1
|
Jank M, Doktor F, Zani A, Keijzer R. Cellular origins and translational approaches to congenital diaphragmatic hernia. Semin Pediatr Surg 2024; 33:151444. [PMID: 38996507 DOI: 10.1016/j.sempedsurg.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a complex developmental abnormality characterized by abnormal lung development, a diaphragmatic defect and cardiac dysfunction. Despite significant advances in management of CDH, mortality and morbidity continue to be driven by pulmonary hypoplasia, pulmonary hypertension, and cardiac dysfunction. The etiology of CDH remains unknown, but CDH is presumed to be caused by a combination of genetic susceptibility and external/environmental factors. Current research employs multi-omics technologies to investigate the molecular profile and pathways inherent to CDH. The aim is to discover the underlying pathogenesis, new biomarkers and ultimately novel therapeutic targets. Stem cells and their cargo, non-coding RNAs and agents targeting inflammation and vascular remodeling have produced promising results in preclinical studies using animal models of CDH. Shortcomings in current therapies combined with an improved understanding of the pathogenesis in CDH have given rise to novel promising experimental treatments that are currently being evaluated in clinical trials. This review provides insight into current developments in translational research, ranging from the cellular origins of abnormal cardiopulmonary development in CDH and the identification of novel treatment targets in preclinical CDH models at the bench and their translation to clinical trials at the bedside.
Collapse
Affiliation(s)
- Marietta Jank
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Doktor
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Moore SS, Keller RL, Altit G. Congenital Diaphragmatic Hernia: Pulmonary Hypertension and Pulmonary Vascular Disease. Clin Perinatol 2024; 51:151-170. [PMID: 38325939 DOI: 10.1016/j.clp.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This review provides a comprehensive summary of the current understanding of pulmonary hypertension (PH) in congenital diaphragmatic hernia, outlining the underlying pathophysiologic mechanisms, methods for assessing PH severity, optimal management strategies, and prognostic implications.
Collapse
Affiliation(s)
- Shiran S Moore
- Neonatology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Weizamann 6, Tel-Aviv, Jaffa 6423906, Israel.
| | - Roberta L Keller
- Neonatology, UCSF Benioff Children's Hospital, 550 16th Street, #5517, San Francisco, CA 94158, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Gabriel Altit
- Neonatology, McGill University Health Centre, Montreal Children's Hospital, 1001 Décarie boulevard, Montreal, H4A Quebec; Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Pugnaloni F, Capolupo I, Patel N, Giliberti P, Dotta A, Bagolan P, Kipfmueller F. Role of microRNAs in Congenital Diaphragmatic Hernia-Associated Pulmonary Hypertension. Int J Mol Sci 2023; 24:ijms24076656. [PMID: 37047629 PMCID: PMC10095389 DOI: 10.3390/ijms24076656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Epigenetic regulators such as microRNAs (miRNAs) have a key role in modulating several gene expression pathways and have a role both in lung development and function. One of the main pathogenetic determinants in patients with congenital diaphragmatic hernia (CDH) is pulmonary hypertension (PH), which is directly related to smaller lung size and pulmonary microarchitecture alterations. The aim of this review is to highlight the importance of miRNAs in CDH-related PH and to summarize the results covering this topic in animal and human CDH studies. The focus on epigenetic modulators of CDH-PH offers the opportunity to develop innovative diagnostic tools and novel treatment modalities, and provides a great potential to increase researchers’ understanding of the pathophysiology of CDH.
Collapse
Affiliation(s)
- Flaminia Pugnaloni
- Neonatal Intensive Care Unit, Bambino Gesù Children Hospital, Instituti di Ricovero e Cura a Carattere Scietifico (IRCCS), 00165 Rome, Italy
| | - Irma Capolupo
- Neonatal Intensive Care Unit, Bambino Gesù Children Hospital, Instituti di Ricovero e Cura a Carattere Scietifico (IRCCS), 00165 Rome, Italy
| | - Neil Patel
- Department of Neonatology, The Royal Hospital for Children, Glasgow G51 4TF, UK
| | - Paola Giliberti
- Neonatal Intensive Care Unit, Bambino Gesù Children Hospital, Instituti di Ricovero e Cura a Carattere Scietifico (IRCCS), 00165 Rome, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Bambino Gesù Children Hospital, Instituti di Ricovero e Cura a Carattere Scietifico (IRCCS), 00165 Rome, Italy
| | - Pietro Bagolan
- Area of Fetal, Neonatal and Cardiological Sciences Children’s Hospital Bambino Gesù-Research Institute, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00165 Rome, Italy
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
4
|
Robertson JO, Erzurum SC, Asosingh K. Pathological Roles for Endothelial Colony-Forming Cells in Neonatal and Adult Lung Disease. Am J Respir Cell Mol Biol 2023; 68:13-22. [PMID: 36215049 PMCID: PMC9817912 DOI: 10.1165/rcmb.2022-0318ps] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are vascular resident and circulating endothelial cell subtypes with potent angiogenic capacity, a hierarchy of single-cell clonogenic potentials, and the ability to participate in de novo blood vessel formation and endothelial repair. Existing literature regarding ECFCs in neonatal and adult pulmonary diseases is confounded by the study of ambiguously defined "endothelial progenitor cells," which are often not true ECFCs. This review contrasts adult and fetal ECFCs, discusses the effect of prematurity on ECFCs, and examines their different pathological roles in neonatal and adult pulmonary diseases, such as bronchopulmonary dysplasia, congenital diaphragmatic hernia, pulmonary artery hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease. Therapeutic potential is also discussed in light of available preclinical data.
