1
|
Wang S, Wang M, Yu X, Cao C, Ding Y, Lv M, Liu Y, Chu M, Fang K, Liao Z, Yue S. Nonlinear relationship between vitamin D status on admission and bronchopulmonary dysplasia in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03621-6. [PMID: 39379632 DOI: 10.1038/s41390-024-03621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND This research will explore non-linear relationship between vitamin D status on admission and bronchopulmonary dysplasia (BPD) in preterm infants. METHODS Data were retrospectively collected on preterm infants ≤32 weeks gestation and ≥28 weeks gestation hospitalized in our hospital between Jan. 2019 and Jul. 2022, which were classified into BPD and non-BPD groups according to BPD diagnostic criteria. Independent influences between the two groups were staged using comparison of differences between groups, univariate analysis, multivariate analysis, smoothed curve fitting, and threshold effect staging. RESULTS 255 preterm infants were enrolled in this research, including 135 males and 120 females, with a mean gestational age of 30.59 ± 0.86 weeks. Vitamin D status on admission was an independent protective factor for BPD in preterm infants, with a 6% reduction in the probability of BPD for every 1 ng/ml increase in vitamin D status on admission (p = 0.036). There was also a non-linear relationship, with each 1 ng/ml increase in vitamin D status on admission being associated with an 87% reduction in the incidence of BPD when vitamin D status was <12.82 ng/ml (p = 0.010). CONCLUSION Vitamin D status on admission and BPD are non-linearly in preterm infants at 28-32 weeks gestation. IMPACT STATEMENT Analyzing the relationship between vitamin D status on admission and BPD. A nonlinear relationship and turning point between vitamin D status on admission and BPD was derived by curve fitting and threshold effect. We provide a new reference point for vitamin D supplementation for the prevention of neonatal BPD and to avoid ineffective overmedication.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mingjie Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohe Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chuanding Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Ding
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mei Lv
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Meiyan Chu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Keren Fang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhengchang Liao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Yu H, Li D, Zhao X, Fu J. Fetal origin of bronchopulmonary dysplasia: contribution of intrauterine inflammation. Mol Med 2024; 30:135. [PMID: 39227783 PMCID: PMC11373297 DOI: 10.1186/s10020-024-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in infants and the most frequent adverse outcome of premature birth, despite major efforts to minimize injury. It is thought to result from aberrant repair response triggered by either prenatal or recurrent postnatal injury to the lungs during development. Intrauterine inflammation is an important risk factor for prenatal lung injury, which is also increasingly linked to BPD. However, the specific mechanisms remain unclear. This review summarizes clinical and animal research linking intrauterine inflammation to BPD. We assess how intrauterine inflammation affects lung alveolarization and vascular development. In addition, we discuss prenatal therapeutic strategies targeting intrauterine inflammation to prevent or treat BPD.
Collapse
Affiliation(s)
- Haoting Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
3
|
Cho H, Lee Y, Oh S, Heo JS. Risk factors and outcomes of vitamin D deficiency in very preterm infants. Pediatr Neonatol 2024:S1875-9572(24)00073-1. [PMID: 38769030 DOI: 10.1016/j.pedneo.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Vitamin D is essential for bone health and immune system. Vitamin D deficiency (VDD) poses a high-risk to very preterm (VP) infants. This study aimed to evaluate the risk factors associated with VDD in VP infants and its potential clinical outcomes. METHODS A retrospective cohort study was conducted on VP infants admitted to the neonatal intensive care unit of a specialized tertiary hospital in Seoul, Republic of Korea, between January 2018 and June 2022. Serum 25-hydroxyvitamin D (25(OH)D) levels and other biochemical parameters were measured between 4 and 6 weeks of age. VDD was defined as a serum 25(OH)D level <20 ng/mL. Prenatal and postnatal risk factors and clinical outcomes were compared between the VDD and non-VDD groups. RESULTS Of the 82 VP infants analyzed, 27 (32.9%) were diagnosed with VDD. The VDD group exhibited a significantly longer duration of parenteral nutrition (PN) compared to the non-VDD group (adjusted odds ratio [OR] = 1.12; 95% confidence interval [CI]: 1.008-1.245). Breast milk intake was lower in the VDD group than in the non-VDD group (adjusted OR = 0.976, 95% CI, 0.955-0.999). Notably, calcium levels were significantly lower in the VDD group, while parathyroid hormone levels were significantly higher, compared with the non-VDD group. Additionally, the rickets severity score was higher in the VDD group than in the non-VDD, although the difference was not statistically significant. CONCLUSIONS Prolonged PN duration and low breast milk intake significantly increased the risk of VDD in VP infants.
