1
|
Astanina E, Doronzo G, Corà D, Neri F, Oliviero S, Genova T, Mussano F, Middonti E, Vallariello E, Cencioni C, Valdembri D, Serini G, Limana F, Foglio E, Ballabio A, Bussolino F. The TFEB-TGIF1 axis regulates EMT in mouse epicardial cells. Nat Commun 2022; 13:5191. [PMID: 36057632 PMCID: PMC9440911 DOI: 10.1038/s41467-022-32855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex and pivotal process involved in organogenesis and is related to several pathological processes, including cancer and fibrosis. During heart development, EMT mediates the conversion of epicardial cells into vascular smooth muscle cells and cardiac interstitial fibroblasts. Here, we show that the oncogenic transcription factor EB (TFEB) is a key regulator of EMT in epicardial cells and that its genetic overexpression in mouse epicardium is lethal due to heart defects linked to impaired EMT. TFEB specifically orchestrates the EMT-promoting function of transforming growth factor (TGF) β, and this effect results from activated transcription of thymine-guanine-interacting factor (TGIF)1, a TGFβ/Smad pathway repressor. The Tgif1 promoter is activated by TFEB, and in vitro and in vivo findings demonstrate its increased expression when Tfeb is overexpressed. Furthermore, Tfeb overexpression in vitro prevents TGFβ-induced EMT, and this effect is abolished by Tgif1 silencing. Tfeb loss of function, similar to that of Tgif1, sensitizes cells to TGFβ, inducing an EMT response to low doses of TGFβ. Together, our findings reveal an unexpected function of TFEB in regulating EMT, which might provide insights into injured heart repair and control of cancer progression. Epithelial-mesenchymal transition (EMT) is a complex process involved in organogenesis. Here, the authors show that the transcription factor EB (TFEB) regulates EMT in epicardium during heart development by tuning sensitivity to TGFβ signaling.
Collapse
Affiliation(s)
- Elena Astanina
- Department of Oncology, University of Torino, Torino, Italy. .,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Davide Corà
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Francesco Neri
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federico Mussano
- CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126, Turin, Italy
| | - Emanuele Middonti
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Edoardo Vallariello
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Guido Serini
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federica Limana
- San Raffaele Open University, Rome, Italy.,Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100, Latina, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
2
|
Edel GG, Schaaf G, Wijnen RMH, Tibboel D, Kardon G, Rottier RJ. Cellular Origin(s) of Congenital Diaphragmatic Hernia. Front Pediatr 2021; 9:804496. [PMID: 34917566 PMCID: PMC8669812 DOI: 10.3389/fped.2021.804496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a structural birth defect characterized by a diaphragmatic defect, lung hypoplasia and structural vascular defects. In spite of recent developments, the pathogenesis of CDH is still poorly understood. CDH is a complex congenital disorder with multifactorial etiology consisting of genetic, cellular and mechanical factors. This review explores the cellular origin of CDH pathogenesis in the diaphragm and lungs and describes recent developments in basic and translational CDH research.
Collapse
Affiliation(s)
- Gabriëla G. Edel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Rene M. H. Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Robbert J. Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
3
|
Sun MR, Steward AC, Sweet EA, Martin AA, Lipinski RJ. Developmental malformations resulting from high-dose maternal tamoxifen exposure in the mouse. PLoS One 2021; 16:e0256299. [PMID: 34403436 PMCID: PMC8370643 DOI: 10.1371/journal.pone.0256299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Tamoxifen is an estrogen receptor (ER) ligand with widespread use in clinical and basic research settings. Beyond its application in treating ER-positive cancer, tamoxifen has been co-opted into a powerful approach for temporal-specific genetic alteration. The use of tamoxifen-inducible Cre-recombinase mouse models to examine genetic, molecular, and cellular mechanisms of development and disease is now prevalent in biomedical research. Understanding off-target effects of tamoxifen will inform its use in both clinical and basic research applications. Here, we show that prenatal tamoxifen exposure can cause structural birth defects in the mouse. Administration of a single 200 mg/kg tamoxifen dose to pregnant wildtype C57BL/6J mice at gestational day 9.75 caused cleft palate and limb malformations in the fetuses, including posterior digit duplication, reduction, or fusion. These malformations were highly penetrant and consistent across independent chemical manufacturers. As opposed to 200 mg/kg, a single dose of 50 mg/kg tamoxifen at the same developmental stage did not result in overt structural malformations. Demonstrating that prenatal tamoxifen exposure at a specific time point causes dose-dependent developmental abnormalities, these findings argue for more considerate application of tamoxifen in Cre-inducible systems and further investigation of tamoxifen’s mechanisms of action.
