1
|
Assessment of Regional Lung Ventilation with Positron Emission Tomography Using the Radiofluorinated Gas [ 18F]SF 6: Application to an Animal Model of Impaired Ventilation. Mol Imaging Biol 2023; 25:413-422. [PMID: 36167904 DOI: 10.1007/s11307-022-01773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Clinical ventilation studies are primarily performed with computerized tomography (CT) and more often with single-photon emission Computerized tomography (SPECT) using radiolabelled aerosols, both presenting certain limitations. Here, we investigate the use of the radiofluorinated gas [18F]SF6 as a positron emission tomography (PET) ventilation marker in an animal model of impaired lung ventilation. PROCEDURES Sprague-Dawley rats (n = 15) were randomly assigned to spontaneous ventilation (sham group), endotracheal administration of phosphate-buffered saline (PBS group), or endotracheal administration of lipopolysaccharide (LPS group). PET-[18F]SF6 images (10-min acquisition) were acquired at t = 48 h after LPS or PBS administration under mechanical ventilation. CT images were acquired after each PET session. Volumes of interest were manually delineated in the lungs on CT images, and voxel-by-voxel analysis was carried out on PET images to obtain the corresponding histograms. After the imaging sessions, lungs were harvested to conduct histological analysis. RESULTS Ventilation studies in sham animals showed uniform distribution of [18F]SF6 and fast elimination of the radioactivity after discontinuation of the administration. For PBS- and LPS-treated rats, ventilation defects were observed on PET images in some animals, identified as regions with low presence of the radiolabelled gas. Hypoventilated areas co-localized with regions with higher x-ray attenuation than healthy lungs on the CT images, suggesting the presence of oedema and, in some cases, atelectasis. Histograms obtained from PET images showed quasi-Gaussian distributions for control animals, while PBS- and LPS-treated animals demonstrated the presence of hypoventilated voxels. Deviation of the histograms from Gaussian distribution correlated with histological score was obtained by ex vivo histological analysis. CONCLUSIONS [18F]SF6 is an appropriate marker of regional lung ventilation and may find application in the early diagnose of acute lung disease.
Collapse
|
2
|
Borcherding L, Teksen AS, Grosser B, Schaller T, Hirschbühl K, Claus R, Spring O, Wittmann M, Römmele C, Sipos É, Märkl B. Impaired Dendritic Cell Homing in COVID-19. Front Med (Lausanne) 2021; 8:761372. [PMID: 34805226 PMCID: PMC8601231 DOI: 10.3389/fmed.2021.761372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
The high mortality of COVID-19 is mostly attributed to acute respiratory distress syndrome (ARDS), whose histopathological correlate is diffuse alveolar damage (DAD). Furthermore, severe COVID-19 is often accompanied by a cytokine storm and a disrupted response of the adaptive immune system. Studies aiming to depict this dysregulation have mostly investigated the peripheral cell count as well as the functionality of immune cells. We investigated the impact of SARS-CoV-2 on antigen-presenting cells using multiplexed immunofluorescence. Similar to MERS-CoV and SARS-CoV, SARS-CoV-2 appears to be impairing the maturation of dendritic cells (DCs). DC maturation involves a switch in surface antigen expression, which enables the cells' homing to lymph nodes and the subsequent activation of T-cells. As quantitative descriptions of the local inflammatory infiltrate are still scarce, we compared the cell population of professional antigen-presenting cells (APC) in the lungs of COVID-19 autopsy cases in different stages of DAD. We found an increased count of myeloid dendritic cells (mDCs) in later stages. Interestingly, mDCs also showed no significant upregulation of maturation markers in DAD-specimens with high viral load. Accumulation of immature mDCs, which are unable to home to lymph nodes, ultimately results in an inadequate T-cell response.
