [PMID: 23101021 PMCID: PMC3475471 DOI: 10.4046/trd.2012.73.1.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/10/2012] [Accepted: 06/02/2012] [Indexed: 01/11/2023] Open
Abstract
Background Oxidation plays an important role in acute lung injury. This study was conducted in order to elucidate the effect of repetitive post-treatment of N-acetylcysteine (NAC) in lipopolysaccaride (LPS)-induced acute lung injury (ALI) of rats. Methods Six-week-old male Sprague-Dawley rats were divided into 4 groups. LPS (Escherichia coli 5 mg/kg) was administered intravenously via the tail vein. NAC (20 mg/kg) was injected intraperitoneally 3, 6, and 12 hours after LPS injection. Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained to evaluate the ALI at 24 hours after LPS injection. The concentration of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were measured in BALF. Nuclear factor κB (NF-κB), lipid peroxidation (LPO), and myeloperoxidase (MPO) were measured using lung tissues. Micro-computed tomography (micro-CT) images were examined in each group at 72 hours apart from the main experiments in order to observe the delayed effects of NAC. Results TNF-α and IL-1β concentration in BALF were not different between LPS and NAC treatment groups. The concentration of LPO in NAC treatment group was significantly lower than that of LPS group (5.5±2.8 nmol/mL vs. 16.5±1.6 nmol/mL) (p=0.001). The activity of MPO in NAC treatment group was significantly lower than that of LPS group (6.4±1.8 unit/g vs. 11.2±6.3 unit/g, tissue) (p<0.048). The concentration of NF-κB in NAC treatment group was significantly lower than that of LPS group (0.3±0.1 ng/µL vs. 0.4±0.2 ng/µL) (p=0.0001). Micro-CT showed less extent of lung injury in NAC treatment than LPS group. Conclusion After induction of ALI with lipopolysaccharide, the therapeutic administration of NAC partially attenuated the extent of ALI through the inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Jae Sung Choi
- Department of Internal Medicine, Clinical Research Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oishi H, Takano KI, Tomita K, Takebe M, Yokoo H, Yamazaki M, Hattori Y. Olprinone and colforsin daropate alleviate septic lung inflammation and apoptosis through CREB-independent activation of the Akt pathway. Am J Physiol Lung Cell Mol Physiol 2012; 303:L130-40. [PMID: 22610350 DOI: 10.1152/ajplung.00363.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olprinone, a specific phosphodiesterase III inhibitor, and corforsin daropate, a direct adenylate cyclase activator, are now being used in critical conditions. We investigated whether their therapeutic use provides protection against septic acute lung injury (ALI) and mortality. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in BALB/c mice. Olprinone or colforsin daropate was continuously given through an osmotic pump that was implanted into the peritoneal cavity immediately following CLP. These treatments prevented the ALI development in CLP mice, as indicated by the findings that severe hypoxemia, increased pulmonary vascular permeability, and histological lung damage were strikingly remedied. Furthermore, continued administration of olprinone or colforsin daropate suppressed apoptosis induction in septic lungs and improved the survival of CLP mice. Olprinone and corforsin daropate enhanced Akt phosphorylation in septic lungs. Wortmannin, which inhibits the Akt upstream regulator phosphatidylinositol 3-kinase, abrogated the protective effects of olprinone and corforsin daropate on sepsis-associated lung inflammation and apoptosis. In vivo transfection of cyclic AMP response element binding protein (CREB) decoy oligodeoxynucleotide failed to negate the abilities of these agents to increase Akt phosphorylation and to inhibit IκBα degradation in septic lungs. These results demonstrate for the first time that CREB-independent Akt-mediated signaling is a critical mechanism contributing to the therapeutic effects of olprinone and corforsin daropate on septic ALI. Moreover, our data also suggest that these cyclic AMP-related agents, by blocking both nuclear factor-κB activation and apoptosis induction, may represent an effective therapeutic approach to the treatment of the septic syndrome.
