1
|
Breslin JW, Yuan SY. Determination of Solute Permeability of Microvascular Endothelial Cell Monolayers In Vitro. Methods Mol Biol 2024; 2711:1-12. [PMID: 37776444 PMCID: PMC10928851 DOI: 10.1007/978-1-0716-3429-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The microvascular endothelium has a critical role in regulating the delivery of oxygen, nutrients, and water to the surrounding tissues. Under inflammatory conditions that accompany acute injury or disease, microvascular permeability becomes elevated. When microvascular hyperpermeability becomes uncontrolled or chronic, the excessive escape of plasma proteins into the surrounding tissue disrupts homeostasis and ultimately leads to organ dysfunction. Much remains to be learned about the mechanisms that control microvascular permeability. In addition to in vivo and isolated microvessel methods, the cultured endothelial cell monolayer protocol is an important tool that allows for understanding the specific, endothelial subcellular mechanisms that determine permeability of the endothelium to plasma proteins. In this chapter, two variations of the popular Transwell culture methodology to determine permeability to using fluorescently labeled tracers are presented. The strengths and weaknesses of this approach are also discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
3
|
Sirt3 Maintains Microvascular Endothelial Adherens Junction Integrity to Alleviate Sepsis-Induced Lung Inflammation by Modulating the Interaction of VE-Cadherin and β-Catenin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8978795. [PMID: 34630854 PMCID: PMC8500765 DOI: 10.1155/2021/8978795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
Inflammatory injury is a hallmark of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). However, the mechanisms underlying inflammatory injury remain obscure. Here, we developed the novel strategy to suppress lung inflammation through maintaining microvascular endothelial barrier integrity. VE-cadherin is the main adherens junction protein that interacts with β-catenin and forms a complex. We found that lung inflammation was accompanied by decreased VE-cadherin expression and increased β-catenin activity in animal models and human pulmonary microvascular endothelial cells (HPMECs), illuminating the relationship among VE-cadherin/β-catenin complex, microvascular endothelial barrier integrity, and inflammation. Furthermore, we showed that the VE-cadherin/β-catenin complex dissociated upon lung inflammation, while Sirt3 promoted the stability of such a complex. Sirt3 was decreased during lung inflammation in vivo and in vitro. Sirt3 deficiency not only led to the downregulation of VE-cadherin but also enhanced the transcriptional activity of β-catenin that further increased β-catenin target gene MMP-7 expression, thereby promoting inflammatory factor COX-2 expression. Sirt3 overexpression promoted VE-cadherin expression, inhibited β-catenin transcriptional activity, strengthened the stability of the VE-cadherin/β-catenin complex, and suppressed inflammation in HPMECs. Notably, Sirt3 deficiency significantly damaged microvascular endothelial barrier integrity and intensified lung inflammation in animal model. These results demonstrated the role of Sirt3 in modulating microvascular endothelial barrier integrity to inhibit inflammation. Therefore, strategies that aim at enhancing the stability of endothelial VE-cadherin/β-catenin complex are potentially beneficial for preventing sepsis-induced lung inflammation.
Collapse
|
4
|
Alves NG, Trujillo AN, Breslin JW, Yuan SY. Sphingosine-1-Phosphate Reduces Hemorrhagic Shock and Resuscitation-Induced Microvascular Leakage by Protecting Endothelial Mitochondrial Integrity. Shock 2020; 52:423-433. [PMID: 30339634 DOI: 10.1097/shk.0000000000001280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive microvascular permeability is a serious complication following hemorrhagic shock and resuscitation (HSR). S1P has been shown to ameliorate microvascular leakage in a model of combined alcohol intoxication and HSR. In the current study, we tested the hypothesis that S1P reduces HSR-induced microvascular leakage by preserving endothelial cell junctional structure and the endothelial glycocalyx through the protection of mitochondrial function. We used an established in vivo rat model of conscious HSR and assessed microvascular leakage, endothelial glycocalyx integrity, and mitochondrial function by intravital microscopy. Junctional integrity in the mesenteric microcirculation was assessed by confocal microscopy. Cultured rat intestinal microvascular endothelial cells monolayers were used to test the ability of S1P to protect against glycocalyx shedding and endothelial barrier dysfunction caused by direct disruption of mitochondrial integrity due to inhibition of mitochondrial complex III. The results show that in vivo, S1P protects against HSR-induced hyperpermeability, preserves the expression of adherens junctional proteins, and protects against glycocalyx degradation. S1P treatment during HSR also protects against mitochondrial membrane depolarization. S1P also protects against mitochondrial dysfunction-induced endothelial barrier dysfunction and glycocalyx degradation by acting through mitochondrial complex III. Taken together, our data indicate that S1P protects against HSR-induced mitochondrial dysfunction in endothelial cells, which in turn improves the structure of the endothelial glycocalyx after HSR and allows for better junctional integrity to the prevention of excess microvascular permeability.