Collapse
Affiliation(s)
- Hannah Cho
- Department of Pediatrics, Korea University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yoon Lee
- Department of Pediatrics, Korea University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Saelin Oh
- Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Ju Sun Heo
- Department of Pediatrics, Korea University Anam Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kwon HJ. Knockdown of vitamin D receptor affects early stages of pectoral fin development in zebrafish. Anat Histol Embryol 2024; 53:e13044. [PMID: 38695121 DOI: 10.1111/ahe.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
The vitamin D receptor (VDR) signalling has been implicated in vertebrate limb or fin formation. However, the involvement of VDR signalling in the early stages of limb/fin development remains to be elucidated. In this study, the role of VDR signalling in pectoral fin development was investigated in zebrafish embryos. Knockdown of vdr induced the severe impairment of pectoral fin development. The zebrafish larvae lacking vdr exhibited reduced pectoral fins with no skeletal elements. In situ hybridization revealed depletion of vdr downregulated fibroblast growth factor 24 (fgf24), a marker of early pectoral fin bud mesenchyme, in the presumptive fin field even before fin buds were visible. Moreover, a perturbed expression pattern of bone morphogenetic protein 4 (bmp4), a marker of the pectoral fin fold, was observed in the developing fin buds of zebrafish embryos that lost the vdr function. These findings suggest that VDR signalling is crucial in the early stages of fin development, potentially influencing the process by regulating other signalling molecules such as Fgf24 and Bmp4.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- University of Utah Asia Campus, Incheon, South Korea
| |
Collapse
|
5
|
Byun SY, Bae MH, Lee NR, Han YM, Park KH. Association between vitamin D deficiency at one month of age and bronchopulmonary dysplasia. Medicine (Baltimore) 2021; 100:e27966. [PMID: 35049200 PMCID: PMC9191292 DOI: 10.1097/md.0000000000027966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022] Open
Abstract
Vitamin D deficiency is common and increases the likelihood of neonatal morbidities in preterm infants. This study assessed vitamin D levels at 1 month of age after 4 weeks of vitamin D supplementation and determined the association between vitamin D levels and neonatal morbidities.This retrospective study included preterm infants with birth weight <1500 g or gestational age <32 weeks born in our hospital between January 2018 and December 2019. They were administered 400 IU of oral vitamin D supplementation after birth according to our policy. The infants were then divided into sufficient (≥20 ng/mL) and deficient (<20 ng/mL) groups according to their serum vitamin D levels at 1 month of age.The vitamin D deficient and sufficient groups included 49 and 41 patients, respectively. The mean gestational age and birth weight. GHT in the vitamin D deficient group were 29.1 ± 2.1 weeks and 1216.1 ± 308.1 g, respectively, and 30.0 ± 1.7 weeks and 1387.6 ± 350.8 g, respectively, in the sufficient group. No significant differences were observed between the 2 groups in demographic and clinical outcomes except for bronchopulmonary dysplasia (BPD), which occurred significantly more often in the vitamin D-deficient group (odds ratio 2.21; 95% confidence interval, 1.85-2.78; P = .02).The results of our study suggest that vitamin D deficiency at 1 month of age is associated with BPD in preterm infants.
Collapse
Affiliation(s)
- Shin Yun Byun
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Mi Hye Bae
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Na Rae Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Young Mi Han
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Kyung Hee Park
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
6
|
Abuelhamd WA, Gomaa NAS, Gad A, El-Wakeel R. Potential role of vitamin D receptor-related polymorphisms in bronchopulmonary dysplasia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The potential contribution of vitamin D and its receptor (VDR) to bronchopulmonary dysplasia (BPD) in preterm neonates is still unknown. The objective of the study was to test the relationship between VDR Taq 1 and Fok 1 gene polymorphisms and BPD in preterm neonates. VDR Fok 1 and Taq 1 gene polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.