Collapse
Affiliation(s)
- Lukas Borcherding
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | - Bianca Grosser
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tina Schaller
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Klaus Hirschbühl
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Rainer Claus
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Oliver Spring
- Anesthesiology and Operative Intensive Care Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Michael Wittmann
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Éva Sipos
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
3
|
Weber SN, Nowak I, Grünhage F, Lammert F. Effects of blocking chemokine receptor CCR1 with BX471 in two models of fibrosis prevention and rescue in mice. Biochem Biophys Rep 2021; 27:101077. [PMID: 34337167 PMCID: PMC8313839 DOI: 10.1016/j.bbrep.2021.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/01/2022] Open
Abstract
Background The induction, progression and resolution of liver fibrosis are influenced by multiple chemokines. The inhibition of CCR1 signalling by a specific non-peptide inhibitor (BX471) reduces kidney fibrosis after unilateral ureteral obstruction via suppression of leukocyte recruitment in mice. However, it remains unclear whether selective CCR1 inhibition also affects hepatic fibrogenesis. Therefore we aimed to study the effect of this intervention on liver fibrosis in prevention (CCl4 administration) and rescue (ABCB4-deficient mice) mouse models. Methods In the prevention model, hepatic fibrosis was induced by repeated injections of CCl4. Additionally, the verum group was treated with subcutaneous injections of BX471, while controls received vehicle only. ABCB4 deficient mice (on the BALB/c-background) with sclerosing cholangitis and biliary fibrosis received BX471 or vehicle, respectively (rescue model). Liver histopathology was assessed after Sirius red staining of collagen, and hepatic collagen contents were measured. In addition, we performed gene expression analyses of fibrosis-related genes. Results BX471 injections were tolerated moderately well by all mice, and all mice developed hepatic fibrosis. Significant differences were neither observed in serum aminotransferase activities after 6 weeks of treatment between the two groups in the prevention nor in the rescue model. Interestingly, hepatic collagen contents were significantly higher in mice treated with BX471 in the prevention model as compared to controls but histological stages of liver sections did not differ. Of note, we observed only moderate effects on liver fibrosis in the ABCB4 knock-out model. Conclusions Our data indicate that BX471 treatment did neither affect serum and tissue markers of liver injury and fibrosis in the CCl4 model and only moderately in the Abcb4 -/- model of biliary fibrosis. The animal models indicate that treatment with BX471 alone is unlikely to exert major beneficial effects in chronic liver disease.
Collapse
Affiliation(s)
- Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Irina Nowak
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Frank Grünhage
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany.,Hannover Health Sciences Campus, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
4
|
Blázquez-Prieto J, Huidobro C, López-Alonso I, Amado-Rodriguez L, Martín-Vicente P, López-Martínez C, Crespo I, Pantoja C, Fernandez-Marcos PJ, Serrano M, Sznajder JI, Albaiceta GM. Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Transl Res 2021; 233:104-116. [PMID: 33515780 PMCID: PMC7838583 DOI: 10.1016/j.trsl.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/13/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
Abstract
The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.
Collapse
Affiliation(s)
| | - Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias. Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias. Madrid, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias. Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias. Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Laura Amado-Rodriguez
- Instituto de Investigación Sanitaria del Principado de Asturias. Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias. Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias. Oviedo, Spain
| | - Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias. Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias. Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias. Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias. Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Irene Crespo
- Departamento de Biología Funcional. Universidad de Oviedo. Oviedo, Spain
| | - Cristina Pantoja
- Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC. Madrid, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC. Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology (BIST); Catalan Institution for Research and Advanced Studies (ICREA); Barcelona, Spain
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias. Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias. Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias. Oviedo, Spain; Departamento de Biología Funcional. Universidad de Oviedo. Oviedo, Spain.
| |
Collapse
|
5
|
Almeida MR, Horta JGÁ, de Matos NA, de Souza ABF, Castro TDF, Cândido LDS, Andrade MC, Cangussú SD, Costa GDP, Talvani A, Bezerra FS. The effects of different ventilatory modes in female adult rats submitted to mechanical ventilation. Respir Physiol Neurobiol 2020; 284:103583. [PMID: 33202295 DOI: 10.1016/j.resp.2020.103583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
This study aimed to analyze the effects of volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) modes in female Wistar rats. 18 Wistar female adult rats were divided into three groups: control (CG), pressure-controlled ventilation (PCVG), and volume-controlled ventilation (VCVG). PCVG and VCVG were submitted to MV for one hour with a tidal volume (TV) of 8 mL/Kg, respiratory rate of 80 breaths/min, and positive end-expiratory pressure of 0 cmH2O. At the end of the experiment, all animals were euthanized. The neutrophils and lymphocytes influx to lung were higher in VCVG and PCVG compared to CG. The activities of superoxide dismutase, catalase and myeloperoxidase were higher in PCVG compared to CG. There was an increase in lipid peroxidation and protein oxidation in PCVG compared to CG. The levels of CCL3 and CCL5 were higher in PCVG compared to CG. In conclusions, the PCV mode promoted structural changes in the lung parenchyma, redox imbalance and inflammation in healthy adult female rats submitted to MV.
Collapse
Affiliation(s)
- Matheus Rocha Almeida
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Jacques Gabriel Álvares Horta
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil; Department of Clinical Medicine/Pediatrics, School of Medicine, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Leandro da Silva Cândido
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Mônica Campos Andrade
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil.
| |
Collapse
|
6
|
Abstract
Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury.