Collapse
Affiliation(s)
- Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | | |
Collapse
|
5
|
Endothelial Protrusions in Junctional Integrity and Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:93-140. [PMID: 30360784 DOI: 10.1016/bs.ctm.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelial cells of the microcirculation form a semi-permeable diffusion barrier between the blood and tissues. This permeability of the endothelium, particularly in the capillaries and postcapillary venules, is a normal physiological function needed for blood-tissue exchange in the microcirculation. During inflammation, microvascular permeability increases dramatically and can lead to tissue edema, which in turn can lead to dysfunction of tissues and organs. The molecular mechanisms that control the barrier function of endothelial cells have been under investigation for several decades and remain an important topic due to the potential for discovery of novel therapeutic strategies to reduce edema. This review highlights current knowledge of the cellular and molecular mechanisms that lead to endothelial hyperpermeability during inflammatory conditions associated with injury and disease. This includes a discussion of recent findings demonstrating temporal protrusions by endothelial cells that may contribute to intercellular junction integrity between endothelial cells and affect the diffusion distance for solutes via the paracellular pathway.
Collapse
|
6
|
Beard RS, Yang X, Meegan JE, Overstreet JW, Yang CG, Elliott JA, Reynolds JJ, Cha BJ, Pivetti CD, Mitchell DA, Wu MH, Deschenes RJ, Yuan SY. Palmitoyl acyltransferase DHHC21 mediates endothelial dysfunction in systemic inflammatory response syndrome. Nat Commun 2016; 7:12823. [PMID: 27653213 PMCID: PMC5036164 DOI: 10.1038/ncomms12823] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction is a hallmark of systemic inflammatory response underlying multiple organ failure. Here we report a novel function of DHHC-containing palmitoyl acyltransferases (PATs) in mediating endothelial inflammation. Pharmacological inhibition of PATs attenuates barrier leakage and leucocyte adhesion induced by endothelial junction hyperpermeability and ICAM-1 expression during inflammation. Among 11 DHHCs detected in vascular endothelium, DHHC21 is required for barrier response. Mice with DHHC21 function deficiency (Zdhhc21dep/dep) exhibit marked resistance to injury, characterized by reduced plasma leakage, decreased leucocyte adhesion and ameliorated lung pathology, culminating in improved survival. Endothelial cells from Zdhhc21dep/dep display blunted barrier dysfunction and leucocyte adhesion, whereas leucocytes from these mice did not show altered adhesiveness. Furthermore, inflammation enhances PLCβ1 palmitoylation and signalling activity, effects significantly reduced in Zdhhc21dep/dep and rescued by DHHC21 overexpression. Likewise, overexpression of wild-type, not mutant, PLCβ1 augments barrier dysfunction. Altogether, these data suggest the involvement of DHHC21-mediated PLCβ1 palmitoylation in endothelial inflammation.