Collapse
Affiliation(s)
- Hirofumi Oishi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Improvement of sepsis by hepatocyte growth factor, an anti-inflammatory regulator: emerging insights and therapeutic potential. Gastroenterol Res Pract 2012; 2012:909350. [PMID: 22536224 PMCID: PMC3299304 DOI: 10.1155/2012/909350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 01/14/2023] Open
Abstract
Sepsis-induced multiple organ failure (MOF) is the most frequent lethal disease in intensive care units. Thus, it is important to elucidate the self-defensive mechanisms of sepsis-induced MOF. Hepatocyte growth factor (HGF) is now recognized as an organotrophic factor, which is essential for organogenesis during embryonic growth and regeneration in adulthood. HGF production is enhanced in response to infectious challenges, but the increase in endogenous HGF levels is transient and insufficient, with a time lag between tissue injuries and HGF upregulation, during progression of septic MOF. Thus, administration of active-formed HGF might be a new candidate for therapeutic development of MOF. HGF has an ability to target endotoxin-challenged macrophages and inhibits the upregulation of inflammatory cytokines through nuclear factor-κB-inactivated mechanisms. HGF also targets the endothelium and epithelium of various organs to suppress local inflammation, coagulation, and apoptotic death. This paper summarizes the novel mechanisms of HGF for attenuating sepsis-related pathological conditions with a focus on sepsis-induced MOF.
Collapse
|
33
|
Matsuda N, Tsuzuki M, Ichikawa S, Tochikubo J, Tamura T, Adachi Y. [Inflammatory alert cell strategy in septic acute lung injury]. Nihon Yakurigaku Zasshi 2011; 138:151-154. [PMID: 21986063 DOI: 10.1254/fpj.138.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
34
|
Dinh TD, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Evaluation of osteoclastogenesis via NFκB decoy/mannosylated cationic liposome-mediated inhibition of pro-inflammatory cytokine production from primary cultured macrophages. Pharm Res 2011; 28:742-51. [PMID: 21253857 DOI: 10.1007/s11095-011-0366-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/06/2011] [Indexed: 01/19/2023]
Abstract
PURPOSE To explore the effect of NFκB activation in macrophages on osteoclastogenesis of bone marrow cells for potential application as a new type of therapy for preventing bone loss. METHODS Primary cultured macrophages and bone marrow cells were prepared from mice. As macrophage-targeted carriers, Mannosylated cationic liposomes (Man-liposomes) were prepared and were allowed to form complexes with NFκB decoy (a double-stranded oligonucleotide). Cellular uptake, inhibition of NFκB activation, and cytokine production were evaluated using macrophages. Osteoclastogenesis was investigated using bone marrow cells, which were cultured in the conditioned medium prepared from macrophages with or without Man-liposome/NFκB decoy complexes treatment. RESULTS Cellular accumulation of NFκB decoy was enhanced by Man-liposome. NFκB activation in macrophages and TNF-α production were suppressed in macrophages by Man-liposome/NFκB decoy complexes but not by the naked NFκB decoy, Gal-liposome/NFκB decoy complexes, or Man-liposome/random decoy complexes. Osteoclastogenesis of bone marrow cells was induced in the conditioned medium prepared from activated macrophages but not by activated macrophages treated with Man-liposome/NFκB decoy complexes. CONCLUSION Osteoclastogenesis induced by activated macrophages could be suppressed by the treatment macrophages with Man-liposome/NFκB decoy complexes. Macrophage-targeted delivery of NFκB decoys using Man-liposomes may be promising in its use for the remediation of bone loss.
