1
|
Barenco-Marins TS, Seara FAC, Ponte CG, Nascimento JHM. Pulmonary Circulation Under Pressure: Pathophysiological and Therapeutic Implications of BK Channel. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07503-7. [PMID: 37624526 DOI: 10.1007/s10557-023-07503-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The large-conductance Ca2+-activated K+ (BK) channel is widely expressed in the pulmonary blood vessels and plays a significant role in regulating pulmonary vascular tonus. It opens under membrane depolarization, increased intracellular Ca+2 concentration, and chronic hypoxia, resulting in massive K+ efflux, membrane hyperpolarization, decreased L-type Ca+2 channel opening, and smooth muscle relaxation. Several reports have demonstrated an association between BK channel dysfunction and pulmonary hypertension (PH) development. Decreased BK channel subunit expression and impaired regulation by paracrine hormones result in decreased BK channel opening, increased pulmonary vascular resistance, and pulmonary arterial pressure being the cornerstone of PH. The resulting right ventricular pressure overload ultimately leads to ventricular remodeling and failure. Therefore, it is unsurprising that the BK channel has arisen as a potential target for treating PH. Recently, a series of selective, synthetic BK channel agonists have proven effective in attenuating the pathophysiological progression of PH without adverse effects in animal models.
Collapse
Affiliation(s)
- Thais S Barenco-Marins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando A C Seara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Instituto de Ciências Biológicas E da Saúde, Universidade Federal Rural Do Rio de Janeiro, Seropédica, RJ, Brazil.
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, São Paulo, Brazil.
| | - Cristiano G Ponte
- Instituto Federal de Educação, Ciências e Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Moderate Ethanol-Preconditioning Offers Ischemic Tolerance Against Focal Cerebral Ischemic/Reperfusion: Role of Large Conductance Calcium-Activated Potassium Channel. Neurochem Res 2022; 47:3647-3658. [PMID: 35790697 DOI: 10.1007/s11064-022-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The mechanism underlying moderate ethanol (EtOH)-preconditioning (PC) against ischemic brain injury remains unclear. We evaluated the role of large conductance calcium-sensitive potassium (BKCa) channels in EtOH-PC. Almost one hundred and ninety normal adult SD rats (8 to 10 weeks, 320-350 g) were enrolled in this study. Ischemic/reperfusion (I/R) brain injury was induced in rats by middle cerebral artery occlusion for 2 h followed by reperfusion for 24 h. EtOH or the BKCa channel opener, NS11021, was administered 24 h before I/R with or without pre-treatment with the BKCa channel blocker, paxilline. Infarct volumes were measured by tissue staining and imaging, and neurological functions were assessed by a scoring system. The expression of BKCa channel subunit α was detected by Western blotting, and cell apoptosis was assessed using staining. Prior (24 h) administration of ethanol that produced a peak plasma concentration of ~ 45 mg/dl in rats would offer neuroprotection after cerebral I/R. In addition, the expression of BKCa channel α-subunit was significantly increased 24 h after EtOH-PC (n = 10; control: 2.00 ± 0.09, EtOH: 1.00 ± 0.06; P < 0.5). Compared to I/R, EtOH-PC enhanced the expression of BKCa channel α-subunit both in the penumbra (n = 10; 24 h: I/R: 1.25 ± 0.10, EtOH-PC + I/R: 1.99 ± 0.12; P < 0.01; 4 h: I/R: 1.03 ± 0.03, EtOH-PC + I/R: 1.49 ± 0.05; P < 0.001) and infarct core (n = 10; 4 h: I/R: 1.04 ± 0.04, EtOH-PC + I/R: 1.42 ± 0.05; P < 0.001), improved the neurological function (n = 10; I/R: 14.00 (12.75-15.00), EtOH-PC + I/R: 7.00 (4.75-8.25); P < 0.001), attenuated the apoptosis (n = 10; I/R: 26.80 ± 0.69, EtOH-PC + I/R: 8.46 ± 0.31; P < 0.001), and decreased the infarct volume (n = 10; I/R: 244.00 ± 26.24, EtOH-PC + I/R: 70.09 ± 14.69; P < 0.001) after experimental cerebral I/R. These changes were reversed by paxilline administration. The moderate EtOH-PC protects against I/R-induced brain damage dependent on the upregulation BKCa channels.