Result
No statistically significant differences of genotypic distributions and allele frequencies of Fok 1 and Taq 1 VDR polymorphisms were detected between cases and controls. Moreover, no risk association was detected between both polymorphisms and BPD development in preterm neonates. Homozygous mutant (ff) genotype was the least frequent genotype among BPD and non-BPD groups (2.6%, 13.0% respectively) (p = 0.1). The same was detected for the mutant (CC) genotype frequency in both groups (10.5% and 15.2%, respectively). However, Taq 1 VDR polymorphism was significantly associated with the severity of BPD, as the genotypes with mutant allele C (CC +CT) were more frequent among severe cases (52.2%).
Conclusion
Fok 1and Taq 1 VDR polymorphisms have no role in BPD development in preterm neonates. However, the presence of a mutant allele of Taq 1 VDR polymorphism may be associated with a more severe form of the disease.
Collapse
|
7
|
Gayan‐Ramirez G, Janssens W. Vitamin D Actions: The Lung Is a Major Target for Vitamin D, FGF23, and Klotho. JBMR Plus 2021; 5:e10569. [PMID: 34950829 PMCID: PMC8674778 DOI: 10.1002/jbm4.10569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is well known for its role as a calcium regulator and in maintenance of phosphate homeostasis in musculoskeletal health, and fibroblast growth factor 23 (FGF23) and its coreceptor α-klotho are known for their roles as regulators of serum phosphate levels. However, apart from these classical actions, recent data point out a relevant role of vitamin D and FGF23/klotho in lung health. The expression of the vitamin D receptor by different cell types in the lung and the fact that those cells respond to vitamin D or can locally produce vitamin D indicate that the lung represents a target for vitamin D actions. Similarly, the presence of the four FGF receptor isoforms in the lung and the ability of FGF23 to stimulate pulmonary cells support the concept that the lung is a target for FGF23 actions, whereas the contribution of klotho is still undetermined. This review will give an overview on how vitamin D or FGF23/klotho may act on the lung and interfere positively or negatively with lung health. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ghislaine Gayan‐Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETAKU LeuvenLeuvenBelgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETAKU LeuvenLeuvenBelgium
- Clinical Department of Respiratory DiseasesUZ LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Wang Y, Jiang L. Role of vitamin D-vitamin D receptor signaling on hyperoxia-induced bronchopulmonary dysplasia in neonatal rats. Pediatr Pulmonol 2021; 56:2335-2344. [PMID: 33878208 DOI: 10.1002/ppul.25418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Vitamin D exerts therapeutic effects on bronchopulmonary dysplasia (BPD), but its underlying mechanisms remain unclear. The present study was designed to investigate the effects of vitamin D on hyperoxia-induced BPD and elucidate the underlying mechanisms. METHODS Neonatal rats were exposed to either room air (control) or 75% O2 (hyperoxia) and intraperitoneally injected with vitamin D3. After 14 days, a histopathological examination was performed in the lungs of rats. Serum 25-hydroxyvitamin D (25OHD) was measured by liquid chromatography-tandom mass spectrometry (LC-MS)/MS. Interleukin 1 beta (IL-1β) and interferon gamma (IFN-γ) were measured by specific enzyme-linked immunosorbent assays. The messenger RNA and protein levels of vitamin D receptor (VDR), vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), and hypoxia-inducible factor 1α (HIF-1α) were determined by real-time quantitative reverse transcription polymerase chain reaction and immunoblot analysis, respectively. RESULTS Treatment with vitamin D3 increased serum 25OHD and upregulated VDR in lung tissues with or without hyperoxia. In addition, treatment with vitamin D3 attenuated alveolar simplification, increased VEGF and VEGFR2, and protected alveolar simplification induced by hyperoxia. Furthermore, treatment with vitamin D3 resulted in a decrease of IL-1β and IFN-γ and an increase of HIF-1α in lung tissues under hyperoxia conditions. CONCLUSION Vitamin D exerts protective effects on hyperoxia-induced BPD in neonatal rats by regulating vitamin D-VDR signaling pathways.
