1
|
Zhu H, Zhou X, Ju R, Leng J, Tian J, Qu S, Tao S, Lyu Y, Zhang N. Challenges in clinical practice, biological mechanism and prospects of physical ablation therapy for COPD. Life Sci 2024; 349:122718. [PMID: 38754815 DOI: 10.1016/j.lfs.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is projected to become the third leading cause of death globally by 2030. Despite the limited treatment options available for advanced COPD, which are mostly restricted to costly lung transplants, physical ablation therapy offers promising alternatives. This technique focuses on ablating lesioned airway epithelium, reducing secretions and obstructions, and promoting normal epithelial regeneration, demonstrating significant therapeutic potential. Physical ablation therapy primarily involves thermal steam ablation, cryoablation, targeted lung denervation, and high-voltage pulsed electric field ablation. These methods help transform the hypersecretory phenotype, alleviate airway inflammation, and decrease the volume of emphysematous lung segments by targeting goblet cells and damaged lung areas. Compared to traditional treatments, endoscopic physical ablation offers fewer injuries, quicker recovery, and enhanced safety. However, its application in COPD remains limited due to inconsistent clinical outcomes, a lack of well-understood mechanisms, and the absence of standardized guidelines. This review begins by exploring the development of these ablation techniques and their current clinical uses in COPD treatment. It then delves into the therapeutic effects reported in recent clinical studies and discusses the underlying mechanisms. Finally, the review assesses the future prospects and challenges of employing ablation technology in COPD clinical practice, aiming to provide a practical reference and a theoretical basis for its use and inspire further research.
Collapse
Affiliation(s)
- Haoyang Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Zhou
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Leng
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiawei Tian
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenao Qu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiran Tao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lyu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Lange PF, Schilling O, Huesgen PF. Positional proteomics: is the technology ready to study clinical cohorts? Expert Rev Proteomics 2023; 20:309-318. [PMID: 37869791 DOI: 10.1080/14789450.2023.2272046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Positional proteomics provides proteome-wide information on protein termini and their modifications, uniquely enabling unambiguous identification of site-specific, limited proteolysis. Such proteolytic cleavage irreversibly modifies protein sequences resulting in new proteoforms with distinct protease-generated neo-N and C-termini and altered localization and activity. Misregulated proteolysis is implicated in a wide variety of human diseases. Protein termini, therefore, constitute a huge, largely unexplored source of specific analytes that provides a deep view into the functional proteome and a treasure trove for biomarkers. AREAS COVERED We briefly review principal approaches to define protein termini and discuss recent advances in method development. We further highlight the potential of positional proteomics to identify and trace specific proteoforms, with a focus on proteolytic processes altered in disease. Lastly, we discuss current challenges and potential for applying positional proteomics in biomarker and pre-clinical research. EXPERT OPINION Recent developments in positional proteomics have provided significant advances in sensitivity and throughput. In-depth analysis of proteolytic processes in clinical cohorts thus appears feasible in the near future. We argue that this will provide insights into the functional state of the proteome and offer new opportunities to utilize proteolytic processes altered or targeted in disease as specific diagnostic, prognostic and companion biomarkers.
Collapse
Affiliation(s)
- Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Department for Chemistry, University of Cologne, Cologne, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Fang H, Liu Y, Yang Q, Han S, Zhang H. Prognostic Biomarkers Based on Proteomic Technology in COPD: A Recent Review. Int J Chron Obstruct Pulmon Dis 2023; 18:1353-1365. [PMID: 37408604 PMCID: PMC10319291 DOI: 10.2147/copd.s410387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common heterogeneous respiratory disease which is characterized by persistent and incompletely reversible airflow limitation. Due to the heterogeneity and phenotypic complexity of COPD, traditional diagnostic methods provide limited information and pose a great challenge to clinical management. In recent years, with the development of omics technologies, proteomics, metabolomics, transcriptomics, etc., have been widely used in the study of COPD, providing great help to discover new biomarkers and elucidate the complex mechanisms of COPD. In this review, we summarize the prognostic biomarkers of COPD based on proteomic studies in recent years and evaluate their association with COPD prognosis. Finally, we present the prospects and challenges of COPD prognostic-related studies. This review is expected to provide cutting-edge evidence in prognostic evaluation of clinical patients with COPD and to inform future proteomic studies on prognostic biomarkers of COPD.