Collapse
Affiliation(s)
| | - Serpil C. Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
5
|
Beñaldo FA, Araya-Quijada C, Ebensperger G, Herrera EA, Reyes RV, Moraga FA, Riquelme A, Gónzalez-Candia A, Castillo-Galán S, Valenzuela GJ, Serón-Ferré M, Llanos AJ. Cinaciguat (BAY-582667) Modifies Cardiopulmonary and Systemic Circulation in Chronically Hypoxic and Pulmonary Hypertensive Neonatal Lambs in the Alto Andino. Front Physiol 2022; 13:864010. [PMID: 35733986 PMCID: PMC9207417 DOI: 10.3389/fphys.2022.864010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neonatal pulmonary hypertension (NPHT) is produced by sustained pulmonary vasoconstriction and increased vascular remodeling. Soluble guanylyl cyclase (sGC) participates in signaling pathways that induce vascular vasodilation and reduce vascular remodeling. However, when sGC is oxidized and/or loses its heme group, it does not respond to nitric oxide (NO), losing its vasodilating effects. sGC protein expression and function is reduced in hypertensive neonatal lambs. Currently, NPHT is treated with NO inhalation therapy; however, new treatments are needed for improved outcomes. We used Cinaciguat (BAY-582667), which activates oxidized and/or without heme group sGC in pulmonary hypertensive lambs studied at 3,600 m. Our study included 6 Cinaciguat-treated (35 ug kg−1 day−1x 7 days) and 6 Control neonates. We measured acute and chronic basal cardiovascular variables in pulmonary and systemic circulation, cardiovascular variables during a superimposed episode of acute hypoxia, remodeling of pulmonary arteries and changes in the right ventricle weight, vasoactive functions in small pulmonary arteries, and expression of NO-sGC-cGMP signaling pathway proteins involved in vasodilation. We observed a decrease in pulmonary arterial pressure and vascular resistance during the acute treatment. In contrast, the pulmonary pressure did not change in the chronic study due to increased cardiac output, resulting in lower pulmonary vascular resistance in the last 2 days of chronic study. The latter may have had a role in decreasing right ventricular hypertrophy, although the direct effect of Cinaciguat on the heart should also be considered. During acute hypoxia, the pulmonary vascular resistance remained low compared to the Control lambs. We observed a higher lung artery density, accompanied by reduced smooth muscle and adventitia layers in the pulmonary arteries. Additionally, vasodilator function was increased, and vasoconstrictor function was decreased, with modifications in the expression of proteins linked to pulmonary vasodilation, consistent with low pulmonary vascular resistance. In summary, Cinaciguat, an activator of sGC, induces cardiopulmonary modifications in chronically hypoxic and pulmonary hypertensive newborn lambs. Therefore, Cinaciguat is a potential therapeutic tool for reducing pulmonary vascular remodeling and/or right ventricular hypertrophy in pulmonary arterial hypertension syndrome.
Collapse
Affiliation(s)
- Felipe A. Beñaldo
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Araya-Quijada
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Roberto V. Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernando A. Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Alexander Riquelme
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Research and Innovation Center Biomedical (CIIB), Faculty of Medicine, University of Los Andes, Santiago, Chile
| | - Guillermo J. Valenzuela
- Department of Women’s Health, Arrowhead Regional Medical Center, San Bernardino, CA, United States
| | - María Serón-Ferré
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal J. Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
- *Correspondence: Aníbal J. Llanos,
| |
Collapse
|
6
|
Amodeo I, Borzani I, Raffaeli G, Persico N, Amelio GS, Gulden S, Colnaghi M, Villamor E, Mosca F, Cavallaro G. The role of magnetic resonance imaging in the diagnosis and prognostic evaluation of fetuses with congenital diaphragmatic hernia. Eur J Pediatr 2022; 181:3243-3257. [PMID: 35794403 PMCID: PMC9395465 DOI: 10.1007/s00431-022-04540-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
UNLABELLED In recent years, magnetic resonance imaging (MRI) has largely increased our knowledge and predictive accuracy of congenital diaphragmatic hernia (CDH) in the fetus. Thanks to its technical advantages, better anatomical definition, and superiority in fetal lung volume estimation, fetal MRI has been demonstrated to be superior to 2D and 3D ultrasound alone in CDH diagnosis and outcome prediction. This is of crucial importance for prenatal counseling, risk stratification, and decision-making approach. Furthermore, several quantitative and qualitative parameters can be evaluated simultaneously, which have been associated with survival, postnatal course severity, and long-term morbidity. CONCLUSION Fetal MRI will further strengthen its role in the near future, but it is necessary to reach a consensus on indications, methodology, and data interpretation. In addition, it is required data integration from different imaging modalities and clinical courses, especially for predicting postnatal pulmonary hypertension. This would lead to a comprehensive prognostic assessment. WHAT IS KNOWN • MRI plays a key role in evaluating the fetal lung in patients with CDH. • Prognostic assessment of CDH is challenging, and advanced imaging is crucial for a complete prenatal assessment and counseling. WHAT IS NEW • Fetal MRI has strengthened its role over ultrasound due to its technical advantages, better anatomical definition, superior fetal lung volume estimation, and outcome prediction. • Imaging and clinical data integration is the most desirable strategy and may provide new MRI applications and future research opportunities.