Collapse
Affiliation(s)
- Yuchun Wang
- Department of Pediatrics, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Neonatology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lian Jiang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Adams LE, Moss HG, Lowe DW, Brown T, Wiest DB, Hollis BW, Singh I, Jenkins DD. NAC and Vitamin D Restore CNS Glutathione in Endotoxin-Sensitized Neonatal Hypoxic-Ischemic Rats. Antioxidants (Basel) 2021; 10:489. [PMID: 33804757 PMCID: PMC8003885 DOI: 10.3390/antiox10030489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Therapeutic hypothermia does not improve outcomes in neonatal hypoxia ischemia (HI) complicated by perinatal infection, due to well-described, pre-existing oxidative stress and neuroinflammation that shorten the therapeutic window. For effective neuroprotection post-injury, we must first define and then target CNS metabolomic changes immediately after endotoxin-sensitized HI (LPS-HI). We hypothesized that LPS-HI would acutely deplete reduced glutathione (GSH), indicating overwhelming oxidative stress in spite of hypothermia treatment in neonatal rats. Post-natal day 7 rats were randomized to sham ligation, or severe LPS-HI (0.5 mg/kg 4 h before right carotid artery ligation, 90 min 8% O2), followed by hypothermia alone or with N-acetylcysteine (25 mg/kg) and vitamin D (1,25(OH)2D3, 0.05 μg/kg) (NVD). We quantified in vivo CNS metabolites by serial 7T MR Spectroscopy before, immediately after LPS-HI, and after treatment, along with terminal plasma drug concentrations. GSH was significantly decreased in all LPS-HI rats compared with baseline and sham controls. Two hours of hypothermia alone did not improve GSH and allowed glutamate + glutamine (GLX) to increase. Within 1 h of administration, NVD increased GSH close to baseline and suppressed GLX. The combination of NVD with hypothermia rapidly improved cellular redox status after LPS-HI, potentially inhibiting important secondary injury cascades and allowing more time for hypothermic neuroprotection.
Collapse
Affiliation(s)
- Lauren E. Adams
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| | - Hunter G. Moss
- Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, 68 President St. Room 205, Charleston, SC 29425, USA; (H.G.M.); (T.B.)
| | - Danielle W. Lowe
- Department of Psychiatry, Medical University of South Carolina, 67 Presidents St., MSC 861, Charleston, SC 29425, USA;
| | - Truman Brown
- Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, 68 President St. Room 205, Charleston, SC 29425, USA; (H.G.M.); (T.B.)
| | - Donald B. Wiest
- Department of Pharmacy and Clinical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Bruce W. Hollis
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| | - Inderjit Singh
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| | - Dorothea D. Jenkins
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| |
Collapse
|
10
|
Mandell EW, Ryan S, Seedorf GJ, Gonzalez T, Smith BJ, Fleet JC, Abman SH. Maternal Vitamin D Deficiency Causes Sustained Impairment of Lung Structure and Function and Increases Susceptibility to Hyperoxia-induced Lung Injury in Infant Rats. Am J Respir Cell Mol Biol 2020; 63:79-91. [PMID: 32135073 DOI: 10.1165/rcmb.2019-0295oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency (VDD) during pregnancy is associated with increased respiratory morbidities and risk for chronic lung disease after preterm birth. However, the direct effects of maternal VDD on perinatal lung structure and function and whether maternal VDD increases the susceptibility of lung injury due to hyperoxia are uncertain. In the present study, we sought to determine whether maternal VDD is sufficient to impair lung structure and function and whether VDD increases the impact of hyperoxia on the developing rat lung. Four-week-old rats were fed VDD chow and housed in a room shielded from ultraviolet A/B light to achieve 25-hydroxyvitamin D concentrations <10 ng/ml at mating and throughout lactation. Lung structure was assessed at 2 weeks for radial alveolar count, mean linear intercept, pulmonary vessel density, and lung function (lung compliance and resistance). The effects of hyperoxia for 2 weeks after birth were assessed after exposure to fraction of inspired oxygen of 0.95. At 2 weeks, VDD offspring had decreased alveolar and vascular growth and abnormal airway reactivity and lung function. Impaired lung structure and function in VDD offspring were similar to those observed in control rats exposed to postnatal hyperoxia alone. Maternal VDD causes sustained abnormalities of distal lung growth, increases in airway hyperreactivity, and abnormal lung mechanics during infancy. These changes in VDD pups were as severe as those measured after exposure to postnatal hyperoxia alone. We speculate that antenatal disruption of vitamin D signaling increases the risk for late-childhood respiratory disease.