Collapse
|
3
|
Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP. Hypoxic Regulation of the Large-Conductance, Calcium and Voltage-Activated Potassium Channel, BK. Front Physiol 2022; 12:780206. [PMID: 35002762 PMCID: PMC8727448 DOI: 10.3389/fphys.2021.780206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits β (β1–β4), γ (γ1–γ4), and LINGO1. The modification of biophysical properties of BK channels by β subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and β subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+]i), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-β1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated β1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
Collapse
Affiliation(s)
- Sara V Ochoa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Liliana Otero
- Center of Dental Research Dentistry Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Fernando Hinostroza
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Facultad de Ciencias de la Salud, Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Guntur D, Olschewski H, Enyedi P, Csáki R, Olschewski A, Nagaraj C. Revisiting the Large-Conductance Calcium-Activated Potassium (BKCa) Channels in the Pulmonary Circulation. Biomolecules 2021; 11:1629. [PMID: 34827626 PMCID: PMC8615660 DOI: 10.3390/biom11111629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 01/13/2023] Open
Abstract
Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell's membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits. They are of vital significance due to their very high unitary conductance and hence their ability to rapidly cause extreme changes in the membrane potential. The pathophysiology of lung diseases in general and pulmonary hypertension, in particular, show the implication of either decreased expression and partial inactivation of BKCa channel and its subunits or mutations in the genes encoding different subunits of the channel. Signaling molecules, circulating humoral molecules, vasorelaxant agents, etc., have an influence on the open probability of the channel in pulmonary arterial vascular cells. BKCa channel is a possible therapeutic target, aimed to cause vasodilation in constricted or chronically stiffened vessels, as shown in various animal models. This review is a comprehensive collation of studies on BKCa channels in the pulmonary circulation under hypoxia (hypoxic pulmonary vasoconstriction; HPV), lung pathology, and fetal to neonatal transition, emphasising pharmacological interventions as viable therapeutic options.
Collapse
Affiliation(s)
- Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria;
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (P.E.); (R.C.)
| | - Réka Csáki
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (P.E.); (R.C.)
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| |
Collapse
|
5
|
Ferraz AP, Seara FAC, Baptista EF, Barenco TS, Sottani TBB, Souza NSC, Domingos AE, Barbosa RAQ, Takiya CM, Couto MT, Resende GO, Campos de Carvalho AC, Ponte CG, Nascimento JHM. BK Ca Channel Activation Attenuates the Pathophysiological Progression of Monocrotaline-Induced Pulmonary Arterial Hypertension in Wistar Rats. Cardiovasc Drugs Ther 2021; 35:719-732. [PMID: 33245463 DOI: 10.1007/s10557-020-07115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE In the present study, the therapeutic efficacy of a selective BKCa channel opener (compound X) in the treatment of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) was investigated. METHODS PAH was induced in male Wistar rats by a single injection of MCT. After two weeks, the MCT-treated group was divided into two groups that were either treated with compound X or vehicle. Compound X was administered daily at 28 mg/kg. Electrocardiographic, echocardiographic, and haemodynamic analyses were performed; ex vivo evaluations of pulmonary artery reactivity, right ventricle (RV) and lung histology as well as expression levels of α and β myosin heavy chain, brain natriuretic peptide, and cytokines (TNFα and IL10) in heart tissue were performed. RESULTS Pulmonary artery rings of the PAH group showed a lower vasodilatation response to acetylcholine, suggesting endothelial dysfunction. Compound X promoted strong vasodilation in pulmonary artery rings of both control and MCT-induced PAH rats. The untreated hypertensive rats presented remodelling of pulmonary arterioles associated with increased resistance to pulmonary flow; increased systolic pressure, hypertrophy and fibrosis of the RV; prolongation of the QT and Tpeak-Tend intervals (evaluated during electrocardiogram); increased lung and liver weights; and autonomic imbalance with predominance of sympathetic activity. On the other hand, treatment with compound X reduced pulmonary vascular remodelling, pulmonary flow resistance and RV hypertrophy and afterload. CONCLUSION The use of a selective and potent opener to activate the BKCa channels promoted improvement of haemodynamic parameters and consequent prevention of RV maladaptive remodelling in rats with MCT-induced PAH.