Collapse
|
7
|
López-Alonso I, Blázquez-Prieto J, Amado-Rodríguez L, González-López A, Astudillo A, Sánchez M, Huidobro C, López-Martínez C, Dos Santos CC, Albaiceta GM. Preventing loss of mechanosensation by the nuclear membranes of alveolar cells reduces lung injury in mice during mechanical ventilation. Sci Transl Med 2019; 10:10/456/eaam7598. [PMID: 30158154 DOI: 10.1126/scitranslmed.aam7598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/30/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023]
Abstract
The nuclear membrane acts as a mechanosensor that drives cellular responses following changes in the extracellular environment. Mechanically ventilated lungs are exposed to an abnormally high mechanical load that may result in clinically relevant alveolar damage. We report that mechanical ventilation in mice increased the expression of Lamin-A, a major determinant of nuclear membrane stiffness, in alveolar epithelial cells. Lamin-A expression increased and nuclear membrane compliance decreased in human bronchial epithelial cells after a mechanical stretch stimulus and in a murine model of lung injury after positive-pressure ventilation. Reducing Lamin-A maturation by depletion of the protease-encoding gene Zmpste24 preserved alveolar nuclear membrane compliance after mechanical ventilation in mice. Ventilator-induced proapoptotic gene expression changes and lung injury were reduced in mice lacking Zmpste24 compared to wild-type control animals. Similarly, treatment with the human immunodeficiency virus protease inhibitors lopinavir and ritonavir reduced the accumulation of Lamin-A at nuclear membranes and preserved nuclear membrane compliance after mechanical ventilation, mimicking the protective phenotype of Zmpste24-/- animals. These results show that the pathophysiological response to lung mechanical stretch is sensed by the nuclear membranes of lung alveolar cells, and suggest that protease inhibitors might be effective in preventing ventilator-induced lung injury.
Collapse
Affiliation(s)
- Inés López-Alonso
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.,Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33005 Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain.,Centro de Investigación Biomédica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge Blázquez-Prieto
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.,Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33005 Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain.,Centro de Investigación Biomédica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Amado-Rodríguez
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain.,Centro de Investigación Biomédica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrián González-López
- Centro de Investigación Biomédica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Department of Anesthesiology and Operative Intensive Care Medicine, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.,Departamento de Cirugía y Especialidades Médicoquirúrgicas, Universidad de Oviedo, 33005 Oviedo, Spain
| | - Manuel Sánchez
- Área de Farmacología, Departamento de Medicina, Universidad de Oviedo, 33005 Oviedo, Spain
| | - Covadonga Huidobro
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain.,Centro de Investigación Biomédica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cecilia López-Martínez
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33005 Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1WB, Canada
| | - Guillermo M Albaiceta
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain. .,Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33005 Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain.,Centro de Investigación Biomédica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Applying Positive End-Expiratory Pressure During Mechanical Ventilation Causes Pulmonary Redox Imbalance and Inflammation in Rats. Shock 2019; 50:572-578. [PMID: 29194341 DOI: 10.1097/shk.0000000000001072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mechanical ventilation (MV) may induce or aggravate lung injury through the production of cytokines, inflammatory infiltration of neutrophils, and changes in the permeability of the alveolar-capillary barrier. The use of positive end-expiratory pressure (PEEP) helps improve gas exchanges avoiding alveolar collapse at the end of expiration. The present study aimed to analyze inflammatory response and redox imbalance in lungs of rats submitted to MV with and without PEEP. METHODS Eighteen Wistar rats were divided into three groups: control (CG), PEEP group (PG), and zero PEEP (ZEEP) group (ZG). PG and ZG were submitted to MV for 60 min with or without PEEP, respectively. Subsequently, the animals were euthanized, and blood, bronchoalveolar lavage fluid, and lungs were collected for analyses. RESULTS The number of neutrophils was higher in PG compared with CG. Leucocyte and neutrophil influx in bronchoalveolar lavage fluid was higher in PG compared with CG. PG showed an increase in alveolar area compared with the other groups. There were increases in the levels of chemokines, CCL3 and CCL5, in PG compared with CG. There were increases in oxidation of lipids and proteins in PG compared with other groups. There were increases in the activity of superoxide dismutase and catalase in PG compared with CG and ZG. However, there was a decrease in the ratio of glutathione to glutathione disulfide in PG compared with other groups. CONCLUSIONS MV with PEEP caused redox imbalance and inflammation in lungs of healthy rats.