Collapse
Affiliation(s)
| | - Sharon Ryan
- Pediatric Heart Lung Center.,Section of Neonatology, and
| | - Gregory J Seedorf
- Pediatric Heart Lung Center.,Section of Pulmonary Medicine, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Tania Gonzalez
- Pediatric Heart Lung Center.,Section of Neonatology, and
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering and Applied Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
| | - James C Fleet
- Department of Foods and Nutrition, and.,Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana
| | - Steven H Abman
- Pediatric Heart Lung Center.,Section of Pulmonary Medicine, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
11
|
Park HW, Lim G, Park YM, Chang M, Son JS, Lee R. Association between vitamin D level and bronchopulmonary dysplasia: A systematic review and meta-analysis. PLoS One 2020; 15:e0235332. [PMID: 32628705 PMCID: PMC7337306 DOI: 10.1371/journal.pone.0235332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Neonatal vitamin D deficiency is common and is associated with development of pulmonary disease in children and adults. While the role of vitamin D in normal lung development is well established, the association between vitamin D deficiency and bronchopulmonary dysplasia (BPD) remains unclear. The present meta-analysis was conducted to evaluate the relationship between vitamin D and BPD. We identified relevant studies (n = 8) using the PubMed, EMBASE, Cochrane Library, and KoreaMed databases and applied the Newcastle–Ottawa Scale to assess the methodological components of each study, and used I2 statistic to evaluate heterogeneity. Comprehensive Meta-Analysis software version 3.3 was used for the statistical analysis. A total of 909 infants were included, of whom 251 (27.6%) were diagnosed with BPD. We found that both vitamin D deficiency at birth (four studies; OR 2.405; 95% CI 1.269 to 4.560; p = 0.007) and low levels of vitamin D at birth (four studies; standardized mean difference -1.463; 95% CI -2.900 to -0.027; p = 0.046) were associated with BPD. The compiled data suggest that antenatal vitamin D deficiency and low vitamin D levels are associated with neonatal BPD.
Collapse
Affiliation(s)
- Hye Won Park
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Gina Lim
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yong-Mean Park
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Misoo Chang
- Research Coordinating Center, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jae Sung Son
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ran Lee
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Mandell E, Ryan S, Seedorf GJ, Gonzalez T, Abman SH, Fleet JC. Maternal vitamin D deficiency induces transcriptomic changes in newborn rat lungs. J Steroid Biochem Mol Biol 2020; 199:105613. [PMID: 32007564 DOI: 10.1016/j.jsbmb.2020.105613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/14/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
Vitamin D deficiency (VDD) during pregnancy is common and related to several maternal and fetal morbidities. Vitamin D (VD) plays a role in normal lung development and VDD causes abnormal airway, alveolar, and vascular growth in newborn rats. Here we use an unbiased transcriptomic approach to identify pathways altered in the lungs of offspring from VDD dams. The lungs of newborn offspring from VD replete and VDD dams were removed and RNA from these samples were analyzed using Affymetrix microarrays. Data were RMA normalized, differential gene expression was determined using Significance Analysis of Microarrays (5 % FDR) and pathway enrichment analysis was assessed. There were 2233 differentially expressed transcripts between the VDD and control lungs (1889 up, 344 down). Consistent with the suppression of lung growth in the VDD group, there were significant suppression of signal transduction pathways related to vascular biology and anabolic signaling pathways, e.g. the insulin-like growth factor-1 receptor (IGF-1R), fibroblast growth factor (FGF), cell cycle control. A major, enriched functional category was upregulation of pathways related to the innate immune system, including pathways for granulocyte and macrophage development, chemotaxis, and activation of cytokine signaling through Jak/Stat (e.g. resulting in higher IL1 α and β). We conclude that VDD during fetal development alters multiple pathways beyond the predicted angiogeneic alterations. These changes either contribute to, or reflect, the abnormal airway, alveolar, and vascular growth seen in the neonatal lung resulting from maternal VDD. The pattern also suggests abnormal lung development caused by maternal VDD creates a proinflammatory milieu that could contribute to the suppression of lung growth and development.