Collapse
Affiliation(s)
- Richard S. Beard
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Jonathan W. Overstreet
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Clement G.Y. Yang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - John A. Elliott
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Jason J. Reynolds
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Byeong J. Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Christopher D. Pivetti
- Department of Surgery, School of Medicine, University of California at Davis, Sacramento, California 95817, USA
| | - David A. Mitchell
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Mack H. Wu
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
- James A. Haley Veterans' Hospital, Tampa, Florida 33612, USA
| | - Robert J. Deschenes
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| |
Collapse
|
7
|
Wiggins-Dohlvik K, Oakley RP, Han MS, Stagg HW, Alluri H, Shaji CA, Davis ML, Tharakan B. Tissue inhibitor of metalloproteinase-2 inhibits burn-induced derangements and hyperpermeability in microvascular endothelial cells. Am J Surg 2016; 211:197-205. [DOI: 10.1016/j.amjsurg.2015.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/29/2015] [Accepted: 08/08/2015] [Indexed: 02/06/2023]
|
8
|
Role of src-suppressed C kinase substrate in rat pulmonary microvascular endothelial hyperpermeability stimulated by inflammatory cytokines. Inflamm Res 2010; 59:949-58. [PMID: 20454828 DOI: 10.1007/s00011-010-0207-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 04/04/2010] [Accepted: 04/21/2010] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The aim of the study was to investigate the role of src-suppressed C kinase substrate (SSeCKS) in the modulation of rat pulmonary microvascular endothelial cells (RPMVEC) permeability elicited by interleukin (IL)-1β and tumor necrosis factor (TNF)-α. METHODS The gene expression of SSeCKS was analyzed by reverse transcription-polymerase chain reaction. Immunoblotting was used to determine the SSeCKS protein expression and the activation of the protein kinase C (PKC) signaling pathway. A RPMVEC monolayer was constructed to determine changes of transendothelial electrical resistance (TER) and FITC-dextran flux (P (d)) across the monolayer. SSeCKS-specific small interfering RNA was transfected into RPMVEC. RESULTS IL-1β and TNF-α activated the PKC signaling pathway in RPMVEC, and up-regulated the gene and protein expression of SSeCKS. Depletion of endogenous SSeCKS in RPMVEC significantly attenuated cytokine-induced decrease in TER and increase in P (d), but not to the basal levels. PKC inhibitors also significantly decreased cytokine-induced hyperpermeability and SSeCKS expression. CONCLUSIONS SSeCKS is involved in the endothelial hyperpermeability induced by IL-1β and TNF-α in inflammatory process.
Collapse
|
9
|
You QH, Sun GY, Wang N, Shen JL, Wang Y. Interleukin-17F-induced pulmonary microvascular endothelial monolayer hyperpermeability via the protein kinase C pathway. J Surg Res 2009; 162:110-21. [PMID: 19577259 DOI: 10.1016/j.jss.2009.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/06/2009] [Accepted: 01/13/2009] [Indexed: 01/05/2023]
Abstract
BACKGROUND Interleukin (IL)-17F is involved in lung inflammation, but the effect of IL-17F on endothelial permeability and its signaling pathway remain ill-defined. The current study sought to investigate the effect of IL-17F on endothelium and assess the role of protein kinase C (PKC) and src-suppressed C kinase substrate (SSeCKS) in this process. METHODS Rat pulmonary microvascular endothelial monolayers were constructed to determine changes of permeability as measured by means of FITC-dextran and Hank's solution flux across monolayers and transendothelial electrical resistance with or without IL-17F and PKC inhibitors. Additional monolayers were stained using FITC-phalloidin for filamentous actin (F-actin). The gene expression of SSeCKS was analyzed by the reverse transcription-polymerase chains. Alterations of SSeCKS protein were investigated by immunoblotting and immunoprecipitation. RESULTS IL-17F increased endothelial monolayer permeability in a dose- and time-dependent manner. F-actin staining revealed that permeability changes were accompanied by reorganization of cytoskeleton. In the presence of PKC inhibitors, the IL-17F-induced hyperpermeability and reorganization of F-actin were attenuated. The gene and protein expression of SSeCKS were conspicuously elevated after IL-17F challenge. The process of SSeCKS phosphorylation followed a time course that mirrored the time course of hyperpermeability induced by IL-17F. IL-17F-induced SSeCKS phosphorylation was abrogated after PKC inhibitors pretreatment. The translocation of SSeCKS from the cytosol to the membrane and a significant increase in the SSeCKS association with the cytoskeleton were found after IL-17F treatment. CONCLUSIONS IL-17F is an important mediator of increased endothelial permeability. PKC and SSeCKS are integral signaling components essential for IL-17F-induced hyperpermeability.