Collapse
Affiliation(s)
- Ana Paula Ferraz
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
| | - Emanuelle F Baptista
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais S Barenco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais B B Sottani
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia S C Souza
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos T Couto
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel O Resende
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cristiano G Ponte
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose Hamilton M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Yoo HY, Kim SJ. Oxygen-dependent regulation of ion channels: acute responses, post-translational modification, and response to chronic hypoxia. Pflugers Arch 2021; 473:1589-1602. [PMID: 34142209 DOI: 10.1007/s00424-021-02590-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Oxygen is a vital element for the survival of cells in multicellular aerobic organisms such as mammals. Lack of O2 availability caused by environmental or pathological conditions leads to hypoxia. Active oxygen distribution systems (pulmonary and circulatory) and their neural control mechanisms ensure that cells and tissues remain oxygenated. However, O2-carrying blood cells as well as immune and various parenchymal cells experience wide variations in partial pressure of oxygen (PO2) in vivo. Hence, the reactive modulation of the functions of the oxygen distribution systems and their ability to sense PO2 are critical. Elucidating the physiological responses of cells to variations in PO2 and determining the PO2-sensing mechanisms at the biomolecular level have attracted considerable research interest in the field of physiology. Herein, we review the current knowledge regarding ion channel-dependent oxygen sensing and associated signalling pathways in mammals. First, we present the recent findings on O2-sensing ion channels in representative chemoreceptor cells as well as in other types of cells such as immune cells. Furthermore, we highlight the transcriptional regulation of ion channels under chronic hypoxia and its physiological implications and summarize the findings of studies on the post-translational modification of ion channels under hypoxic or ischemic conditions.
Collapse
Affiliation(s)
- Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Understanding the pathobiology in patent ductus arteriosus in prematurity-beyond prostaglandins and oxygen. Pediatr Res 2019; 86:28-38. [PMID: 30965358 DOI: 10.1038/s41390-019-0387-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
The ductus arteriosus (DA) is probably the most intriguing vessel in postnatal hemodynamic transition. DA patency in utero is an active state, in which prostaglandin E2 (PGE2) and nitric monoxide (NO), play an important role. Since the DA gets programmed for postnatal closure as gestation advances, in preterm infants the DA frequently remains patent (PDA). PGE2 exposure programs functional postnatal closure by inducing gene expression of ion channels and phosphodiesterases and anatomical closure by inducing intimal thickening. Postnatally, oxygen inhibits potassium and activates calcium channels, which ultimately leads to a rise in intracellular calcium concentration consequently inducing phosphorylation of the myosin light chain and thereby vasoconstriction of the DA. Since ion channel expression is lower in preterm infants, oxygen induced functional vasoconstriction is attenuated in comparison with full term newborns. Furthermore, the preterm DA is more sensitive to both PGE2 and NO compared to the term DA pushing the balance toward less constriction. In this review we explain the physiology of DA patency in utero and subsequent postnatal functional closure. We will focus on the pathobiology of PDA in preterm infants and the (un)intended effect of antenatal exposure to medication on both fetal and neonatal DA vascular tone.
Collapse
|
8
|
de Wijs‐Meijler DPM, Duncker DJ, Danser AHJ, Reiss IKM, Merkus D. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease. Physiol Rep 2018; 6:e13889. [PMID: 30375198 PMCID: PMC6205946 DOI: 10.14814/phy2.13889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Neonatal pulmonary vascular disease (PVD) is increasingly recognized as a disease that complicates the cardiopulmonary adaptations after birth and predisposes to long-term cardiopulmonary disease. There is growing evidence that PVD is associated with disruptions in the nitric oxide (NO)-cGMP-phosphodiesterase 5 (PDE5) pathway. Examination of the functionality of different parts of this pathway is required for better understanding of the pathogenesis of neonatal PVD. For this purpose, the role of the NO-cGMP-PDE5 pathway in regulation of pulmonary vascular function was investigated in vivo, both at rest and during exercise, and in isolated pulmonary small arteries in vitro, in a neonatal swine model with hypoxia-induced PVD. Endothelium-dependent vasodilatation was impaired in piglets with hypoxia-induced PVD both in vivo at rest and in vitro. Moreover, the responsiveness to the NO-donor SNP was reduced in hypoxia-exposed piglets in vivo, while the relaxation to SNP and 8-bromo-cyclicGMP in vitro were unaltered. Finally, PDE5 inhibition-induced pulmonary vasodilatation was impaired in hypoxia-exposed piglets both in vitro and in vivo at rest. During exercise, however, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in hypoxia-exposed as compared to normoxia-exposed piglets. In conclusion, the impaired endothelium-dependent vasodilatation in piglets with hypoxia-induced PVD was accompanied by reduced responsiveness to NO, potentially caused by altered sensitivity and/or activity of soluble guanylyl cyclase (sGC), resulting in an impaired cGMP production. Our findings in a newborn animal model for neonatal PVD suggests that sGC stimulators/activators may be a novel treatment strategy to alleviate neonatal PVD.