Collapse
Affiliation(s)
- Erica Mandell
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA.
| | - Sharon Ryan
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - Gregory J Seedorf
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - Tania Gonzalez
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University Center for Cancer Research, West Lafayette, IN USA
| |
Collapse
|
13
|
Wang P, Tan ZX, Fu L, Fan YJ, Luo B, Zhang ZH, Xu S, Chen YH, Zhao H, Xu DX. Gestational vitamin D deficiency impairs fetal lung development through suppressing type II pneumocyte differentiation. Reprod Toxicol 2020; 94:40-47. [PMID: 32330513 DOI: 10.1016/j.reprotox.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Gestational vitamin D deficiency is associated with pulmonary diseases. This study aimed to investigate the effect of gestational vitamin D deficiency on fetal lung development in mice. Absolute and relative weights of fetal lungs were reduced in vitamin D deficient (VDD) group. Incrassate mesenchyme, measured by septal wall thickness, accompanied by lessened saccular space, was shown in VDD group. Numerous immature type II pneumocytes, as determined by PAS staining, were observed in VDD group. Moreover, increased Ki67-positive cells, a marker of cell proliferation, was detected in VDD group. The additional experiments showed that Sftpa, Sftpb, Sftpc and Sftpd, four surfactant genes, were downregulated and pro-surfactant protein B was reduced in VDD group. FoxA1, FoxA2 and TTF-1, three transcription factors that regulate surfactant genes, and VEGF, a key regulator for pulmonary maturation, were downregulated in VDD group. These results suggest that gestational vitamin D deficiency impairs fetal lung development partially through suppressing type II pneumocyte differentiation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yi-Jun Fan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Biao Luo
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Shen Xu
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
15
|
Yang Y, Li Z, Yan G, Jie Q, Rui C. Effect of different doses of vitamin D supplementation on preterm infants - an updated meta-analysis. J Matern Fetal Neonatal Med 2017; 31:3065-3074. [PMID: 28783999 DOI: 10.1080/14767058.2017.1363731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Vitamin D deficiency (VDD) is common among infants, especially in preterm babies. There are some controversies over its use on body development, immune function and incidence of bronchopulmonary dysplasia (BPD). METHODS We systematically reviewed PubMed, Embase, and Cochrane databases for studies in English, and in Wanfang, VIP, and Cnki databases for Chinese studies (databases were last launched on 1 August 2016). RESULTS Twelve original random controlled studies (seven in English and five in Chinese) were included (1). There are no differences between high-dose (800-1000 IU/d) and low-dose (400 IU/d) groups on calcium, phosphorus, and 25(OH)D concentrations (p > .05). However, length gain and head circumference gain are significantly increased in the high-dose group (p < .05) (2). IL-2, Ig-A, and Ig-G levels are significant increased in the vitamin D supplementation group compared with the control group (p < .05) (3). With respect to BPD, there is no significant difference between the vitamin D supplementation group and the control group (p > .05). CONCLUSIONS In preterm infants, daily supplementation of vitamin D in doses of 800-1000 IU compared with 400 IU appears to be better not only in development but also in immune function. But clinical trials with a larger sample size are still needed.