Collapse
Affiliation(s)
- Qing-hai You
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | | | | | | | | |
Collapse
|
10
|
Uddin MN, McLean LB, Hunter FA, Horvat D, Severson J, Tharakan B, Childs EW, Puschett JB. Vascular leak in a rat model of preeclampsia. Am J Nephrol 2009; 30:26-33. [PMID: 19194101 DOI: 10.1159/000193220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Preeclampsia is a hypertensive disorder which develops de novo in women during pregnancy. The urinary excretion of the cardiotonic steroid, marinobufagenin (MBG), is increased prior to the development of hypertension. Preeclamptic patients are volume expanded but much of the excess salt and water appears to be located primarily in the interstitial space. Therefore, 'capillary leak' syndrome has been postulated in this disorder. METHODS We evaluated the vascular leakage in normal rats following MBG injection and in a rat model of human preeclampsia. We measured the changes in light intensity comparing that in the intravascular to the extravascular space by assessing 'leak' of fluorescein-labeled albumin (FITC-albumin) from mesenteric postcapillary venules. RESULTS FITC-albumin extravasation continued to increase in a time-dependent fashion after MBG infusion and was significant (p < 0.05) at 60 min of observation when compared to sham rats. We also observed a significant difference in 'vascular leakage' in preeclamptic rats compared to control non-pregnant and normal pregnant groups starting at 20 min after the FITC-albumin infusion. CONCLUSION We propose that MBG is involved in the production of a 'vascular leak' in our rat model of preeclampsia.
Collapse
Affiliation(s)
- Mohammad N Uddin
- Division of Nephrology and Hypertension, Department of Medicine, Texas A&M Health Science Center/Scott & White, Temple, Tex., USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhao Z, Li Q, Hu J, Li Z, Liu J, Liu A, Deng P, Zhang L, Gong X, Zhao K, Zhang S, Jiang Y. Lactosyl derivatives function in a rat model of severe burn shock by acting as antagonists against CD11b of integrin on leukocytes. Glycoconj J 2008; 26:173-88. [PMID: 19020974 DOI: 10.1007/s10719-008-9174-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/24/2008] [Accepted: 07/28/2008] [Indexed: 12/31/2022]
Abstract
Severe burn shock remains an unsolved clinical problem with urgent needs to explore novel therapeutic approaches. In this study, the in vivo bioactivity of a series of synthetic lactosyl derivatives (oligosaccharides) was assessed on rats with burn shock to elucidate the underlying mechanisms. Administration of An-2 and Gu-4, two lactosyl derivatives with di- and tetravalent beta-D: -galactopyranosyl-(1-4)-beta-D: -glucopyranosyl ligands, significantly prolonged the survival time (P < 0.05 vs. saline), stabilized blood pressure and ameliorated the injuries to vital organs after burn. Flow chamber assay displayed that An-2 and Gu-4 markedly decreased the adhesion of leukocytes to microvessel endothelial cells. Competitive binding assay showed that a CD11b antibody significantly interrupted the interaction of An-2 and Gu-4 with leukocytes from rats with burn shock. With fluorescent microscopy, we further found that the oligosaccharides were selectively bound to leukocytes and with a colocalization of CD11b on the cell membrane. Interestingly, the lectin domain-deficient form of CD11b failed to bind with An-2 and Gu-4. The results suggest that both An-2 and Gu-4 significantly inhibit the adhesion of leukocytes to endothelial cells by binding to CD11b and thereby exert protective effects on severe burn shock.
Collapse
Affiliation(s)
- Zhihui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Breslin JW, Wu MH, Guo M, Reynoso R, Yuan SY. Toll-like receptor 4 contributes to microvascular inflammation and barrier dysfunction in thermal injury. Shock 2008; 29:349-55. [PMID: 17704733 DOI: 10.1097/shk.0b013e3181454975] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Systemic and microvascular inflammation plays a key role in the development of multiple organ failure after infection, sepsis, and traumatic injury. Toll-like receptors (TLRs) regulate host responses to pathogens and sterile, injury-associated inflammatory responses. We investigated whether TLR-4 contributes to microvascular dysfunction during thermal injury in vivo in anesthetized wild-type or TLR-4 (-/-) mice receiving either a 25% total body surface area full-thickness scald burn or sham treatment on the dorsal skin. Using intravital microscopy, we assessed the hemodynamics and leukocyte dynamics in the mesenteric microvasculature as representative of the splanchnic microcirculation at a site remote from the burn wound. The transvascular flux of fluorescein isothiocyanate-albumin across mesenteric venules was measured as an indicator of microvascular permeability. Furthermore, cultured