Collapse
Affiliation(s)
- Thuy Duong Dinh
- Department of Drug Delivery Research Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-shimoadachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Hattori Y, Takano KI, Teramae H, Yamamoto S, Yokoo H, Matsuda N. Insights into sepsis therapeutic design based on the apoptotic death pathway. J Pharmacol Sci 2010; 114:354-65. [PMID: 21081836 DOI: 10.1254/jphs.10r04cr] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Sepsis remains the leading cause of death in critically ill patients. A major problem contributing to sepsis-related high mortality is the lack of effective medical treatment. Thus, the key goal in critical care medicine is to develop novel therapeutic strategies that will impact favorably on septic patient outcome. While it is generally accepted that sepsis is an inflammatory state resulting from the systemic response to infection, apoptosis is implicated to be an important mechanism of the death of lymphocytes, gastrointestinal and lung epithelial cells, and vascular endothelial cells associated with the development of multiple organ failure in sepsis. The pivotal role of cell apoptosis is now highlighted by multiple studies demonstrating that prevention of cell apoptosis can improve survival in clinically relevant animal models of sepsis. In this review article, we address the scientific rationale for remedying apoptotic cell death in sepsis and propose that therapeutic efforts aimed at blocking cell signaling pathways leading to apoptosis may represent an attractive target for sepsis therapy.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Li X, Su J, Cui X, Li Y, Barochia A, Eichacker PQ. Can we predict the effects of NF-kappaB inhibition in sepsis? Studies with parthenolide and ethyl pyruvate. Expert Opin Investig Drugs 2010; 18:1047-60. [PMID: 19555300 DOI: 10.1517/13543780903018880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Based partially on encouraging findings from preclinical models, interest has grown in therapeutic inhibition of NF-kappaB to limit inflammatory injury during sepsis. However, NF-kappaB also regulates protective responses, and predicting the net survival effects of such inhibition may be difficult. OBJECTIVES To highlight the caution necessary with this therapeutic approach, we review our investigations in a mouse sepsis model with parthenolide and ethyl pyruvate, two NF-kappaB inhibitors proposed for clinical study. RESULTS Consistent with published studies, parthenolide decreased NF-kappaB binding activity and inflammatory cytokine release from lipopolysaccharide (LPS) stimulated RAW 264.7 cells in vitro. In LPS-challenged mice (C57BL/6J), however, while both agents decreased lung and kidney NF-kappaB binding activity and plasma cytokines early (1-3 h), these measures were increased later (6-12 h) in patterns differing significantly over time. Furthermore, despite studying several doses of parthenolide (0.25-4.0 mg/kg) and ethyl pyruvate (0.1-100 mg/kg), each produced small but consistent decreases in survival which overall were significant (p < or = 0.04 for each agent). CONCLUSION While NF-kappaB inhibitors hold promise for inflammatory conditions such as sepsis, caution is necessary. Clear understanding of the net effects of NF-kappaB inhibitors on outcome will be necessary before such agents are used clinically.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | | | | | |
Collapse
|
37
|
Matsuda N, Teramae H, Futatsugi M, Takano KI, Yamamoto S, Tomita K, Suzuki T, Yokoo H, Koike K, Hattori Y. Up-regulation of histamine H4 receptors contributes to splenic apoptosis in septic mice: counteraction of the antiapoptotic action of nuclear factor-kappaB. J Pharmacol Exp Ther 2009; 332:730-7. [PMID: 20008488 DOI: 10.1124/jpet.109.163543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The histamine H(4) receptor is the most recently identified receptor and is considered to play a role in a variety of inflammatory diseases. Histamine levels in the plasma are known to be elevated in animal models of sepsis and in septic patients. The aim of this study was to test the hypothesis that the H(4) receptor may play a significant role in the pathophysiology of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture in BALB/c mice. Although the H(4) receptor gene was undetectable in normal peripheral key organs, with the exception of the spleen, the expression levels of this gene were highly up-regulated in all those organs of septic mice. In vivo transfection of nuclear factor-kappaB (NF-kappaB) decoy oligodeoxynucleotide, but not of its scrambled form, resulted in a great inhibition of sepsis-induced overexpression of the H(4) receptor gene. In septic mice, marked increases in caspase-3 activation and follicular lymphocyte apoptosis in spleens were strongly suppressed by systemic treatment with synthetic small interfering RNA (siRNA) targeted to the H(4) receptor. This was associated with the up-regulation of a number of antiapoptotic proteins. These antiapoptotic effects of H(4) receptor siRNA treatment were all inhibited by further application of NF-kappaB decoy oligonucleotide. Our results suggest that superinduction of the histamine H(4) receptor gene in peripheral key organs, including the spleen, that is promoted by sepsis is transcriptionally controlled by NF-kappaB, whereas stimulation of this receptor is involved in the development of sepsis-induced splenic apoptosis through counteraction of the antiapoptotic action of NF-kappaB.