Collapse
Affiliation(s)
- Hanyu Fang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ying Liu
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Qiwen Yang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Siyu Han
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hongchun Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
4
|
Lu L, Peng J, Wu F, Yang H, Zheng Y, Deng Z, Zhao N, Dai C, Xiao S, Wen X, Xu J, Wu X, Zhou K, Ran P, Zhou Y. Clinical characteristics of airway impairment assessed by impulse oscillometry in patients with chronic obstructive pulmonary disease: findings from the ECOPD study in China. BMC Pulm Med 2023; 23:52. [PMID: 36737731 PMCID: PMC9896683 DOI: 10.1186/s12890-023-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The role of airway impairment assessed by impulse oscillometry (IOS) in patients with chronic obstructive pulmonary disease (COPD) remains unclear. Therefore, this study aimed to analyze the proportion and clinical characteristics of airway impairment assessed by IOS across COPD severities, and explore whether airway impairment is a subtype of COPD. METHODS This study was based on cross-sectional data from the ECOPD cohort in Guangdong, China. Subjects were consecutively recruited from July 2019 to August 2021. They filled out questionnaires and underwent lung function tests, IOS and computed tomography (CT). COPD was defined as post-bronchodilator forced expiratory volume in one second/forced vital capacity < lower limit of normal (LLN). Meanwhile, airway impairment was defined as IOS parameters > upper limit of normal or < LLN. On the one hand, Poisson regression was employed to analyze the associations between acute exacerbations of COPD (AECOPD) in the previous year and airway impairment. On the other hand, logistic regression was used to assess differences in CT imaging between patients with IOS parameters' abnormalities and patients with normal IOS parameters. RESULTS 768 COPD subjects were finally enrolled in the study. The proportion of airway impairment assessed by R5, R20, R5-R20, X5, AX, and Fres was 59.8%, 29.7%, 62.5%, 52.9%, 60.9% and 67.3%, respectively. Airway impairment assessed by IOS parameters (R5, R5-R20, X5, AX, and Fres) in patients with COPD was present across all severities of COPD, particularly in GOLD 3-4 patients. Compared with patients with normal IOS parameters, patients with IOS parameters' abnormalities had more respiratory symptoms, more severe airway obstruction and imaging structural abnormalities. Patients with IOS parameters' abnormalities assessed by R5 [risk ratio (RR): 1.58, 95% confidential interval (CI): 1.13-2.19, P = 0.007], R5-R20 [RR: 1.73, 95%CI: 1.22-2.45, P = 0.002], X5 [RR: 2.11, 95%CI: 1.51-2.95, P < 0.001], AX [RR: 2.20, 95%CI: 1.53-3.16, P < 0.001], and Fres [RR: 2.13, 95%CI: 1.44-3.15, P < 0.001] had a higher risk of AECOPD in the previous year than patients with normal IOS parameters. CONCLUSIONS Airway impairment assessed by IOS may be a subtype of COPD. Future studies are warranted to identify the underlying mechanisms and longitudinal progression of airway impairment.