Collapse
Affiliation(s)
- Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Austin C. Steward
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Emma A. Sweet
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
4
|
Every Beat You Take-The Wilms' Tumor Suppressor WT1 and the Heart. Int J Mol Sci 2021; 22:ijms22147675. [PMID: 34299295 PMCID: PMC8306835 DOI: 10.3390/ijms22147675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Nearly three decades ago, the Wilms’ tumor suppressor Wt1 was identified as a crucial regulator of heart development. Wt1 is a zinc finger transcription factor with multiple biological functions, implicated in the development of several organ systems, among them cardiovascular structures. This review summarizes the results from many research groups which allowed to establish a relevant function for Wt1 in cardiac development and disease. During development, Wt1 is involved in fundamental processes as the formation of the epicardium, epicardial epithelial-mesenchymal transition, coronary vessel development, valve formation, organization of the cardiac autonomous nervous system, and formation of the cardiac ventricles. Wt1 is further implicated in cardiac disease and repair in adult life. We summarize here the current knowledge about expression and function of Wt1 in heart development and disease and point out controversies to further stimulate additional research in the areas of cardiac development and pathophysiology. As re-activation of developmental programs is considered as paradigm for regeneration in response to injury, understanding of these processes and the molecules involved therein is essential for the development of therapeutic strategies, which we discuss on the example of WT1.
Collapse
|
5
|
Post-Surgical Peritoneal Scarring and Key Molecular Mechanisms. Biomolecules 2021; 11:biom11050692. [PMID: 34063089 PMCID: PMC8147932 DOI: 10.3390/biom11050692] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Post-surgical adhesions are internal scar tissue and a major health and economic burden. Adhesions affect and involve the peritoneal lining of the abdominal cavity, which consists of a continuous mesothelial covering of the cavity wall and majority of internal organs. Our understanding of the full pathophysiology of adhesion formation is limited by the fact that the mechanisms regulating normal serosal repair and regeneration of the mesothelial layer are still being elucidated. Emerging evidence suggests that mesothelial cells do not simply form a passive barrier but perform a wide range of important regulatory functions including maintaining a healthy peritoneal homeostasis as well as orchestrating events leading to normal repair or pathological outcomes following injury. Here, we summarise recent advances in our understanding of serosal repair and adhesion formation with an emphasis on molecular mechanisms and novel gene expression signatures associated with these processes. We discuss changes in mesothelial biomolecular marker expression during peritoneal development, which may help, in part, to explain findings in adults from lineage tracing studies using experimental adhesion models. Lastly, we highlight examples of where local tissue specialisation may determine a particular response of peritoneal cells to injury.
Collapse
|
6
|
Lahm T. Taking it to heart: dissecting cardiopulmonary interactions in diseases of the lung and the cardiovascular system. Am J Physiol Lung Cell Mol Physiol 2020; 319:L547-L549. [PMID: 32783622 PMCID: PMC7518052 DOI: 10.1152/ajplung.00373.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
7
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
8
|
Wojahn I, Lüdtke TH, Christoffels VM, Trowe MO, Kispert A. TBX2-positive cells represent a multi-potent mesenchymal progenitor pool in the developing lung. Respir Res 2019; 20:292. [PMID: 31870435 PMCID: PMC6929292 DOI: 10.1186/s12931-019-1264-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background In the embryonic mammalian lung, mesenchymal cells act both as a signaling center for epithelial proliferation, differentiation and morphogenesis as well as a source for a multitude of differentiated cell types that support the structure of the developing and mature organ. Whether the embryonic pulmonary mesenchyme is a homogenous precursor pool and how it diversifies into different cell lineages is poorly understood. We have previously shown that the T-box transcription factor gene Tbx2 is expressed in the pulmonary mesenchyme of the developing murine lung and is required therein to maintain branching morphogenesis. Methods We determined Tbx2/TBX2 expression in the developing murine lung by in situ hybridization and immunofluorescence analyses. We used a genetic lineage tracing approach with a Cre line under the control of endogenous Tbx2 control elements (Tbx2cre), and the R26mTmG reporter line to trace TBX2-positive cells in the murine lung. We determined the fate of the TBX2 lineage by co-immunofluorescence analysis of the GFP reporter and differentiation markers in normal murine lungs and in lungs lacking or overexpressing TBX2 in the pulmonary mesenchyme. Results We show that TBX2 is strongly expressed in mesenchymal progenitors in the developing murine lung. In differentiated smooth muscle cells and in fibroblasts, expression of TBX2 is still widespread but strongly reduced. In mesothelial and endothelial cells expression is more variable and scattered. All fetal smooth muscle cells, endothelial cells and fibroblasts derive from TBX2+ progenitors, whereas half of the mesothelial cells have a different descent. The fate of TBX2-expressing cells is not changed in Tbx2-deficient and in TBX2-constitutively overexpressing mice but the distribution and abundance of endothelial and smooth muscle cells is changed in the overexpression condition. Conclusion The fate of pulmonary mesenchymal progenitors is largely independent of TBX2. Nevertheless, a successive and precisely timed downregulation of TBX2 is necessary to allow proper differentiation and functionality of bronchial smooth muscle cells and to limit endothelial differentiation. Our work suggests expression of TBX2 in an early pulmonary mesenchymal progenitor and supports a role of TBX2 in maintaining the precursor state of these cells.
Collapse
Affiliation(s)
- Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
9
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
10
|
El Agha E. Embryonic mesothelium in motion: a systematic study. Am J Physiol Lung Cell Mol Physiol 2019; 316:L764-L766. [DOI: 10.1152/ajplung.00082.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Elie El Agha
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|