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Matsuda N, Yamamoto S, Teramae H, Takano KI, Beppu S, Yamazaki H, Yokoo H, Hatakeyama N, Koike K, Hattori Y. [Novel approach to prevent progressive apoptosis in septic shock]. Nihon Yakurigaku Zasshi 2009; 134:198-201. [PMID: 19828923 DOI: 10.1254/fpj.134.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Tas SW, Vervoordeldonk MJBM, Tak PP. Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 2009; 9:160-70. [PMID: 19519361 PMCID: PMC2864453 DOI: 10.2174/156652309788488569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nuclear factor (NF)-κB is regarded as one of the most important transcription factors and plays an essential role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF-κB can be activated via two distinct NF-κB signal transduction pathways, the so-called canonical and non-canonical pathways, and has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much effort has been put in strategies to inhibit NF-κB activation, for example by the development of pharmacological compounds that selectively inhibit NF-κB activity and therefore would be beneficial for immunotherapy of transplantation, autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene therapy targeting NF-κB is a promising new strategy with the potential of long-term effects and has been explored in a wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we discuss recent progress made in the development of NF-κB targeted gene therapy and the evolution towards clinical application.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
40
|
Kim JH, Yoon DW, Jung KH, Kim HO, Ha ES, Lee KJ, Hur GY, Lee SY, Lee SY, Shin C, Shim JJ, In KH, Yoo SH, Kang KH. The Effects of Nuclear Factor-κB Decoy Oligodeoxynucleotide on Lipopolysaccharide-Induced Direct Acute Lung Injury. Tuberc Respir Dis (Seoul) 2009. [DOI: 10.4046/trd.2009.67.2.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Je Hyeong Kim
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Dae Wui Yoon
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Ki Hwan Jung
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Hye Ok Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Eun Sil Ha
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Kyoung Ju Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Gyu Young Hur
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Chol Shin
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Jae Jeong Shim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Se Hwa Yoo
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Kyung Ho Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
41
|
Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 2008; 121:1-13. [PMID: 18950657 PMCID: PMC7172981 DOI: 10.1016/j.pharmthera.2008.09.003] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
Abstract
Asthma and chronic obstructive pulmonary disease are inflammatory lung disorders responsible for significant morbidity and mortality worldwide. While the importance of allergic responses in asthma is well known, respiratory viral and bacterial infections and pollutants especially cigarette smoke are important factors in the pathogenesis of both diseases. Corticosteroid treatment remains the first preference of treatment in either disease, however these therapies are not always completely effective, and are associated with side effects and steroid resistance. Due to such limitations, development of new treatments represents a major goal for both the pharmaceutical industry and academic researchers. There are now excellent reasons to promote NF-kappaB signalling intermediates and Rel family proteins as potential therapeutic targets for both asthma and chronic obstructive pulmonary disease. This notion is supported by the fact that much of the underlying inflammation of both diseases independent of stimuli, is mediated at least in part, by NF-kappaB mediated signalling events in several cell types. Also, a range of inhibitors of NF-kappaB signalling intermediates are now available, including DNA oligonucleotides and DNA-peptide molecules that act as NF-kappaB decoy sequences, small molecule inhibitors such as IKK-beta inhibitors, and proteasome inhibitors affecting NF-kappaB signalling, that have either shown promise in animal models or have begun clinical trials in other disorders. This review will focus on the role of NF-kappaB in both diseases, will discuss its suitability as a target, and will highlight recent key studies that support the potential of NF-kappaB as a therapeutic target in these two important inflammatory lung diseases.