Collapse
Affiliation(s)
- Ilaria Amodeo
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Irene Borzani
- grid.414818.00000 0004 1757 8749Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Genny Raffaeli
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Nicola Persico
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy ,grid.414818.00000 0004 1757 8749Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Simeone Amelio
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Silvia Gulden
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Mariarosa Colnaghi
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Eduardo Villamor
- grid.412966.e0000 0004 0480 1382Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, University of Maastricht, MUMC+), Maastricht, the Netherlands
| | - Fabio Mosca
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122, Milan, Italy.
| |
Collapse
|
7
|
Edel GG, Schaaf G, Wijnen RMH, Tibboel D, Kardon G, Rottier RJ. Cellular Origin(s) of Congenital Diaphragmatic Hernia. Front Pediatr 2021; 9:804496. [PMID: 34917566 PMCID: PMC8669812 DOI: 10.3389/fped.2021.804496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a structural birth defect characterized by a diaphragmatic defect, lung hypoplasia and structural vascular defects. In spite of recent developments, the pathogenesis of CDH is still poorly understood. CDH is a complex congenital disorder with multifactorial etiology consisting of genetic, cellular and mechanical factors. This review explores the cellular origin of CDH pathogenesis in the diaphragm and lungs and describes recent developments in basic and translational CDH research.
Collapse
Affiliation(s)
- Gabriëla G. Edel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Rene M. H. Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Robbert J. Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
8
|
Amodeo I, De Nunzio G, Raffaeli G, Borzani I, Griggio A, Conte L, Macchini F, Condò V, Persico N, Fabietti I, Ghirardello S, Pierro M, Tafuri B, Como G, Cascio D, Colnaghi M, Mosca F, Cavallaro G. A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study. PLoS One 2021; 16:e0259724. [PMID: 34752491 PMCID: PMC8577746 DOI: 10.1371/journal.pone.0259724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. METHODS AND ANALYTICS Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. ETHICS AND DISSEMINATION This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. REGISTRATION The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
Collapse
Affiliation(s)
- Ilaria Amodeo
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio De Nunzio
- Department of Mathematics and Physics “E. De Giorgi”, Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy
- Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Università del Salento, Lecce, Italy
- Azienda Sanitaria Locale (ASL), Lecce, Italy
| | - Genny Raffaeli
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Irene Borzani
- Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Griggio
- Monza and Brianza Mother and Child Foundation, San Gerardo Hospital, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Luana Conte
- Department of Mathematics and Physics “E. De Giorgi”, Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy
- Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Università del Salento, Lecce, Italy
- Azienda Sanitaria Locale (ASL), Lecce, Italy
| | - Francesco Macchini
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Condò
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Persico
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Isabella Fabietti
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ghirardello
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Pierro
- NICU, Bufalini Hospital, Azienda Unità Sanitaria Locale della Romagna, Cesena, Italy
| | - Benedetta Tafuri
- Department of Mathematics and Physics “E. De Giorgi”, Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy
- Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Università del Salento, Lecce, Italy
- Azienda Sanitaria Locale (ASL), Lecce, Italy
| | - Giuseppe Como
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donato Cascio
- Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy
| | - Mariarosa Colnaghi
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Mosca
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Miura da Costa K, Fabro AT, Becari C, Figueira RL, Schmidt AF, Ruano R, Sbragia L. Honeymoon Period in Newborn Rats With CDH Is Associated With Changes in the VEGF Signaling Pathway. Front Pediatr 2021; 9:698217. [PMID: 34336744 PMCID: PMC8322230 DOI: 10.3389/fped.2021.698217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Patients with congenital diaphragmatic hernia (CDH) have a short postnatal period of ventilatory stability called the honeymoon period, after which changes in pulmonary vascular reactivity result in pulmonary hypertension. However, the mechanisms involved are still unknown. The aim of this study was to evaluate mechanical ventilation's effect in the honeymoon period on VEGF, VEGFR-1/2 and eNOS expression on experimental CDH in rats. Materials and Methods: Neonates whose mothers were not exposed to nitrofen formed the control groups (C) and neonates with left-sided defects formed the CDH groups (CDH). Both were subdivided into non-ventilated and ventilated for 30, 60, and 90 min (n = 7 each). The left lungs (n = 4) were evaluated by immunohistochemistry of the pulmonary vasculature (media wall thickness), VEGF, VEGFR-1/2 and eNOS. Western blotting (n = 3) was performed to quantify the expression of VEGF, VEGFR-1/2 and eNOS. Results: CDH had lower biometric parameters than C. Regarding the pulmonary vasculature, C showed a reduction in media wall thickness with ventilation, while CDH presented reduction with 30 min and an increase with the progression of the ventilatory time (honeymoon period). CDH and C groups showed different patterns of VEGF, VEGFR-1/2 and eNOS expressions. The receptors and eNOS findings were significant by immunohistochemistry but not by western blotting, while VEGF was significant by western blotting but not by immunohistochemistry. Conclusion: VEGF, its receptors and eNOS were altered in CDH after mechanical ventilation. These results suggest that the VEGF-NO pathway plays an important role in the honeymoon period of experimental CDH.