Collapse
Affiliation(s)
- Daphne P. M. de Wijs‐Meijler
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Dirk J. Duncker
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of PharmacologyDepartment of Internal MedicineErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - Irwin K. M. Reiss
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Daphne Merkus
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| |
Collapse
|
9
|
Barnes EA, Lee L, Barnes SL, Brenner R, Alvira CM, Cornfield DN. β1-Subunit of the calcium-sensitive potassium channel modulates the pulmonary vascular smooth muscle cell response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2018; 315:L265-L275. [PMID: 29644895 PMCID: PMC6139656 DOI: 10.1152/ajplung.00060.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/22/2022] Open
Abstract
Accessory subunits associated with the calcium-sensitive potassium channel (BKCa), a major determinant of vascular tone, confer functional and anatomical diversity. The β1 subunit increases Ca2+ and voltagesensitivity of the BKCa channel and is expressed exclusively in smooth muscle cells. Evidence supporting the physiological significance of the β1 subunit includes the observations that murine models with deletion of the β1 subunit are hypertensive and that humans with a gain-of-function β1 mutation are at a decreased risk of diastolic hypertension. However, whether the β1 subunit of the BKCa channel contributes to the low tone that characterizes the normal pulmonary circulation or modulates the pulmonary vascular response to hypoxia remains unknown. To determine the role of the BKCa channel β1 subunit in the regulation of pulmonary vascular tone and the response to acute and chronic hypoxia, mice with deletion of the Kcnmb1 gene that encodes for the β1 subunit ( Kcnmb1-/-) were placed in chronic hypoxia (10% O2) for 21-24 days. In normoxia, right ventricular systolic pressure (RVSP) did not differ between Kcnmb1+/+ (controls) and Kcnmb1-/- mice. After exposure to either acute or chronic hypoxia, RVSP was higher in Kcnmb1-/- mice compared with Kcnmb1+/+ mice, without increased vascular remodeling. β1 subunit expression was predominantly confined to pulmonary artery smooth muscle cells (PASMCs) from vessels ≤ 150 µm. Peripheral PASMCs contracted collagen gels irrespective of β1 expression. Focal adhesion expression and Rho kinase activity were greater in Kcnmb1-/- compared with Kcnmb1+/+ PASMCs. Compromised PASMC β1 function may contribute to the heightened microvascular vasoconstriction that characterizes pulmonary hypertension.
Collapse
MESH Headings
- Acute Disease
- Animals
- Chronic Disease
- Focal Adhesions/genetics
- Focal Adhesions/metabolism
- Focal Adhesions/pathology
- Gene Deletion
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Vasoconstriction
Collapse
Affiliation(s)
- Elizabeth A Barnes
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Lori Lee
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Shayna L Barnes
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Sciences Center , San Antonio, Texas
| | - Cristina M Alvira
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - David N Cornfield
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
10
|
Rosa P, Catacuzzeno L, Sforna L, Mangino G, Carlomagno S, Mincione G, Petrozza V, Ragona G, Franciolini F, Calogero A. BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells. J Cell Physiol 2018; 233:6866-6877. [PMID: 29319175 DOI: 10.1002/jcp.26448] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) cells express large-conductance, calcium-activated potassium (BK) channels, whose activity is important for several critical aspects of the tumor, such as migration/invasion and cell death. GBMs are also characterized by a heavy hypoxic microenvironment that exacerbates tumor aggressiveness. Since hypoxia modulates the activity of BK channels in many tissues, we hypothesized that a hypoxia-induced modulation of these channels may contribute to the hypoxia-induced GBM aggressiveness. In U87-MG cells, hypoxia induced a functional upregulation of BK channel activity, without interfering with their plasma membrane expression. Wound healing and transwell migration assays showed that hypoxia increased the migratory ability of U87-MG cells, an effect that could be prevented by BK channel inhibition. Toxicological experiments showed that hypoxia was able to induce chemoresistance to cisplatin in U87-MG cells and that the inhibition of BK channels prevented the hypoxia-induced chemoresistance. Clonogenic assays showed that BK channels are also used to increase the clonogenic ability of U87-MG GBM cells in presence, but not in absence, of cisplatin. BK channels were also found to be essential for the hypoxia-induced de-differentiation of GBM cells. Finally, using immunohistochemical analysis, we highlighted the presence of BK channels in hypoxic areas of human GBM tissues, suggesting that our findings may have physiopathological relevance in vivo. In conclusion, our data show that BK channels promote several aspects of the aggressive potential of GBM cells induced by hypoxia, such as migration and chemoresistance to cisplatin, suggesting it as a potential therapeutic target in the treatment of GBM.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Silvia Carlomagno