Collapse
|
42
|
Kamiyama K, Matsuda N, Yamamoto S, Takano KI, Takano Y, Yamazaki H, Kageyama SI, Yokoo H, Nagata T, Hatakeyama N, Tsukada K, Hattori Y. Modulation of glucocorticoid receptor expression, inflammation, and cell apoptosis in septic guinea pig lungs using methylprednisolone. Am J Physiol Lung Cell Mol Physiol 2008; 295:L998-L1006. [PMID: 18836031 DOI: 10.1152/ajplung.00459.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The use of glucocorticoids for treatment of sepsis has waxed and waned during the past several decades, and recent randomized controlled trials have evoked a reassessment of this therapy. Most glucocorticoid actions are mediated by its specific intracellular receptors (GRs). Thus we initially evaluated whether sepsis and high-dose corticosteroid therapy can regulate guinea pig pulmonary expression of GRs: active receptor, GRalpha, and dominant negative receptor, GRbeta. Sepsis induction by LPS injection (300 mug/kg ip) decreased mRNA and protein levels of GRalpha and increased protein expression of GRbeta in lungs. High-dose methylprednisolone (40 mg/kg ip), administered simultaneously with LPS, markedly potentiated the decrease in GRalpha expression but slightly affected the increase in GRbeta expression. Consequently, this led to a significant reduction in GRalpha nuclear translocation. Nevertheless, methylprednisolone treatment strongly eliminated LPS induction of NF-kappaB activity, as determined by NF-kappaB nuclear translocation and by gel mobility shift assays. Furthermore, the LPS-induced increase in inflammatory cells in bronchoalveolar lavage fluid was blunted by administration of the corticosteroid. On the other hand, immunofluorescent staining for cleaved caspase-3 showed a marked increase in this proapoptotic marker in lung sections, and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling (TUNEL) represented an enhanced appearance of cell apoptosis in lungs and spleen when methylprednisolone was given together with LPS. Cell apoptosis is now considered to play a role in the pathogenesis of septic syndrome. We thus suggest that the action of glucocorticoids at high doses to accelerate sepsis-induced cell apoptosis may overwhelm their therapeutic advantages in septic shock.
Collapse
Affiliation(s)
- Koki Kamiyama
- Dept. of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, Univ. of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Decoy oligodeoxynucleotide targeting activator protein-1 (AP-1) attenuates intestinal inflammation in murine experimental colitis. J Transl Med 2008; 88:652-63. [PMID: 18458670 DOI: 10.1038/labinvest.2008.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Various therapies are used for inflammatory bowel diseases (IBD), though none seem to be extremely effective. AP-1 is a major transcription factor that upregulates genes involved in immune and proinflammatory responses. We investigated decoy oligodeoxynucleotide (ODN) targeting AP-1 to prevent dextran sulfate sodium (DSS)-induced colitis in mice. Functional efficacies of synthetic decoy and scrambled ODNs were evaluated in vitro by a reporter gene luciferase assay and measuring flagellin-induced IL-8 expression by HCT-15 cells transfected with ODNs. Experimental colitis was induced in mice with a 2.5% DSS solution in drinking water for 7 days, and decoy or scrambled ODNs were intraperitoneally injected from days 2 to 5. Colitis was assessed by weight loss, colon length, histopathology, and detection of myeloperoxidase (MPO), IL-1beta, and TNF-alpha in colon tissue. Therapeutic effects of AP-1 and NF-kappaB decoy ODNs were compared. Transfection of AP-1 decoy ODN inhibited AP-1 transcriptional activity in reporter assays and flagellin-induced IL-8 production in vitro. In mice, AP-1 decoy ODN, but not scrambled ODN, significantly inhibited weight loss, colon shortening, and histological inflammation induced by DSS. Further, AP-1 decoy ODN decreased MPO, IL-1beta, and TNF-alpha in colonic tissue of mice with DSS-induced colitis. The AP-1 decoy therapeutic effect was comparable to that of NF-kappaB decoy ODN, which also significantly decreased intestinal inflammation. Double-strand decoy ODN targeting AP-1 effectively attenuated intestinal inflammation associated with experimental colitis in mice, indicating the potential of targeting proinflammatory transcription factors in new therapies for IBD.