microvascular endothelial cell models were used to evaluate the endothelial-specific mechanisms involved in TLR-4-mediated barrier dysfunction. The results showed significantly elevated microvascular permeability in wild-type mice after burn, whereas this response was markedly attenuated in TLR-4 (-/-) mice. Burn injury also increased leukocyte adhesion in mesenteric venules of wild-type mice, and a blunted leukocyte response was seen in the TLR-4 mice. Treatment of endothelial cell monolayers with burn plasma induced a rapid reduction in the transendothelial electrical resistance measured by electric cell-substrate impedance sensing, indicative of endothelial cell-cell adhesive barrier dysfunction. Reducing expression of TLR-4 with siRNA treatment attenuated this response. Taken together, these data indicate that TLR-4 plays an important role in microvascular leakage and leukocyte adhesion under the inflammatory condition associated with nonseptic thermal injury.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Surgery Division of Research, University of California Davis School of Medicine, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|
13
|
Gaudreault N, Perrin RM, Guo M, Clanton CP, Wu MH, Yuan SY. Counter regulatory effects of PKCbetaII and PKCdelta on coronary endothelial permeability. Arterioscler Thromb Vasc Biol 2008; 28:1527-33. [PMID: 18497307 DOI: 10.1161/atvbaha.108.166975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to examine the endothelial distribution and activity of selected PKC isoforms in coronary vessels with respect to their functional impact on endothelial permeability under the experimental conditions relevant to diabetes. METHODS AND RESULTS En face immunohistochemistry demonstrated a significant increase of PKC(betaII) and decrease of PKCdelta expression in coronary arterial endothelium of Zucker diabetic rats. To test whether changes in PKC expression alter endothelial barrier properties, we measured the transcellular electric resistance in human coronary microvascular endothelial monolayers and found that either PKC(betaII) overexpression or PKCdelta inhibition disrupted the cell-cell adhesive barrier. Three-dimensional fluorescence microscopy revealed that hyperpermeability was caused by altered PKC activity in association with distinct translocation of PKC(betaII) to the cell-cell junction and PKCdelta localization to the cytosol. Further analyses in fractionated endothelial lysates confirmed the differential redistribution of these isozymes. Additionally, FRET analysis of PKC subcellular dynamics demonstrated a high PKC(betaII) activity at the cell surface and junction, whereas PKCdelta activity is concentrated in intracellular membrane organelles. CONCLUSIONS Taken together, these data suggest that PKC(betaII) and PKCdelta counter-regulate coronary endothelial barrier properties by targeting distinctive subcellular sites. Imbalanced PKC(betaII)/PKCdelta expression and activity may contribute to endothelial hyperpermeability and coronary dysfunction in diabetes.
Collapse
Affiliation(s)
- Nathalie Gaudreault
- Department of Surgery, University of California Davis School of Medicine, 4625 2nd Avenue, Room 3006, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bird MD, Kovacs EJ. Organ-specific inflammation following acute ethanol and burn injury. J Leukoc Biol 2008; 84:607-13. [PMID: 18362209 DOI: 10.1189/jlb.1107766] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clinical and experimental evidence demonstrates that ethanol exposure prior to injury alters local and systemic inflammatory responses, increasing morbidity and mortality. Moreover, the aberrant inflammatory responses can directly and indirectly lead to the poor prognosis after injury by altering leukocyte infiltration into the wound site and remote organs and by suppressing immunity leading to increased susceptibility to opportunistic infections. Recent studies from our laboratory have focused on inflammatory responses at the wound site and in other distal organs after exposure to acute ethanol and burn injury. This combined insult leads to increased mortality after dermal or intratracheal pseudomonas infection, relative to infected mice given ethanol or burn injury alone. The increased mortality in mice given ethanol and burn injury parallels elevated serum levels of proinflammatory cytokines, IL-6 and TNF-alpha, marked infiltration of leukocytes into the lung and gut, as well as immunosuppression at the sites of infection. Bacterial translocation from the gut is likely to be responsible, in part, for the aberrant accumulation of leukocytes in the lungs of ethanol-exposed, burn-injured mice. Additionally, other factors, such as expression of adhesion molecules, increased chemokine production, and leakiness of the vascular endothelium, may also be involved.