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Gabriella Mincione
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| | - Giuseppe Ragona
- Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy.,Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| |
Collapse
|
11
|
Blum-Johnston C, Thorpe RB, Wee C, Opsahl R, Romero M, Murray S, Brunelle A, Blood Q, Wilson R, Blood AB, Zhang L, Longo LD, Pearce WJ, Wilson SM. Long-term hypoxia uncouples Ca 2+ and eNOS in bradykinin-mediated pulmonary arterial relaxation. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513562 DOI: 10.1152/ajpregu.00311.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers a rise in intracellular Ca2+ that activates nitric oxide (NO)-dependent vasorelaxation. Chronic hypoxia is commonly associated with increased pulmonary vascular tone, which can cause pulmonary hypertension in responsive individuals. In the present study, we tested the hypothesis that long-term high-altitude hypoxia (LTH) diminishes bradykinin-induced Ca2+ signals and inhibits endothelial nitric oxide synthase (eNOS), prostacyclin (PGI2), and large-conductance K+ (BKCa) channels in sheep, which are moderately responsive to LTH, resulting in decreased pulmonary arterial vasorelaxation. Pulmonary arteries were isolated from ewes kept near sea level (720 m) or at high altitude (3,801 m) for >100 days. Vessel force was measured with wire myography and endothelial intracellular Ca2+ with confocal microscopy. eNOS was inhibited with 100 μM NG-nitro-l-arginine methyl ester (l-NAME), PGI2 production was inhibited with 10 µM indomethacin that inhibits cyclooxygenase, and BKCa channels were blocked with 1 mM tetraethylammonium. Bradykinin-induced endothelial Ca2+ signals increased following LTH, but bradykinin relaxation decreased. Furthermore, some vessels contracted in response to bradykinin after LTH. l-NAME sensitivity decreased, suggesting that eNOS dysfunction played a role in uncoupling Ca2+ signals and bradykinin relaxation. The Ca2+ ionophore A-23187 (10 µM) elicited an enhanced Ca2+ response following LTH while relaxation was unchanged although l-NAME sensitivity increased. Additionally, BKCa function decreased during bradykinin relaxation following LTH. Western analysis showed that BKCa α-subunit expression was increased by LTH while that for the β1 subunit was unchanged. Overall, these results suggest that those even moderately responsive to LTH can have impaired endothelial function.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Richard B Thorpe
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Chelsea Wee
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Raechel Opsahl
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| | - Samuel Murray
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunelle
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Quintin Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Rachael Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lawrence D Longo
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
12
|
Affiliation(s)
- Sarah J Chapple
- King's British Heart Foundation Centre of Research Excellence, Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, London, U.K.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, London, U.K
| |
Collapse
|
13
|
Gao Y, Cornfield DN, Stenmark KR, Thébaud B, Abman SH, Raj JU. Unique aspects of the developing lung circulation: structural development and regulation of vasomotor tone. Pulm Circ 2017; 6:407-425. [PMID: 27942377 DOI: 10.1086/688890] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current knowledge on lung vasculogenesis and angiogenesis during normal lung development and the regulation of fetal and postnatal pulmonary vascular tone. In comparison to that of the adult, the pulmonary circulation of the fetus and newborn displays many unique characteristics. Moreover, altered development of pulmonary vasculature plays a more prominent role in compromised pulmonary vasoreactivity than in the adult. Clinically, a better understanding of the developmental changes in pulmonary vasculature and vasomotor tone and the mechanisms that are disrupted in disease states can lead to the development of new therapies for lung diseases characterized by impaired alveolar structure and pulmonary hypertension.