Collapse
Affiliation(s)
- Karina Miura da Costa
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rebeca Lopes Figueira
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Augusto F. Schmidt
- Division of Neonatology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Lourenço Sbragia
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
11
|
Monroe MN, Zhaorigetu S, Gupta VS, Jin D, Givan KD, Curylo AL, Olson SD, Cox CS, Segura A, Buja LM, Grande-Allen KJ, Harting MT. Extracellular vesicles influence the pulmonary arterial extracellular matrix in congenital diaphragmatic hernia. Pediatr Pulmonol 2020; 55:2402-2411. [PMID: 32568428 DOI: 10.1002/ppul.24914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Abnormal pulmonary vasculature directly affects the development and progression of congenital diaphragmatic hernia (CDH)-associated pulmonary hypertension (PH). Though overarching structural and cellular changes in CDH-affected pulmonary arteries have been documented, the precise role of the extracellular matrix (ECM) in the pulmonary artery (PA) pathophysiology remains undefined. Here, we quantify the structural, compositional, and mechanical CDH-induced changes in the main and distal PA ECM and investigate the efficacy of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) as a therapy to ameliorate pathological vascular ECM changes. METHODS Pregnant Sprague-Dawley rodents were administered nitrofen to induce CDH-affected pulmonary vasculature in the offspring. A portion of CDH-affected pups was treated with intravenous infusion of MSC-EVs (1 × 1010 /mL) upon birth. A suite of histological, mechanical, and transmission electron microscopic analyses were utilized to characterize the PA ECM. RESULTS The CDH model main PA presented significantly altered characteristics-including greater vessel thickness, greater lysyl oxidase (LOX) expression, and a relatively lower ultimate tensile strength of 13.6 MPa compared to control tissue (25.1 MPa), suggesting that CDH incurs ECM structural disorganization. MSC-EV treatment demonstrated the potential to reverse CDH-related changes, particularly through rapid inhibition of ECM remodeling enzymes (LOX and MMP-9). Additionally, MSC-EV treatment bolstered structural aspects of the PA ECM and mitigated pathological disorganization as exhibited by increased medial wall thickness and stiffness that, while not significantly altered, trends away from CDH-affected tissue. CONCLUSIONS These data demonstrate notable ECM remodeling in the CDH pulmonary vasculature, along with the capacity of MSC-EVs to attenuate pathological ECM remodeling, identifying MSC-EVs as a potentially efficacious therapeutic for CDH-associated pulmonary hypertension.
Collapse
Affiliation(s)
| | - Siqin Zhaorigetu
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, Houston, Texas
| | - Vikas S Gupta
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, Houston, Texas
| | - Di Jin
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, Houston, Texas
| | - Katelyn D Givan
- Department of Bioengineering, Rice University, Houston, Texas
| | | | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, Houston, Texas
| | - Ana Segura
- Department of Cardiovascular Pathology, Texas Heart Institute, Houston, Texas
| | | | | | - Matthew T Harting
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, Houston, Texas
| |
Collapse
|
12
|
Abstract
Congenital diaphragmatic hernia (CDH) is a neonatal pathology in which intrathoracic herniation of abdominal viscera via diaphragmatic defect results in aberrant pulmonary and cardiovascular development. Despite decades of study and many advances in the diagnosis and treatment of CDH, morbidity and mortality remain high, largely due to pulmonary hypertension (PH), along with pulmonary hypoplasia and cardiac dysfunction. In patients with CDH, hypoplastic pulmonary vasculature and alterations in multiple molecular pathways lead to pathophysiologic pulmonary vasculopathy and, for severe CDH, sustained, elevated pulmonary arterial pressures. This review addresses the multiple anatomic and physiologic changes that underlie CDH-associated PH (CDH-PH), along with the multimodal treatment strategies that exist currently and future therapies currently under investigation.
Collapse
Affiliation(s)
- Vikas S Gupta
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, TX 77030, USA
| | - Matthew T Harting
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling. Pediatr Res 2019; 85:754-768. [PMID: 30780153 DOI: 10.1038/s41390-019-0345-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is characterized by pulmonary hypoplasia and pulmonary hypertension (PHTN). PHTN secondary to CDH is a result of vascular remodeling, a structural alteration in the pulmonary vessel wall that occurs in the fetus. Factors involved in vascular remodeling have been reported in several studies, but their interactions remain unclear. To help understand PHTN pathophysiology and design novel preventative and treatment strategies, we have conducted a systematic review of the literature and comprehensively analyzed all factors and pathways involved in the pathogenesis of pulmonary vascular remodeling secondary to CDH in the nitrofen model. Moreover, we have linked the dysregulated factors with pathways involved in human CDH. Of the 358 full-text articles screened, 75 studies reported factors that play a critical role in vascular remodeling secondary to CDH. Overall, the impairment of epithelial homeostasis present in pulmonary hypoplasia results in altered signaling to endothelial cells, leading to endothelial dysfunction. This causes an impairment of the crosstalk between endothelial cells and pulmonary artery smooth muscle cells, resulting in increased smooth muscle cell proliferation, resistance to apoptosis, and vasoconstriction, which clinically translate into PHTN.
Collapse
Affiliation(s)
- Louise Montalva
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada. .,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
14
|
Perveen S, Ayasolla K, Zagloul N, Patel H, Ochani K, Orner D, Benveniste H, Salerno M, Vaska P, Zuo Z, Alabed Y, Nasim M, Miller EJ, Ahmed M. MIF inhibition enhances pulmonary angiogenesis and lung development in congenital diaphragmatic hernia. Pediatr Res 2019; 85:711-718. [PMID: 30759452 DOI: 10.1038/s41390-019-0335-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/31/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a complex birth anomaly with significant mortality and morbidity. Lung hypoplasia and persistent pulmonary hypertension (PPHN) limit survival in CDH. Macrophage migration inhibitory factor (MIF), a key regulator of innate immunity, is involved in hypoxia-induced vascular remodeling and PPHN. We hypothesized that antenatal inhibition of MIF in CDH fetuses, would reduce vascular remodeling, and improve angiogenesis and lung development. METHODS Pregnant rats were randomized into three groups: Control, nitrofen, and nitrofen + ISO-92. Lung volumes of pups were measured by CT scanning. Right ventricular systolic pressure (RVSP) and vascular wall thickness (VWT) were measured together with MIF concentration, angiogenesis markers, lung morphometry, and histology. RESULTS Prenatal treatment with ISO-92, an MIF inhibitor, improved normalization of static lung volume, lung volume-to-body weight ratio, decreased alveolar septal thickness, RVSP and VWT and improved radial alveolar count as compared to the non-treated group. Expression of MIF was unaffected by ISO-92; however, ISO-92 increased p-eNOS and VEGF activities and reduced arginase 1, 2 and Sflt-1. CONCLUSION Prenatal inhibition of MIF activity in CDH rat model improves angiogenesis and lung development. This selective intervention may be a future therapeutic strategy to reduce the morbidity and mortality of this devastating condition.