Collapse
Affiliation(s)
- Melanie D Bird
- Department of Surgery, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
15
|
Tinsley JH, Hunter FA, Childs EW. PKC and MLCK-dependent, cytokine-induced rat coronary endothelial dysfunction. J Surg Res 2008; 152:76-83. [PMID: 18621396 DOI: 10.1016/j.jss.2008.02.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/22/2008] [Accepted: 02/11/2008] [Indexed: 01/01/2023]
Abstract
BACKGROUND Heart disease is one of the leading causes of death in the United States, killing nearly one million people every year. Inflammatory mediators or cytokines are released following myocardial infarction and ischemia/reperfusion injury. These cytokines, of which interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha (TNF-alpha) are among the most important, propagate the activation of a multitude of signaling pathways, such as the protein kinase C (PKC) and myosin light chain kinase (MLCK) pathways, which lead to deleterious changes in the structure and function of the coronary microvascular endothelium. METHODS The effects of cytokines on rat heart microvascular endothelial cell monolayer integrity, PKC activity, and adherens junction protein alteration were examined. Further, an in vivo rat coronary ischemia/reperfusion injury model was used to determine vascular leakage and TNF-alpha release. RESULTS Administration of the above mentioned cytokines to cell monolayers resulted in significant increases in PKC activation, gap formation, and hyperpermeability across the monolayer and beta-catenin phosphorylation/reorganization. Inhibition of conventional PKC and MLCK attenuated permeability increases. Ischemia/reperfusion injury to the left ventricle resulted in TNF-alpha release as well as conventional PKC- and MLCK-dependent protein extravasation from the circulation to the heart tissue. CONCLUSION These results identify the conventional PKC and MLCK pathways as important factors in coronary endothelial dysfunction elicited by IR injury and cytokine release. Further examination of these molecular signaling cascades has the potential of identifying targets for therapeutic intervention following ischemic events in the heart.
Collapse
Affiliation(s)
- John H Tinsley
- Department of Internal Medicine, Scott and White Hospital, Temple, Texas 76504, USA.
| | | | | |
Collapse
|
16
|
Guo M, Breslin JW, Wu MH, Gottardi CJ, Yuan SY. VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am J Physiol Cell Physiol 2008; 294:C977-84. [PMID: 18287330 DOI: 10.1152/ajpcell.90607.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-catenin plays an important role in the regulation of vascular endothelial cell-cell adhesions and barrier function by linking the VE-cadherin junction complex to the cytoskeleton. The purpose of this study was to evaluate the effect of beta-catenin and VE-cadherin interactions on endothelial permeability during inflammatory stimulation by histamine. We first assessed the ability of a beta-catenin binding polypeptide known as inhibitor of beta-catenin and T cell factor (ICAT) to compete beta-catenin binding to VE-cadherin in vitro. We then overexpressed recombinant FLAG-ICAT in human umbilical vein endothelial cells (HUVECs) to study its impact on endothelial barrier function controlled by cell-cell adhesions. The binding of beta-catenin to VE-cadherin was quantified before and after stimulation with histamine along with measurements of transendothelial electrical resistance (TER) and apparent permeability to albumin (P(a)) under the same conditions. The results showed that ICAT bound to beta-catenin and competitively inhibited binding of the VE-cadherin cytoplasmic domain to beta-catenin in a concentration-dependent manner. Overexpression of FLAG-ICAT in endothelial cell monolayers did not affect their basal permeability properties, as indicated by unaltered TER and P(a); however, the magnitude and duration of histamine-induced decreases in TER were significantly augmented. Likewise, the increase in P(a) in the presence of histamine was exacerbated. Overexpression of FLAG-ICAT also significantly decreased the level of beta-catenin-associated VE-cadherin following histamine stimulation. Taken together, these data suggest that inflammatory agents like histamine cause a transient and reversible disruption of binding between beta-catenin and VE-cadherin, during which endothelial permeability is elevated.