Collapse
|
9
|
Zhang N, Zhang Y, Wang L, Xia J, Liang S, Wang Y, Wang Z, Huang X, Li M, Zeng H, Zhan Q. Expression profiling analysis of long noncoding RNAs in a mouse model of ventilator-induced lung injury indicating potential roles in inflammation. J Cell Biochem 2019; 120:11660-11679. [PMID: 30784114 PMCID: PMC7983175 DOI: 10.1002/jcb.28446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
The key regulators of inflammation underlying ventilator-induced lung injury (VILI) remain poorly defined. Long noncoding RNAs (lncRNAs) have been implicated in the inflammatory response of many diseases; however, their roles in VILI remain unclear. We, therefore, performed transcriptome profiling of lncRNA and messenger RNA (mRNA) using RNA sequencing in lungs collected from mice model of VILI and control groups. Gene expression was analyzed through RNA sequencing and quantitative reverse transctiption polymerase chain reaction. A comprehensive bioinformatics analysis was used to characterize the expression profiles and relevant biological functions and for multiple comparisons among the controls and the injury models at different time points. Finally, lncRNA-mRNA coexpression networks were constructed and dysregulated lncRNAs were analyzed functionally. The mRNA transcript profiling, coexpression network analysis, and functional analysis of altered lncRNAs indicated enrichment in the regulation of immune system/inflammation processes, response to stress, and inflammatory pathways. We identified the lncRNA Gm43181 might be related to lung damage and neutrophil activation via chemokine receptor chemokine (C-X-C) receptor 2. In summary, our study provides an identification of aberrant lncRNA alterations involved in inflammation upon VILI, and lncRNA-mediated regulatory patterns may contribute to VILI inflammation.
Collapse
Affiliation(s)
- Nan‐Nan Zhang
- Center for Respiratory Diseases, China‐Japan Friendship HospitalBeijingChina,Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina,National Clinical Research Center for Respiratory DiseasesBeijingChina,Graduate School of Peking Union Medical College, Chinese Academy of Medical SciencesBeijingChina
| | - Yi Zhang
- Center for Respiratory Diseases, China‐Japan Friendship HospitalBeijingChina,Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina,National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Lu Wang
- Center for Respiratory Diseases, China‐Japan Friendship HospitalBeijingChina,Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina,National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Jin‐Gen Xia
- Center for Respiratory Diseases, China‐Japan Friendship HospitalBeijingChina,Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina,National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Shun‐Tao Liang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Yan Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical SciencesBeijingChina
| | - Zhi‐Zhi Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical SciencesBeijingChina
| | - Xu Huang
- Center for Respiratory Diseases, China‐Japan Friendship HospitalBeijingChina,Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina,National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Min Li
- Center for Respiratory Diseases, China‐Japan Friendship HospitalBeijingChina,Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina,National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Qing‐Yuan Zhan
- Center for Respiratory Diseases, China‐Japan Friendship HospitalBeijingChina,Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina,National Clinical Research Center for Respiratory DiseasesBeijingChina,Graduate School of Peking Union Medical College, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
10
|
Potera RM, Cao M, Jordan LF, Hogg RT, Hook JS, Moreland JG. Alveolar Macrophage Chemokine Secretion Mediates Neutrophilic Lung Injury in Nox2-Deficient Mice. Inflammation 2019; 42:185-198. [PMID: 30288635 PMCID: PMC6775637 DOI: 10.1007/s10753-018-0883-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute lung injury (ALI), developing as a component of the systemic inflammatory response syndrome (SIRS), leads to significant morbidity and mortality. Reactive oxygen species (ROS), produced in part by the neutrophil NADPH oxidase 2 (Nox2), have been implicated in the pathogenesis of ALI. Previous studies in our laboratory demonstrated the development of pulmonary inflammation in Nox2-deficient (gp91phox-/y) mice that was absent in WT mice in a murine model of SIRS. Given this finding, we hypothesized that Nox2 in a resident cell in the lung, specifically the alveolar macrophage, has an essential anti-inflammatory role. Using a murine model of SIRS, we examined whole-lung digests and bronchoalveolar lavage fluid (BALf) from WT and gp91phox-/y mice. Both genotypes demonstrated neutrophil sequestration in the lung during SIRS, but neutrophil migration into the alveolar space was only present in the gp91phox-/y mice. Macrophage inflammatory protein (MIP)-1α gene expression and protein secretion were higher in whole-lung digest from uninjected gp91phox-/y mice compared to the WT mice. Gene expression of MIP-1α, MCP-1, and MIP-2 was upregulated in alveolar macrophages obtained from gp91phox-/y mice at baseline compared with WT mice. Further, ex vivo analysis of alveolar macrophages, but not bone marrow-derived macrophages or peritoneal macrophages, demonstrated higher gene expression of MIP-1α and MIP-2. Moreover, isolated lung polymorphonuclear neutrophils migrate to BALf obtained from gp91phox-/y mice, further providing evidence of a cell-specific anti-inflammatory role for Nox2 in alveolar macrophages. We speculate that Nox2 represses the development of inflammatory lung injury by modulating chemokine expression by the alveolar macrophage.