Collapse
Affiliation(s)
- Shahana Perveen
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Kamesh Ayasolla
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nahla Zagloul
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Hardik Patel
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Kanta Ochani
- Heart and Lung Research Unit, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Orner
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Salerno
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Paul Vaska
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Zhang Zuo
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Yousef Alabed
- Department of Medicinal Chemistry, Center for Molecular Innovation, Manhasset, NY, USA
| | - Mansoor Nasim
- Department of Pathology, Northwell Health, New Hyde Park, NY, USA
| | - Edmund J Miller
- Heart and Lung Research Unit, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mohamed Ahmed
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
15
|
Ahmed M, Miller E. Macrophage migration inhibitory factor (MIF) in the development and progression of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2018; 2018:14. [PMID: 30083544 PMCID: PMC6062764 DOI: 10.21542/gcsp.2018.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been described as a pro-inflammatory cytokine and regulator of neuro-endocrine function. It plays an important upstream role in the inflammatory cascade by promoting the release of other inflammatory cytokines such as TNF-alpha and IL-6, ultimately triggering a chronic inflammatory immune response. As lungs can synthesize and release MIF, many studies have investigated the potential role of MIF as a biomarker in assessment of patients with pulmonary arterial hypertension (PAH) and using anti-MIFs as a new therapeutic modality for PAH.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Neonatal-Perinatal Medicine, Pediatrics Department Cohen Children’s Hospital at New York, Northwell Health System
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
| | - Edmund Miller
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA
| |
Collapse
|
16
|
Zhaorigetu S, Bair H, Lu J, Jin D, Olson SD, Harting MT. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model. J Vasc Res 2017; 55:26-34. [DOI: 10.1159/000484087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/07/2017] [Indexed: 01/26/2023] Open
|
17
|
Abstract
The outcomes of patients diagnosed with congenital diaphragmatic hernia (CDH) have recently improved. However, mortality and morbidity remain high, and this is primarily caused by the abnormal lung development resulting in pulmonary hypoplasia and persistent pulmonary hypertension. The pathogenesis of CDH is poorly understood, despite the identification of certain candidate genes disrupting normal diaphragm and lung morphogenesis in animal models of CDH. Defects within the lung mesenchyme and interstitium contribute to disturbed distal lung development. Frequently, a disturbance in the development of the pleuroperitoneal folds (PPFs) leads to the incomplete formation of the diaphragm and subsequent herniation. Most candidate genes identified in animal models have so far revealed relatively few strong associations in human CDH cases. CDH is likely a highly polygenic disease, and future studies will need to reconcile how disturbances in the expression of multiple genes cause the disease. Herein, we summarize the available literature on abnormal lung development associated with CDH.
Collapse
Affiliation(s)
- Dustin Ameis
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Theme, The Children׳s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Naghmeh Khoshgoo
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Theme, The Children׳s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Theme, The Children׳s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Zhang HH, Lechuga TJ, Chen Y, Yang Y, Huang L, Chen DB. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS. Biol Reprod 2016; 94:114. [PMID: 27075618 PMCID: PMC4939742 DOI: 10.1095/biolreprod.116.139337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis.
Collapse
Affiliation(s)
- Hong-Hai Zhang
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Thomas J Lechuga
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Yuezhou Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Yingying Yang
- Department of Biophysics and Physiology, University of California, Irvine, California
| | - Lan Huang
- Department of Biophysics and Physiology, University of California, Irvine, California
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| |
Collapse
|
19
|
Fujinaga H, Fujinaga H, Watanabe N, Kato T, Tamano M, Terao M, Takada S, Ito Y, Umezawa A, Kuroda M. Cord blood-derived endothelial colony-forming cell function is disrupted in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1143-54. [PMID: 27130531 DOI: 10.1152/ajplung.00357.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/22/2016] [Indexed: 01/07/2023] Open
Abstract
Vascular growth is necessary for normal lung development. Although endothelial progenitor cells (EPCs) play an important role in vascularization, little is known about EPC function in congenital diaphragmatic hernia (CDH), a severe neonatal condition that is associated with pulmonary hypoplasia. We hypothesized that the function of endothelial colony-forming cells (ECFCs), a type of EPC, is impaired in CDH. Cord blood (CB) was collected from full-term CDH patients and healthy controls. We assessed CB progenitor cell populations as well as plasma vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1α (SDF1α) levels. CB ECFC clonogenicity; growth kinetics; migration; production of VEGF, SDF1α, and nitric oxide (NO); vasculogenic capacity; and mRNA expression of VEGF-A, fms-related tyrosine kinase 1 (FLT1), kinase insert domain receptor (KDR), nitric oxide synthase (NOS) 1-3, SDF1, and chemokine (C-X-C motif) receptor 4 (CXCR4) were also assessed. Compared with controls, CB ECFCs were decreased in CDH. CDH ECFCs had reduced potential for self-renewal, clonogenicity, proliferation, and migration. Their capacity for NO production was enhanced but their response to VEGF was blunted in CDH ECFCs. In vivo potential for de novo vasculogenesis was reduced in CDH ECFCs. There was no difference in CB plasma VEGF and SDF1α concentrations, VEGF and SDF1α production by ECFCs, and ECFC mRNA expression of VEGF-A, FLT1, KDR, NOS1-3, SDF1, and CXCR4 between CDH and control subjects. In conclusion, CB ECFC function is disrupted in CDH, but these changes may be caused by mechanisms other than alteration of VEGF-NO and SDF1-CXCR4 signaling.