Collapse
Affiliation(s)
- Lifei Lu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Jieqi Peng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| | - Fan Wu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| | - Huajing Yang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Youlan Zheng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Zhishan Deng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Ningning Zhao
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Cuiqiong Dai
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Shan Xiao
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Xiang Wen
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Jianwu Xu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Xiaohui Wu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Kunning Zhou
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Pixin Ran
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| | - Yumin Zhou
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
5
|
Chen W, Ji G, Wu R, Fang C, Lu H. Mass spectrometry-based candidate substrate and site identification of PTM enzymes. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Wang K, Liao Y, Li X, Wang R, Zeng Z, Cheng M, Gao L, Xu D, Wen F, Wang T, Chen J. Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease. Int Immunopharmacol 2023; 114:109537. [PMID: 36495695 DOI: 10.1016/j.intimp.2022.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important public health challenge worldwide, and is usually caused by significant exposure to noxious agents, particularly cigarette smoke. Recent studies have revealed that excessive production of neutrophil extracellular traps (NETs) in the airways is associated with disease severity in COPD patients. NETs are extracellular neutrophil-derived structures composed of chromatin fibers decorated with histones and granule proteases including neutrophil elastase (NE). However, the effective prevention of NET formation in COPD remains elusive. Here, we demonstrated that treatment with GW311616A, a potent and selective inhibitor of NE, prevented cigarette smoke extract (CSE)-induced NET formation in human neutrophils by blocking NE nuclear translocation and subsequent chromatin decondensation. Inhibition of NE also abrogated CSE-induced ROS production and migration impairment of neutrophils. Administration of GW311616A in vivo substantially reduced pulmonary generation of NETs while attenuating the key pathological changes in COPD, including airway leukocyte infiltration, mucus-secreting goblet cell hyperplasia, and emphysema-like alveolar destruction in a mouse model of COPD induced by chronic cigarette smoke exposure. Mice treated with GW311616A also showed significant attenuation of neutrophil numbers and percentages and the levels of neutrophil chemotactic factors (LTB4, KC, and CXCL5) and proinflammatory cytokines (IL-1β, and TNF-α) in bronchoalveolar lavage fluid compared to mice treated with cigarette smoke exposure only. Furthermore, GW311616A treatment considerably improved lung function in the COPD mouse model, including preventing the decline of FEV100/FVC and delta PEF as well as inhibiting the increase in FRC, TLC, and FRC/TLC. Overall, our study suggests that NE plays a critical role in cigarette smoke-induced NET formation by neutrophils and that inhibition of NE is a promising strategy to suppress NET-mediated pathophysiological changes in COPD.
Collapse
Affiliation(s)
- Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoou Li
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ran Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Gao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
8
|
D’Amato M, Iadarola P, Viglio S. Proteomic Analysis of Human Sputum for the Diagnosis of Lung Disorders: Where Are We Today? Int J Mol Sci 2022; 23:ijms23105692. [PMID: 35628501 PMCID: PMC9144372 DOI: 10.3390/ijms23105692] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The identification of markers of inflammatory activity at the early stages of pulmonary diseases which share common characteristics that prevent their clear differentiation is of great significance to avoid misdiagnosis, and to understand the intrinsic molecular mechanism of the disorder. The combination of electrophoretic/chromatographic methods with mass spectrometry is currently a promising approach for the identification of candidate biomarkers of a disease. Since the fluid phase of sputum is a rich source of proteins which could provide an early diagnosis of specific lung disorders, it is frequently used in these studies. This report focuses on the state-of-the-art of the application, over the last ten years (2011-2021), of sputum proteomics in the investigation of severe lung disorders such as COPD; asthma; cystic fibrosis; lung cancer and those caused by COVID-19 infection. Analysis of the complete set of proteins found in sputum of patients affected by these disorders has allowed the identification of proteins whose levels change in response to the organism's condition. Understanding proteome dynamism may help in associating these proteins with alterations in the physiology or progression of diseases investigated.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence:
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
| |
Collapse
|
9
|
Usmani OS, Dhand R, Lavorini F, Price D. Why We Should Target Small Airways Disease in Our Management of Chronic Obstructive Pulmonary Disease. Mayo Clin Proc 2021; 96:2448-2463. [PMID: 34183115 DOI: 10.1016/j.mayocp.2021.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
For more than 50 years, small airways disease has been considered a key feature of chronic obstructive pulmonary disease (COPD) and a major cause of airway obstruction. Both preventable and treatable, small airways disease has important clinical consequences if left unchecked. Small airways disease is associated with poor spirometry results, increased lung hyperinflation, and poor health status, making the small airways an important treatment target in COPD. The early detection of small airways disease remains the key barrier; if detected early, treatments designed to target small airways may help reduce symptoms and allow patients to maintain their activities. Studies are needed to evaluate the possible role of new drugs and novel drug formulations, inhalers, and inhalation devices for treating small airways disease. These developments will help to improve our management of small airways disease in patients with COPD.