Collapse
|
44
|
Matsuda N, Yamazaki H, Takano KI, Matsui K, Takano Y, Kemmotsu O, Hattori Y. Priming by lipopolysaccharide exaggerates acute lung injury and mortality in responses to peptidoglycan through up-regulation of Toll-like receptor-2 expression in mice. Biochem Pharmacol 2008; 75:1065-75. [DOI: 10.1016/j.bcp.2007.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/11/2007] [Accepted: 10/30/2007] [Indexed: 12/20/2022]
|
45
|
Bezzerri V, Borgatti M, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Rizzotti P, Gambari R, Cabrini G. Transcription factor oligodeoxynucleotides to NF-kappaB inhibit transcription of IL-8 in bronchial cells. Am J Respir Cell Mol Biol 2008; 39:86-96. [PMID: 18258920 DOI: 10.1165/rcmb.2007-0176oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic pulmonary inflammation in patients affected by cystic fibrosis (CF) is characterized by massive bronchial infiltrates of neutrophils, which is sustained by the interaction of pathogens (e.g., Pseudomonas aeruginosa) with surface bronchial cells. To explore new treatment options focused on the reduction of neutrophil chemotaxis, we applied the transcription factor (TF) decoy approach, based on the intracellular delivery of double-stranded oligodeoxynucleotides (ODNs) causing inhibition of the binding of TF-related proteins to the different consensus sequences in the promoter of specific genes. In CF bronchial IB3-1 cells, P. aeruginosa induced transcription of the neutrophil chemokines IL-8 and GRO-gamma, of the adhesion molecule intercellular adhesion molecule (ICAM)-1, and of the cytokines IL-1beta and IL-6. Since consensus sequences for the TF, NF-kappaB, are contained in the promoters of all these genes, IB3-1, CuFi-1, Beas-2B, and CaLu-3 cells were transfected with double-stranded TF "decoy" ODNs mimicking different NF-kappaB consensus sequences. IL-8 NF-kappaB decoy ODN partially inhibited the P. aeruginosa-dependent transcription of IL-8, GRO-gamma, and IL-6, whereas decoy ODNs to both HIV-1 long terminal repeat and Igk produced a strong, 80 to 85% inhibition of transcription of IL-8, without reducing that of GRO-gamma, ICAM-1, IL-1beta, and IL-6. In conclusion, intracellular delivery of "decoy" molecules aimed to compete with the TF, NF-kappaB, is a promising strategy to obtain inhibition of IL-8 gene transcription.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University Hospital of Verona, Piazzale Stefani 1, I-37126 Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
47
|
Surfactant-associated protein A provides critical immunoprotection in neonatal mice. Infect Immun 2007; 76:380-90. [PMID: 17967856 DOI: 10.1128/iai.01043-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The collectins surfactant-associated protein A (SP-A) and SP-D are components of innate immunity that are present before birth. Both proteins bind pathogens and assist in clearing infection. The significance of SP-A and SP-D as components of the neonatal immune system has not been investigated. To determine the role of SP-A and SP-D in neonatal immunity, wild-type, SP-A null, and SP-D null mice were bred in a bacterium-laden environment (corn dust bedding) or in a semisterile environment (cellulose fiber bedding). When reared in the corn dust bedding, SP-A null pups had significant mortality (P < 0.001) compared to both wild-type and SP-D null pups exposed to the same environment. The mortality of the SP-A null pups was associated with significant gastrointestinal tract pathology but little lung pathology. Moribund SP-A null newborn mice exhibited Bacillus sp. and Enterococcus sp. peritonitis. When the mother or newborn produced SP-A, newborn survival was significantly improved (P < 0.05) compared to the results when there was a complete absence of SP-A in both the mother and the pup. Significant sources of SP-A likely to protect a newborn include the neonatal lung and gastrointestinal tract but not the lactating mammary tissue of the mother. Furthermore, exogenous SP-A delivered by mouth to newborn SP-A null pups with SP-A null mothers improved newborn survival in the corn dust environment. Therefore, a lack of SP-D did not affect newborn survival, while SP-A produced by either the mother or the pup or oral exogenous SP-A significantly reduced newborn mortality associated with environmentally induced infection in SP-A null newborns.