Collapse
Affiliation(s)
- Renee M Potera
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA.
| | - Mou Cao
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Lin F Jordan
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Richard T Hogg
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Blázquez-Prieto J, López-Alonso I, Huidobro C, Albaiceta GM. The Emerging Role of Neutrophils in Repair after Acute Lung Injury. Am J Respir Cell Mol Biol 2018; 59:289-294. [DOI: 10.1165/rcmb.2018-0101ps] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jorge Blázquez-Prieto
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; and
- Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; and
- Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; and
- Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo M. Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; and
- Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
12
|
López-Martínez C, Huidobro C, Albaiceta GM, López-Alonso I. Mechanical stretch modulates cell migration in the lungs. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:28. [PMID: 29430445 DOI: 10.21037/atm.2017.12.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell migration is a core process to preserve homeostasis. Release of chemotactic signals induces changes in cell cytoskeleton to facilitate migration. This includes the rearrangement of cytoskeleton, genomic reprogramming and the modification of the surrounding extracellular matrix (ECM) to allow the motion of cells through. In the special case of repair after acute lung injury, cells must migrate while exposed to an increased mechanical stretch caused either by an increased work of breathing or positive-pressure ventilation. Interestingly, the cell response to this increased mechanical load can modify virtually all the mechanisms involved in cell migration. In this review we explore the interplay between stretch and the machinery responsible for cell migration. A translational approach to find new therapies in acute lung injury must take into account these interactions in order to develop effective treatments that promote lung repair.
Collapse
Affiliation(s)
- Cecilia López-Martínez
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
13
|
Wang X, An X, Wang X, Bao C, Li J, Yang D, Bai C. Curcumin ameliorated ventilator-induced lung injury in rats. Biomed Pharmacother 2018; 98:754-761. [DOI: 10.1016/j.biopha.2017.12.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022] Open
|
14
|
Blázquez-Prieto J, López-Alonso I, Amado-Rodríguez L, Huidobro C, González-López A, Kuebler WM, Albaiceta GM. Impaired lung repair during neutropenia can be reverted by matrix metalloproteinase-9. Thorax 2017; 73:321-330. [PMID: 28947666 DOI: 10.1136/thoraxjnl-2017-210105] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/26/2017] [Accepted: 09/04/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Neutrophils may cause tissue disruption during migration and by releasing cytotoxic molecules. However, the benefits of neutrophil depletion observed in experimental models of lung injury do not correspond with the poor outcome of neutropenic patients. METHODS To clarify the role of neutrophils during repair, mice with ventilator induced lung injury (VILI) were rendered neutropenic after damage, and followed for 48 hours of spontaneous breathing. Lungs were harvested and inflammatory mediators and matrix metalloproteinases measured. Bronchoalveolar lavage fluid (BALF) from ventilated patients with acute respiratory distress syndrome, with or without neutropenia, was collected, the same mediators measured and their effects in an ex vivo model of alveolar repair studied. Finally, neutropenic mice were treated after VILI with exogenous matrix metalloproteinase-9 (MMP-9). RESULTS Lungs from neutropenic animals showed delayed repair and displayed higher levels of tumour necrosis factor α, interferon γ and macrophage inflammatory protein 2, and absence of MMP-9. BALF from ventilated neutropenic patients with acute respiratory distress syndrome showed similar results. BALFs from neutropenic patients yielded a delayed closure rate of epithelial wounds ex vivo, which was improved by removal of collagen or addition of exogenous MMP-9. Lastly, treatment of neutropenic mice with exogenous MMP-9 after VILI reduced tissue damage without modifying cytokine concentrations. CONCLUSION Release of MMP-9 from neutrophils is required for adequate matrix processing and lung repair.
Collapse
Affiliation(s)
- Jorge Blázquez-Prieto
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Inés López-Alonso
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Covadonga Huidobro
- Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Adrián González-López
- Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain.,Department of Anesthesiology and Operative Intensive Care Medicine, Charité Universitätsmedizin, Berlin, Germany
| | | | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos, Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|