Collapse
Affiliation(s)
- Omar S Usmani
- National Heart and Lung Institute, Imperial College London, and Royal Brompton Hospital, Airways Disease Section, London, UK.
| | - Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville
| | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - David Price
- Observational and Pragmatic Research Institute, Singapore; Optimum Patient Care, Cambridge, UK; Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Mintoo M, Chakravarty A, Tilvawala R. N-Terminomics Strategies for Protease Substrates Profiling. Molecules 2021; 26:molecules26154699. [PMID: 34361849 PMCID: PMC8348681 DOI: 10.3390/molecules26154699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Proteases play a central role in various biochemical pathways catalyzing and regulating key biological events. Proteases catalyze an irreversible post-translational modification called proteolysis by hydrolyzing peptide bonds in proteins. Given the destructive potential of proteolysis, protease activity is tightly regulated. Dysregulation of protease activity has been reported in numerous disease conditions, including cancers, neurodegenerative diseases, inflammatory conditions, cardiovascular diseases, and viral infections. The proteolytic profile of a cell, tissue, or organ is governed by protease activation, activity, and substrate specificity. Thus, identifying protease substrates and proteolytic events under physiological conditions can provide crucial information about how the change in protease regulation can alter the cellular proteolytic landscape. In recent years, mass spectrometry-based techniques called N-terminomics have become instrumental in identifying protease substrates from complex biological mixtures. N-terminomics employs the labeling and enrichment of native and neo-N-termini peptides, generated upon proteolysis followed by mass spectrometry analysis allowing protease substrate profiling directly from biological samples. In this review, we provide a brief overview of N-terminomics techniques, focusing on their strengths, weaknesses, limitations, and providing specific examples where they were successfully employed to identify protease substrates in vivo and under physiological conditions. In addition, we explore the current trends in the protease field and the potential for future developments.
Collapse
|
11
|
Das N, Benko C, Gill SE, Dufour A. The Pharmacological TAILS of Matrix Metalloproteinases and Their Inhibitors. Pharmaceuticals (Basel) 2020; 14:ph14010031. [PMID: 33396445 PMCID: PMC7823758 DOI: 10.3390/ph14010031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been demonstrated to have both detrimental and protective functions in inflammatory diseases. Several MMP inhibitors, with the exception of Periostat®, have failed in Phase III clinical trials. As an alternative strategy, recent efforts have been focussed on the development of more selective inhibitors or targeting other domains than their active sites through specific small molecule inhibitors or monoclonal antibodies. Here, we present some examples that aim to better understand the mechanisms of conformational changes/allosteric control of MMPs functions. In addition to MMP inhibitors, we discuss unbiased global approaches, such as proteomics and N-terminomics, to identify new MMP substrates. We present some examples of new MMP substrates and their implications in regulating biological functions. By characterizing the roles and substrates of individual MMP, MMP inhibitors could be utilized more effectively in the optimal disease context or in diseases never tested before where MMP activity is elevated and contributing to disease progression.
Collapse
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- McCaig Institute for Bone and Join Healthy, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada;
| | - Colette Benko
- McCaig Institute for Bone and Join Healthy, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, Foothills Hospital, 3330 Hospital Dr, Calgary, AB T2N 4N1, Canada
| | - Sean E. Gill
- Centre for Critical Illness Research, Victoria Research Labs, Lawson Health Research Institute, A6-134, London, ON N6A 5W9, Canada;
- Division of Respirology, Department of Medicine, Western University, London, ON N6A 5W9, Canada
| | - Antoine Dufour
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- McCaig Institute for Bone and Join Healthy, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, Foothills Hospital, 3330 Hospital Dr, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
12
|
|
13
|
Proteomics and Imaging in Crohn’s Disease: TAILS of Unlikely Allies. Trends Pharmacol Sci 2020; 41:74-84. [DOI: 10.1016/j.tips.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
|
14
|
Anderson BM, de Almeida LGN, Sekhon H, Young D, Dufour A, Edgington-Mitchell LE. N-Terminomics/TAILS Profiling of Macrophages after Chemical Inhibition of Legumain. Biochemistry 2019; 59:329-340. [PMID: 31774660 DOI: 10.1021/acs.biochem.9b00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Legumain (asparaginyl endopeptidase) is the only protease with a preference for cleavage after asparagine residues. Increased legumain activity is a hallmark of inflammation, neurodegenerative diseases, and cancer, and legumain inhibitors have exhibited therapeutic effects in mouse models of these pathologies. Improved knowledge of its substrates and cellular functions is a requisite to further validation of legumain as a drug target. We, therefore, aimed to investigate the effects of legumain inhibition in macrophages using an unbiased and systematic approach. By shotgun proteomics, we identified 16 094 unique peptides in RAW264.7 cells. Among these, 326 unique peptides were upregulated in response to legumain inhibition, while 241 were downregulated. Many of these proteins were associated with mitochondria and metabolism, especially iron metabolism, indicating that legumain may have a previously unknown impact on related processes. Furthermore, we used N-terminomics/TAILS (terminal amine isotopic labeling of substrates) to identify potential substrates of legumain. We identified three new proteins that are cleaved after asparagine residues, which may reflect legumain-dependent cleavage. We confirmed that frataxin, a mitochondrial protein associated with the formation of iron-sulfur clusters, can be cleaved by legumain. This further asserts a potential contribution of legumain to mitochondrial function and iron metabolism. Lastly, we also identified a potential new cleavage site within legumain itself that may give rise to a 25 kDa form of legumain that has previously been observed in multiple cell and tissue types. Collectively, these data shed new light on the potential functions of legumain and will be critical for understanding its contribution to disease.