Collapse
Affiliation(s)
- Hideshi Fujinaga
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan; Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan;
| | - Hiroko Fujinaga
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Institute for Child Health and Development, Tokyo, Japan; and
| | - Tomoko Kato
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Moe Tamano
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Yushi Ito
- Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
20
|
Vuckovic A, Herber-Jonat S, Flemmer AW, Strizek B, Engels AC, Jani JC. Antenatal BAY 41-2272 reduces pulmonary hypertension in the rabbit model of congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 310:L658-69. [PMID: 26873974 DOI: 10.1152/ajplung.00178.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/03/2016] [Indexed: 01/05/2023] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) fail to adapt at birth because of persistent pulmonary hypertension (PH), a condition characterized by excessive muscularization and abnormal vasoreactivity of pulmonary vessels. Activation of soluble guanylate cyclase by BAY 41-2272 prevents pulmonary vascular remodeling in neonatal rats with hypoxia-induced PH. By analogy, we hypothesized that prenatal administration of BAY 41-2272 would improve features of PH in the rabbit CDH model. Rabbit fetuses with surgically induced CDH at day 23 of gestation were randomized at day 28 for an intratracheal injection of BAY 41-2272 or vehicle. After term delivery (day 31), lung mechanics, right ventricular pressure, and serum NH2-terminal-pro-brain natriuretic peptide (NT-proBNP) levels were measured. After euthanasia, lungs were processed for biological or histological analyses. Compared with untouched fetuses, the surgical creation of CDH reduced the lung-to-body weight ratio, increased mean terminal bronchial density, and impaired lung mechanics. Typical characteristics of PH were found in the hypoplastic lungs, including increased right ventricular pressure, higher serum NT-proBNP levels, thickened adventitial and medial layers of pulmonary arteries, reduced capillary density, and lower levels of endothelial nitric oxide synthase. A single antenatal instillation of BAY 41-2272 reduced mean right ventricular pressure and medial thickness of small resistive arteries in CDH fetuses. Capillary density, endothelial cell proliferation, and transcripts of endothelial nitric oxide synthase increased, whereas airway morphometry, lung growth, and mechanics remained unchanged. These results suggest that pharmacological activation of soluble guanylate cyclase may provide a new approach to the prenatal treatment of PH associated with CDH.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Pathophysiology, Université Libre de Bruxelles, Brussels, Belgium;
| | - Susanne Herber-Jonat
- Division of Neonatology, Dr. von Hauner Children's Hospital, Perinatal Center Grosshadern, Ludwig-Maximilian-University, Munich, Germany; and
| | - Andreas W Flemmer
- Division of Neonatology, Dr. von Hauner Children's Hospital, Perinatal Center Grosshadern, Ludwig-Maximilian-University, Munich, Germany; and
| | - Brigitte Strizek
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander C Engels
- Division of Neonatology, Dr. von Hauner Children's Hospital, Perinatal Center Grosshadern, Ludwig-Maximilian-University, Munich, Germany; and
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
Hopper RK, Abman SH, Ivy DD. Persistent Challenges in Pediatric Pulmonary Hypertension. Chest 2016; 150:226-36. [PMID: 26836930 DOI: 10.1016/j.chest.2016.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/18/2023] Open
Abstract
Pulmonary hypertension and related pulmonary vascular diseases cause significant morbidities and high mortality and present many unique challenges toward improving outcomes in neonates, infants, and children. Differences between pediatric and adult disease are reflected in controversies regarding etiologies, classification, epidemiology, diagnostic evaluations, and therapeutic interventions. This brief review highlights several key topics reflecting recent advances in the field and identifies persistent gaps in our understanding of clinical pediatric pulmonary hypertension.
Collapse
Affiliation(s)
- Rachel K Hopper
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA.
| | - Steven H Abman
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - D Dunbar Ivy
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
22
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
23
|
Gallindo RM, Gonçalves FLL, Figueira RL, Pereira LAVD, Simões ALB, Schmidt AF, Sbragia L. Ventilation causes pulmonary vascular dilation and modulates the NOS and VEGF pathway on newborn rats with CDH. J Pediatr Surg 2015; 50:842-8. [PMID: 25783315 DOI: 10.1016/j.jpedsurg.2014.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND/PURPOSE Congenital diaphragmatic hernia (CDH) is a defect that presents high mortality because of pulmonary hypoplasia and hypertension. Mechanical ventilation changes signaling pathways, such as nitric oxide and VEGF in the pulmonary arterioles. We investigated the production of NOS2 and NOS3 and expression of VEGF and its receptors after ventilation in rat fetuses with CDH. METHODS CDH was induced by Nitrofen. The fetuses were divided into 6 groups: 1) control (C); 2) control ventilated (CV); 3) exposed to nitrofen (N-); 4) exposed to nitrofen ventilated (N-V), 5) CDH and 6) CDH ventilated (CDHV). Fetuses were harvested and ventilated. We assessed body weight (BW), total lung weight (TLW), TLW/BW ratio, the median pulmonary arteriolar wall thickness (MWT). We analyzed the expression of NOS2, NOS3, VEGF and its receptors by immunohistochemistry and Western blotting. RESULTS BW, TLW, and TLW/BW ratio were greater on C than on N- and CDH (p<0.05). The MWT was higher in CDH than in CDHV (p<0.001). CDHV showed increased expression of NOS3 (p<0.05) and VEGFR1 (p<0.05), but decreased expression of NOS2 (p<0.05) and VEGFR2 (p<0.001) compared to CDH. CONCLUSION Ventilation caused pulmonary vasodilation and changed the expression of NOS and VEGF receptors.