Collapse
Affiliation(s)
- Yang Yang
- a Department of neonates , Children's hospital of Nanjing Medical University , Nanjing , China
| | - Zhao Li
- a Department of neonates , Children's hospital of Nanjing Medical University , Nanjing , China
| | - Guo Yan
- a Department of neonates , Children's hospital of Nanjing Medical University , Nanjing , China
| | - Qiu Jie
- a Department of neonates , Children's hospital of Nanjing Medical University , Nanjing , China
| | - Cheng Rui
- a Department of neonates , Children's hospital of Nanjing Medical University , Nanjing , China
| |
Collapse
|
16
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
17
|
Mohamed Hegazy A, Mohamed Shinkar D, Refaat Mohamed N, Abdalla Gaber H. Association between serum 25 (OH) vitamin D level at birth and respiratory morbidities among preterm neonates. J Matern Fetal Neonatal Med 2017; 31:2649-2655. [DOI: 10.1080/14767058.2017.1350162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Vitamin D and bronchopulmonary dysplasia in preterm infants. J Perinatol 2016; 36:878-82. [PMID: 27467562 PMCID: PMC5045784 DOI: 10.1038/jp.2016.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Vitamin D deficiency is associated with asthma and reactive airway disease in childhood but its potential contribution to bronchopulmonary dysplasia (BPD) in preterm infants is unknown. Preterm infants have lower levels of 25-hydroxyvitamin D (25(OH)D) at birth and are at risk for nutritional deficiencies after birth. The objective of the study was to evaluate the association of 25(OH)D concentrations at birth and at 36 weeks' corrected gestational age with BPD in preterm infants born before 29 completed weeks of gestation. STUDY DESIGN We collected umbilical cord blood samples from 44 preterm infants (gestational age <29 weeks) delivered at Brigham and Women's Hospital in Boston. In addition, with parental consent we collected venous samples at 36 weeks' corrected age from 20 preterm infants born before 29 weeks' gestation (including 6 infants with previously collected cord blood). Samples were frozen at -80 °C until subsequent measurement of 25(OH)D levels by chemiluminescence. We used multivariable logistic models to adjust for gestational age and considered other confounding variables, including maternal race, age, mode of delivery and infant sex. RESULTS Among 44 infants, 41 (93.2%) survived and 3 (6.8%) died before 36 weeks' corrected age. Median 25(OH)D levels at birth were 30.4 ng ml(-1) in preterm infants who subsequently died or developed BPD and 33.8 ng ml(-1) in infants who survived without BPD (P=0.6). Median 25(OH)D levels at corrected age of 36 weeks were 59.0 ng ml(-1) among survivors without BPD and 64.2 ng ml(-1) among survivors with BPD (P=0.9). Neither cord blood nor 36 weeks' corrected 25(OH)D levels were associated with odds of death or BPD (adjusted odds ratio (OR) 1.00, 95% confidence interval (CI): 0.73 to 1.37; and OR 0.93, 95% CI: 0.61 to 1.43, respectively). CONCLUSIONS Among this population of extremely preterm infants neither cord blood nor the 36 weeks' corrected age 25(OH)D levels were associated with development of BPD. Notably, at the current level of supplementation, all extremely preterm infants in our cohort had achieved 25(OH)D levels >30 ng ml(-1) by 36 weeks' corrected age, which is thought to represent sufficiency in adult and pediatric populations.
Collapse
|
19
|
Lykkedegn S, Sorensen GL, Beck-Nielsen SS, Pilecki B, Duelund L, Marcussen N, Christesen HT. Vitamin D Depletion in Pregnancy Decreases Survival Time, Oxygen Saturation, Lung Weight and Body Weight in Preterm Rat Offspring. PLoS One 2016; 11:e0155203. [PMID: 27571350 PMCID: PMC5003352 DOI: 10.1371/journal.pone.0155203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/28/2016] [Indexed: 01/20/2023] Open
Abstract
Animal studies suggest a role of vitamin D in fetal lung development although not studied in preterm animals. We tested the hypothesis that vitamin D depletion aggravates respiratory insufficiency in preterm rat offspring. Furthermore, the effects of vitamin D depletion on growth and lung surfactant were investigated. Female Sprague-Dawley rats were randomly assigned low vitamin D (VDL) or control diet before mating and followed with serum 25-hydroxyvitamin D (s-25(OH)D) determinations. After cesarean section at gestational day 19 (E19) or day 22 (E22), placental weight, birth weight, crown-rump-length (CRL), oxygenation (SaO2) at 30 min and survival time were recorded. The pup lungs were analyzed for phospholipid levels, surfactant protein A-D mRNA and the expression of the vitamin D receptor (VDR). S-25(OH)D was significantly lower in the VDL group at cesarean section (12 vs. 30nmol/L, p<0.0001). Compared to the controls, E19 VDL pups had lower birth weight (2.13 vs. 2.29g, p<0.001), lung weight (0.09 vs. 0.10g, p = 0.002), SaO2(54% vs. 69%, p = 0.002) as well as reduced survival time (0.50 vs. 1.25h, p<0.0001). At E22, the VDL-induced pulmonary differences were leveled out, but VDL pups had lower CRL (4.0 vs. 4.5cm, p<0.0001). The phospholipid levels and the surfactant protein mRNA expression did not differ between the dietary groups. In conclusion, Vitamin D depletion led to lower oxygenation and reduced survival time in the preterm offspring, associated with reduced lung weight and birth weight. Further studies of vitamin D depletion in respiratory insufficiency in preterm neonates are warranted.