Collapse
Affiliation(s)
- Bethany M Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3052 , Australia
| | - Luiz G N de Almeida
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Henna Sekhon
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Daniel Young
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3052 , Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia.,Department of Oral and Maxillofacial Surgery , New York University College of Dentistry, Bluestone Center for Clinical Research , New York , New York 10010 , United States
| |
Collapse
|
15
|
Gordon MH, Anowai A, Young D, Das N, Campden RI, Sekhon H, Myers Z, Mainoli B, Chopra S, Thuy-Boun PS, Kizhakkedathu J, Bindra G, Jijon HB, Heitman S, Yates R, Wolan DW, Edgington-Mitchell LE, MacNaughton WK, Dufour A. N-Terminomics/TAILS Profiling of Proteases and Their Substrates in Ulcerative Colitis. ACS Chem Biol 2019; 14:2471-2483. [PMID: 31393699 DOI: 10.1021/acschembio.9b00608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated protease activity is often implicated in the initiation of inflammation and immune cell recruitment in gastrointestinal inflammatory diseases. Using N-terminomics/TAILS (terminal amine isotopic labeling of substrates), we compared proteases, along with their substrates and inhibitors, between colonic mucosal biopsies of healthy patients and those with ulcerative colitis (UC). Among the 1642 N-termini enriched using TAILS, increased endogenous processing of proteins was identified in UC compared to healthy patients. Changes in the reactome pathways for proteins associated with metabolism, adherens junction proteins (E-cadherin, liver-intestinal cadherin, catenin alpha-1, and catenin delta-1), and neutrophil degranulation were identified between the two groups. Increased neutrophil infiltration and distinct proteases observed in ulcerative colitis may result in extensive break down, altered processing, or increased remodeling of adherens junctions and other cellular functions. Analysis of the preferred proteolytic cleavage sites indicated that the majority of proteolytic activity and processing comes from host proteases, but that key microbial proteases may also play a role in maintaining homeostasis. Thus, the identification of distinct proteases and processing of their substrates improves the understanding of dysregulated proteolysis in normal intestinal physiology and ulcerative colitis.
Collapse
Affiliation(s)
- Marilyn H. Gordon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Anthonia Anowai
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Nabangshu Das
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Rhiannon I. Campden
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Henna Sekhon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Zoe Myers
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Barbara Mainoli
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Sameeksha Chopra
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Peter S. Thuy-Boun
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Gurmeet Bindra
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Humberto B. Jijon
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Steven Heitman
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Robin Yates
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Dennis W. Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Parkville, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, United States
| | - Wallace K. MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
16
|
Andrault PM, Schamberger AC, Chazeirat T, Sizaret D, Renault J, Staab-Weijnitz CA, Hennen E, Petit-Courty A, Wartenberg M, Saidi A, Baranek T, Guyetant S, Courty Y, Eickelberg O, Lalmanach G, Lecaille F. Cigarette smoke induces overexpression of active human cathepsin S in lungs from current smokers with or without COPD. Am J Physiol Lung Cell Mol Physiol 2019; 317:L625-L638. [PMID: 31553637 DOI: 10.1152/ajplung.00061.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cigarette smoking has marked effects on lung tissue, including induction of oxidative stress, inflammatory cell recruitment, and a protease/antiprotease imbalance. These effects contribute to tissue remodeling and destruction resulting in loss of lung function in chronic obstructive pulmonary disease (COPD) patients. Cathepsin S (CatS) is a cysteine protease that is involved in the remodeling/degradation of connective tissue and basement membrane. Aberrant expression or activity of CatS has been implicated in a variety of diseases, including arthritis, cancer, cardiovascular, and lung diseases. However, little is known about the effect of cigarette smoking on both CatS expression and activity, as well as its role in smoking-related lung diseases. Here, we evaluated the expression and activity of human CatS in lung tissues from never-smokers and smokers with or without COPD. Despite the presence of an oxidizing environment, CatS expression and activity were significantly higher in current smokers (both non-COPD and COPD) compared with never-smokers, and correlated positively with smoking history. Moreover, we found that the exposure of primary human bronchial epithelial cells to cigarette smoke extract triggered the activation of P2X7 receptors, which in turns drives CatS upregulation. The present data suggest that excessive CatS expression and activity contribute, beside other proteases, to the deleterious effects of cigarette smoke on pulmonary homeostasis.