Collapse
|
48
|
Abstract
Aptamers are oligonucleotides evolved in vitro or in nature to bind target ligands with high affinity and specificity. They are emerging as powerful tools in the fields of therapeutics, drug development, target validation and diagnostics. Aptamers are attractive alternatives to antibody- and small-molecule-based therapeutics owing to their stability, low toxicity, low immunogenicity and improved safety. With the recent approval of the first aptamer drug Macugen by the US FDA, there is great impetus to develop therapeutic aptamers that can target a wide array of disease states. The recent demonstration that aptamer activity can be reversed by the administration of a simple antidote greatly enhances the potential value of aptamers as therapeutic agents.
Collapse
Affiliation(s)
- N S Que-Gewirth
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
49
|
Aboab J, Nardi O, Lipiner D, Sharshar T, Annane D. Emerging drugs for the treatment of sepsis. Expert Opin Emerg Drugs 2006; 11:7-22. [PMID: 16503823 DOI: 10.1517/14728214.11.1.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Septic shock still places a major burden on the healthcare system, although recent years have been marked by the demonstration that corticosteroids and activated protein C may substantially improve survival in selected populations. This review discusses the current management of septic shock and the potential development of new therapeutics following impressive advances in the pathomechanisms of septic shock.
Collapse
Affiliation(s)
- Jérome Aboab
- Intensive Care Unit, University of Versailles Saint Quentin, Hospital Raymond Poincaré, 104 bd Raymond Poincaré, 92380 Garches, France
| | | | | | | | | |
Collapse
|
50
|
Hirasawa N, Torigoe M, Kano K, Ohuchi K. Involvement of Sp1 in lipopolysaccharide-induced expression of HDC mRNA in RAW 264 cells. Biochem Biophys Res Commun 2006; 349:833-7. [PMID: 16949047 DOI: 10.1016/j.bbrc.2006.08.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 12/24/2022]
Abstract
The involvement of Sp1 in the lipopolysaccharide (LPS)-induced transcription of HDC mRNA in the mouse macrophage-like cell line RAW 264 was analyzed. LPS increased the levels of HDC mRNA 4 h after the stimulation in a concentration-dependent manner. Mithramycin A, an inhibitor of the binding of the Sp family to the GC box, reduced the LPS-induced increase in the levels of HDC mRNA at 4 h and HDC protein at 8 h in a concentration-dependent manner. By conducting electrophoretic mobility shift assays, we found that one of the transcription factors binding to the DNA probe containing the GC box sequence of the mouse HDC gene promoter region was Sp1, and that levels of Sp1-DNA probe complexes were increased by stimulation with LPS although the protein levels of Sp1 were not changed. These results suggested that Sp1 is one of the transcription factors that regulate the LPS-induced expression of HDC in RAW 264 cells.
Collapse
Affiliation(s)
- Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | |
Collapse
|