Collapse
Affiliation(s)
- Sine Lykkedegn
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, Department of Cancer and Inflammation, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Signe Sparre Beck-Nielsen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Bartosz Pilecki
- Institute of Molecular Medicine, Department of Cancer and Inflammation, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Lars Duelund
- MEMPHYS, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Institute of Pathology, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
20
|
Mandell E, Powers KN, Harral JW, Seedorf GJ, Hunter KS, Abman SH, Dodson RB. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1438-46. [PMID: 26475735 DOI: 10.1152/ajplung.00302.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/09/2015] [Indexed: 01/04/2023] Open
Abstract
High pulmonary vascular resistance (PVR), proximal pulmonary artery (PA) impedance, and right ventricular (RV) afterload due to remodeling contribute to the pathogenesis and severity of pulmonary hypertension (PH). Intra-amniotic exposure to endotoxin (ETX) causes sustained PH and high mortality in rat pups at birth, which are associated with impaired vascular growth and RV hypertrophy in survivors. Treatment of ETX-exposed pups with antenatal vitamin D (vit D) improves survival and lung growth, but the effects of ETX exposure on RV-PA coupling in the neonatal lung are unknown. We hypothesized that intrauterine ETX impairs RV-PA coupling through sustained abnormalities of PA stiffening and RV performance that are attenuated with vit D therapy. Fetal rats were exposed to intra-amniotic injections of ETX, ETX+vit D, or saline at 20 days gestation (term = 22 days). At postnatal day 14, pups had pressure-volume measurements of the RV and isolated proximal PA, respectively. Lung homogenates were assayed for extracellular matrix (ECM) composition by Western blot. We found that ETX lungs contain decreased α-elastin, lysyl oxidase, collagen I, and collagen III proteins (P < 0.05) compared control and ETX+vit D lungs. ETX-exposed animals have increased RV mechanical stroke work (P < 0.05 vs. control and ETX+vit D) and elastic potential energy (P < 0.05 vs. control and ETX+vit D). Mechanical stiffness and ECM remodeling are increased in the PA (P < 0.05 vs. control and ETX+vit D). We conclude that intrauterine exposure of fetal rats to ETX during late gestation causes persistent impairment of RV-PA coupling throughout infancy that can be prevented with early vit D treatment.
Collapse
Affiliation(s)
- Erica Mandell
- Department of Pediatrics, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; The Pediatric Heart Lung Center, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
| | - Kyle N Powers
- Department of Surgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; The Pediatric Heart Lung Center, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; The Laboratory for Fetal and Regenerative Biology; and
| | - Julie W Harral
- Division of Cardiovascular Pulmonary Research, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
| | - Gregory J Seedorf
- Department of Pediatrics, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; The Pediatric Heart Lung Center, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
| | - Kendall S Hunter
- Department of Bioengineering, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
| | - Steven H Abman
- Department of Pediatrics, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; The Pediatric Heart Lung Center, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
| | - R Blair Dodson
- Department of Surgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; Department of Bioengineering, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; The Pediatric Heart Lung Center, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado; The Laboratory for Fetal and Regenerative Biology; and
| |
Collapse
|