Collapse
Affiliation(s)
- Mingzhang Guo
- Department of Surgery, University of California-Davis School of Medicine, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
17
|
Phillips BE, Cancel L, Tarbell JM, Antonetti DA. Occludin independently regulates permeability under hydrostatic pressure and cell division in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2008; 49:2568-76. [PMID: 18263810 DOI: 10.1167/iovs.07-1204] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. METHODS Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was confirmed by Western blot, confocal microscopy, and RT-PCR. Paracellular permeability of cell monolayers to fluorescently labeled 70 kDa dextran, 10 kDa dextran, and 467 Da tetramethylrhodamine (TAMRA) was examined under diffusive conditions or after the application of 10 cm H2O transmural pressure. Cell division rates were determined by tritiated thymidine incorporation and Ki67 immunoreactivity. Cell cycle inhibitors were used to determine whether changes in cell division affected permeability. RESULTS Occludin depletion increased diffusive paracellular permeability to 467 Da TAMRA by 15%, and permeability under hydrostatic pressure was increased 50% compared with control. Conversely, depletion of occludin protein with siRNA did not alter diffusive permeability to 70 kDa and 10 kDa RITC-dextran, and permeability to 70 kDa dextran was twofold lower in occludin-depleted cells under hydrostatic pressure conditions. Occludin depletion also increased thymidine incorporation by 90% and Ki67-positive cells by 50%. Finally, cell cycle inhibitors did not alter the effect of occludin siRNA on paracellular permeability. CONCLUSIONS The data suggest that occludin regulates tight junction permeability in response to changes in hydrostatic pressure. Furthermore, these data suggest that occludin also contributes to the control of cell division, demonstrating a novel function for this tight junction protein.
Collapse
Affiliation(s)
- Brett E Phillips
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | |
Collapse
|
18
|
Broman MT, Mehta D, Malik AB. Cdc42 regulates the restoration of endothelial adherens junctions and permeability. Trends Cardiovasc Med 2007; 17:151-6. [PMID: 17574122 DOI: 10.1016/j.tcm.2007.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/20/2007] [Indexed: 11/23/2022]
Abstract
The endothelial adherens junction (AJ) complex consisting of VE-cadherin and its associated catenins is a major determinant of fluid, solute, and plasma protein permeability of the vessel wall endothelial barrier. Impairment of endothelial barrier function contributes to cardiovascular diseases such as vascular inflammation and atherosclerosis. Adherens junctions disassemble in response to proinflammatory mediators, producing an increase in endothelial permeability; however, AJs also have the capacity to reassemble, leading to restoration of endothelial barrier function. Activation of Cdc42, a member of the Rho family of monomeric GTPases, is an essential signal regulating reannealing of AJs and reversal of the increase in endothelial permeability. The possibility of activating Cdc42 therapeutically represents a novel approach to prevent inflammatory diseases resulting from breakdown of the endothelial barrier. This review summarizes recent findings concerning the role of Cdc42 in restoring endothelial barrier integrity.
Collapse
Affiliation(s)
- Michael T Broman
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
19
|
Kargozaran H, Yuan SY, Breslin JW, Watson KD, Gaudreault N, Breen A, Wu MH. A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier. Clin Exp Metastasis 2007; 24:495-502. [PMID: 17653824 DOI: 10.1007/s10585-007-9086-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 07/03/2007] [Indexed: 11/25/2022]
Abstract
Invasive cancer cells utilize matrix metalloproteinases (MMPs) to degrade the extracellular matrix and basement membrane in the process of metastasis. Among multiple members of the MMP family, the gelatinase MMP-2 has been implicated in the development and dissemination of malignancies. However, the cellular source of MMP-2 and its effect on metastatic extravasation have not been well characterized. The objective of this study was to test the hypothesis that active MMP-2 derived from endothelial cells facilitated the transmigration of breast cancer cells across the microvascular barrier. Gelatin zymography was used to assess latent and active MMP-2 production in conditioned media from MDA-MB-231 human breast cancer cells, human lung microvascular endothelial cells (HLMVEC) and co-culture of these two cells. Transmigrated cancer cells were measured during MMP-2 knockdown with siRNA and pharmacological inhibition of MMP activity with OA-HY. The results showed consistent MMP-2 secretion by the HLMVECs, whereas a low level production was seen in the MDA-MB-231 cells. Inhibition of MMP-2 expression or activity in HLMVECs significantly attenuated the transmigration of MDA-MB-231 cells across an endothelial monolayer barrier grown on a reconstituted basement membrane. The data provide evidence supporting a potential role for the endothelial production of MMPs in promoting cancer cell extravasation. We suggest that the interaction between malignant cells and peritumoral benign tissues including the vascular endothelium may serve as an important mechanism in the regulation of tumor invasion and metastasis.
Collapse
Affiliation(s)
- Hamed Kargozaran
- Department of Surgery, Division of Research, University of California Davis School of Medicine, 4625 2nd Avenue, Room 3006, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|