Collapse
Affiliation(s)
- Rodrigo Melo Gallindo
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Frances Lilian Lanhellas Gonçalves
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rebeca Lopes Figueira
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Ana Leda Bertoncini Simões
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Lourenço Sbragia
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Advances in neonatal care have improved the survival of extremely preterm infants. Chronic lung disease (CLD) is a common complication of prematurity, seen in about a third of preterm babies. Further, pulmonary hypertension complicates the hospital course in about 18% of preterm infants, and the incidence is much higher in infants with established CLD. There is increasing interest in studying this population and understanding the underlying pathobiology behind the development of pulmonary hypertension, which could lead to better identification of at-risk patients as well as improved management strategies and therapeutic targets. RECENT FINDINGS Acknowledgement of this growing population of infants with pulmonary hypertension has led to modifications in the current WHO classification of pulmonary hypertension and the establishment of a subcategory for developmental lung disease with pulmonary hypertension. A number of recent publications have evaluated the use of targeted therapies in this population; however, there is a need for large controlled studies, to study the long-term efficacy and safety of these medications. SUMMARY This review will discuss the pathobiology of CLD with pulmonary hypertension and enumerate the current diagnostic and treatment modalities used by experts in the field. It will also suggest a diagnosis and management algorithm for infants suspected to have pulmonary hypertension in the newborn unit.
Collapse
|
25
|
Altered pulmonary artery endothelial-smooth muscle cell interactions in experimental congenital diaphragmatic hernia. Pediatr Res 2015; 77:511-9. [PMID: 25580737 PMCID: PMC4363155 DOI: 10.1038/pr.2015.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/19/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) secondary to vascular remodeling contributes to poor outcomes in congenital diaphragmatic hernia (CDH), however mechanisms responsible are unknown. We hypothesized that pulmonary artery endothelial cell (PAEC) dysfunction contributes to smooth muscle cell (SMC) hyperplasia in experimental CDH. METHODS PAEC and SMC were isolated from fetal sheep with experimental CDH and controls. SMC growth was assessed alone and with SOD plus catalase and during coculture with control or CDH PAEC with and without ET-1 siRNA transfection. ET-1 protein was measured in PAEC and SMC lysates and supernatant. ROS production was measured in normal and CDH PAECs with and without ET-1 siRNA. PAEC growth and tube formation were measured with SOD plus catalase. RESULTS CDH SMC growth was decreased and increased with coculture with CDH PAEC more than control PAEC. Treatment of CDH PAEC with SOD plus catalase or ET-1 siRNA prevented the increase in SMC growth seen with coculture. ET-1 protein was increased in CDH PAEC and SMC. ROS production was increased in CDH PAEC and decreased with ET-1 SiRNA. SOD plus catalase restored CDH PAEC growth and tube formation. CONCLUSION PAEC dysfunction in experimental CDH increases SMC proliferation via ET-1 induced ROS production by PAEC.
Collapse
|
26
|
Acker SN, Mandell EW, Sims-Lucas S, Gien J, Abman SH, Galambos C. Histologic identification of prominent intrapulmonary anastomotic vessels in severe congenital diaphragmatic hernia. J Pediatr 2015; 166:178-83. [PMID: 25306189 PMCID: PMC4274215 DOI: 10.1016/j.jpeds.2014.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/30/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine whether prominent intrapulmonary anastomotic vessels (IPAVs) or bronchopulmonary "shunt" vessels can be identified in lungs from infants with fatal congenital diaphragmatic hernia (CDH). STUDY DESIGN We performed histology with immunostaining for CD31 (endothelium) and D2-40 (lymphatics), along with high-precision 3-dimensional (3D) reconstruction on lung tissue from 9 patients who died with CDH. RESULTS Each patient with CDH required mechanical ventilation, cardiotonic support, and pulmonary hypertension (PH)-targeted drug therapy. All patients were diagnosed with severe PH by echocardiography, and 5 received extracorporeal membrane oxygenation therapy. Death occurred at a median age of 24 days (range, 10-150 days) from refractory hypoxemia with severe PH, pneumonia, or tension pneumothorax. Histology showed decreased alveolarization with pulmonary vascular disease. In each patient, prominent IPAVs were identified as engorged, thin-walled vessels that connected pulmonary veins with microvessels surrounding pulmonary arteries and airways in lungs ipsilateral and contralateral to the CDH. Prominent anastomoses between pulmonary arteries and bronchial arteries were noted as well. The 3D reconstruction studies demonstrated that IPAVs connect pulmonary vasculature to systemic (bronchial) vessels both at the arterial and venous side. CONCLUSION Histology and 3D reconstruction identified prominent bronchopulmonary vascular anastamoses in the lungs of infants who died with severe CDH. We speculate that IPAVs connecting pulmonary and bronchial arteries contribute to refractory hypoxemia in severe CDH.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/metabolism
- Arteriovenous Fistula/diagnosis
- Arteriovenous Fistula/metabolism
- Female
- Hernias, Diaphragmatic, Congenital/diagnosis
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/mortality
- Humans
- Hypertension, Pulmonary/diagnosis
- Infant
- Infant, Newborn
- Lung/blood supply
- Male
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Pulmonary Artery/abnormalities
- Pulmonary Artery/pathology
- Pulmonary Veins/abnormalities
- Pulmonary Veins/pathology
Collapse
Affiliation(s)
- Shannon N Acker
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO; Pediatric Heart-Lung Center, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO.