Collapse
Affiliation(s)
- Pierre-Marie Andrault
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Andrea C Schamberger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Thibault Chazeirat
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Damien Sizaret
- Université de Tours, Tours, France.,Centre Hospitalier Régional Universitaire de Tours, Service d'Anatomie et Cytologie Pathologique, Tours, France
| | | | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Elisabeth Hennen
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Agnès Petit-Courty
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Mylène Wartenberg
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Thomas Baranek
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Serge Guyetant
- Université de Tours, Tours, France.,Centre Hospitalier Régional Universitaire de Tours, Service d'Anatomie et Cytologie Pathologique, Tours, France
| | - Yves Courty
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Gilles Lalmanach
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| |
Collapse
|
17
|
Grozdanić M, Vidmar R, Vizovišek M, Fonović M. Degradomics in Biomarker Discovery. Proteomics Clin Appl 2019; 13:e1800138. [PMID: 31291060 DOI: 10.1002/prca.201800138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Indexed: 12/13/2022]
Abstract
The upregulation of protease expression and proteolytic activity is implicated in numerous pathological conditions such as neurodegeneration, cancer, cardiovascular and autoimmune diseases, and bone degeneration. During disease progression, various proteases form characteristic patterns of cleaved proteins and peptides, which can affect disease severity and course of progression. It has been shown that qualitative and quantitative monitoring of cleaved protease substrates can provide relevant prognostic, diagnostic, and therapeutic information. As proteolytic fragments and peptides generated in the affected tissue are commonly translocated to blood, urine, and other proximal fluids, their possible application as biomarkers is the subject of ongoing research. The field of degradomics has been established to enable the global identification of proteolytic events on the organism level, utilizing proteomic approaches and sample preparation techniques that facilitate the detection of proteolytic processing of protease substrates in complex biological samples. In this review, some of the latest developments in degradomic methodologies used for the identification and validation of biologically relevant proteolytic events and their application in the search for clinically relevant biomarker candidates are presented. The current state of degradomics in clinics is discussed and the future perspectives of the field are outlined.
Collapse
Affiliation(s)
- Marija Grozdanić
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, SI-1000, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
18
|
Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10:3224. [PMID: 31324782 PMCID: PMC6642099 DOI: 10.1038/s41467-019-11140-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin. The roles played by thrombin in the human intestinal mucosa are unclear. Here, the authors show that the commensal microbiota modulates epithelial production of active thrombin, which controls biofilm growth and contributes to protection of the mucosa from bacterial invasion.
Collapse
|
19
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
20
|
Higham A, Quinn AM, Cançado JED, Singh D. The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 2019; 20:49. [PMID: 30832670 PMCID: PMC6399904 DOI: 10.1186/s12931-019-1017-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
Small airways disease (SAD) is a cardinal feature of chronic obstructive pulmonary disease (COPD) first recognized in the nineteenth century. The diverse histopathological features associated with SAD underpin the heterogeneous nature of COPD. Our understanding of the key molecular mechanisms which drive the pathological changes are not complete. In this article we will provide a historical overview of key histopathological studies which have helped shape our understanding of SAD and discuss the hallmark features of airway remodelling, mucous plugging and inflammation. We focus on the relationship between SAD and emphysema, SAD in the early stages of COPD, and the mechanisms which cause SAD progression, including bacterial colonization and exacerbations. We discuss the need to specifically target SAD to attenuate the progression of COPD.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Anne Marie Quinn
- Department of Histopathology, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Dave Singh
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, UK
| |
Collapse
|