| | - Erica W Mandell
- Pediatric Heart-Lung Center, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO; Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jason Gien
- Pediatric Heart-Lung Center, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO; Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Steven H Abman
- Pediatric Heart-Lung Center, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO; Section of Pulmonary Medicine, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Csaba Galambos
- Pediatric Heart-Lung Center, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO; Section of Pathology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
27
|
Effect of corticosteroids and lung ventilation in the VEGF and NO pathways in congenital diaphragmatic hernia in rats. Pediatr Surg Int 2014; 30:1207-15. [PMID: 25316436 DOI: 10.1007/s00383-014-3610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The use of dexamethasone (Dx) stimulates growth, fetal lung maturation and can improve pulmonary hypertension in congenital diaphragmatic hernia (CDH). Our aim was to evaluate the effect of Dx on the lung after fetal pulmonary ventilation in the CDH rat model. METHODS Some groups underwent prenatal treatment with dexamethasone (0.4 mg/kg) that was given at 18.5 gestational day (GD). Sprague-Dawley rat fetuses were divided into groups: control (C); ventilated control (CV); control exposed to dexamethasone (CDx); ventilated control exposed to dexamethasone (CVDx); congenital diaphragmatic hernia (CDH), ventilated CDH (CDHV), CDH exposed to dexamethasone (CDHDx) and ventilated CDH exposed to dexamethasone (CDHVDx). At 21.5 GD fetuses were delivered by C-section, weighed and ventilated for 30 min. We analyzed the lung morphometry by Masson's Trichrome stain, and VEGF, VEGFR1, VEGFR2 and NOS3 expression by immunohistochemistry. RESULTS All fetuses with CDH, with or without prenatal dexamethasone showed lung and body weight lower than control fetuses (p < 0.05). All groups that received dexamethasone showed a decrease in the medial muscular layer of arterioles, the internal diameter of the air spaces (Lma) and length of parenchymal transection/airspace ratio (p < 0.05). In the immunohistochemistry, VEGF decreased more in CDHDV group (p < 0.05). VEGFR1 showed no difference, whereas VEGFR2 decreased significantly in the CDHDV group (p < 0.05). NOS3 increased in the group CDHDV (p < 0.05). CONCLUSION The use of prenatal dexamethasone added to ventilation alters the VEGF and NO pathways.
Collapse
|
28
|
Pierro M, Thébaud B. Understanding and treating pulmonary hypertension in congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2014; 19:357-63. [PMID: 25456753 DOI: 10.1016/j.siny.2014.09.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung hypoplasia and pulmonary hypertension are classical features of congenital diaphragmatic hernia (CDH) and represent the main determinants of survival. The mechanisms leading to pulmonary hypertension in this malformation are still poorly understood, but may combine altered vasoreactivity, pulmonary artery remodeling, and a hypoplastic pulmonary vascular bed. Efforts have been directed at correcting the "reversible" component of pulmonary hypertension of CDH. However, pulmonary hypertension in CDH is often refractory to pulmonary vasodilators. A new emerging pattern of late (months after birth) and chronic (months to years after birth) pulmonary hypertension are described in CDH survivors. The true incidence and implications for outcome and management need to be confirmed by follow-up studies from referral centers with high patient output. In order to develop more efficient strategies to treat pulmonary hypertension and improve survival in most severe cases, the ultimate therapeutic goal would be to promote lung and vascular growth.
Collapse
Affiliation(s)
- M Pierro
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| | - B Thébaud
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Abman SH, Baker C, Gien J, Mourani P, Galambos C. The Robyn Barst Memorial Lecture: Differences between the fetal, newborn, and adult pulmonary circulations: relevance for age-specific therapies (2013 Grover Conference series). Pulm Circ 2014; 4:424-40. [PMID: 25621156 PMCID: PMC4278602 DOI: 10.1086/677371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) contributes to poor outcomes in diverse diseases in newborns, infants, and children. Many aspects of pediatric PAH parallel the pathophysiology and disease courses observed in adult patients; however, critical maturational differences exist that contribute to distinct outcomes and therapeutic responses in children. In comparison with adult PAH, disruption of lung vascular growth and development, or angiogenesis, plays an especially prominent role in the pathobiology of pediatric PAH. In children, abnormalities of lung vascular development have consequences well beyond the adverse hemodynamic effects of PAH alone. The developing endothelium also plays critical roles in development of the distal airspace, establishing lung surface area for gas exchange and maintenance of lung structure throughout postnatal life through angiocrine signaling. Impaired functional and structural adaptations of the pulmonary circulation during the transition from fetal to postnatal life contribute significantly to poor outcomes in such disorders as persistent pulmonary hypertension of the newborn, congenital diaphragmatic hernia, bronchopulmonary dysplasia, Down syndrome, and forms of congenital heart disease. In addition, several studies support the hypothesis that early perinatal events that alter lung vascular growth or function may set the stage for increased susceptibility to PAH in adult patients ("fetal programming"). Thus, insights into basic mechanisms underlying unique features of the developing pulmonary circulation, especially as related to preservation of endothelial survival and function, may provide unique therapeutic windows and distinct strategies to improve short- and long-term outcomes of children with PAH.
Collapse
Affiliation(s)
- Steven H. Abman
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Christopher Baker
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Jason Gien
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Peter Mourani
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Csaba Galambos
- Department of Pathology, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|