Collapse
Affiliation(s)
- Yuangsheng Gao
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - David N Cornfield
- Section of Pulmonary and Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kurt R Stenmark
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute; and Children's Hospital of Eastern Ontario Research Institute; University of Ottawa, Ottawa, Ontario, Canada
| | - Steven H Abman
- Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - J Usha Raj
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Detweiler ND, Song L, McClenahan SJ, Versluis RJ, Kharade SV, Kurten RC, Rhee SW, Rusch NJ. BK channels in rat and human pulmonary smooth muscle cells are BKα-β 1 functional complexes lacking the oxygen-sensitive stress axis regulated exon insert. Pulm Circ 2017; 6:563-575. [PMID: 28090300 DOI: 10.1086/688838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A loss of K+ efflux in pulmonary arterial smooth muscle cells (PASMCs) contributes to abnormal vasoconstriction and PASMC proliferation during pulmonary hypertension (PH). Activation of high-conductance Ca2+-activated (BK) channels represents a therapeutic strategy to restore K+ efflux to the affected PASMCs. However, the properties of BK channels in PASMCs-including sensitivity to BK channel openers (BKCOs)-are poorly defined. The goal of this study was to compare the properties of BK channels between PASMCs of normoxic (N) and chronic hypoxic (CH) rats and then explore key findings in human PASMCs. Polymerase chain reaction results revealed that 94.3% of transcripts encoding BKα pore proteins in PASMCs from N rats represent splice variants lacking the stress axis regulated exon insert, which confers oxygen sensitivity. Subsequent patch-clamp recordings from inside-out (I-O) patches confirmed a dense population of BK channels insensitive to hypoxia. The BK channels were highly activated by intracellular Ca2+ and the BKCO lithocholate; these responses require BKα-β1 subunit coupling. PASMCs of CH rats with established PH exhibited a profound overabundance of the dominant oxygen-insensitive BKα variant. Importantly, human BK (hBK) channels in PASMCs from human donor lungs also represented the oxygen-insensitive BKα variant activated by BKCOs. The hBK channels showed significantly enhanced Ca2+ sensitivity compared with rat BK channels. We conclude that rat BK and hBK channels in PASMCs are oxygen-insensitive BKα-β1 complexes highly sensitive to Ca2+ and the BKCO lithocholate. BK channels are overexpressed in PASMCs of a rat model of PH and may provide an abundant target for BKCOs designed to restore K+ efflux.
Collapse
Affiliation(s)
- Neil D Detweiler
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Li Song
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samantha J McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rachel J Versluis
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sujay V Kharade
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard C Kurten
- Department of Physiology and Biophysics and Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
15
|
Su F, Guo AC, Li WW, Zhao YL, Qu ZY, Wang YJ, Wang Q, Zhu YL. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca 2+-Activated K + Channels In Vitro. Neurosci Bull 2016; 33:28-40. [PMID: 27854008 DOI: 10.1007/s12264-016-0080-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca2+-activated K+ channel (BKCa) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BKCa channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BKCa channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca2+ and preventing neuronal apoptosis, and this is mediated by BKCa channel activation.
Collapse
Affiliation(s)
- Fang Su
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China
| | - An-Chen Guo
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Wei-Wei Li
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Yi-Long Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Zheng-Yi Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yong-Jun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Yu-Lan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
16
|
Yamamura A. Upregulation/downregulation of ion channels in pulmonary hypertension. Nihon Yakurigaku Zasshi 2016; 148:226-230. [PMID: 27803434 DOI: 10.1254/fpj.148.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Krishnamoorthy-Natarajan G, Koide M. BK Channels in the Vascular System. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:401-38. [PMID: 27238270 DOI: 10.1016/bs.irn.2016.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators.
Collapse
Affiliation(s)
| | - M Koide
- University of Vermont, Burlington, VT, United States
| |
Collapse
|
18
|
Blum-Johnston C, Thorpe RB, Wee C, Romero M, Brunelle A, Blood Q, Wilson R, Blood AB, Francis M, Taylor MS, Longo LD, Pearce WJ, Wilson SM. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. Am J Physiol Lung Cell Mol Physiol 2015; 310:L271-86. [PMID: 26637638 DOI: 10.1152/ajplung.00340.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Richard B Thorpe
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Chelsea Wee
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Monica Romero
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| | - Alexander Brunelle
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Quintin Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Rachael Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California;
| | - Arlin B Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Lawrence D Longo
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
19
|
Tao X, Lin MT, Thorington GU, Wilson SM, Longo LD, Hessinger DA. Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle. Am J Physiol Heart Circ Physiol 2015; 308:H707-22. [PMID: 25599571 DOI: 10.1152/ajpheart.00564.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/14/2015] [Indexed: 01/31/2023]
Abstract
Acclimatization to high-altitude, long-term hypoxia (LTH) reportedly alters cerebral artery contraction-relaxation responses associated with changes in K(+) channel activity. We hypothesized that to maintain oxygenation during LTH, basilar arteries (BA) in the ovine adult and near-term fetus would show increased large-conductance Ca(2+) activated potassium (BK) channel activity. We measured BK channel activity, expression, and cell surface distribution by use of patch-clamp electrophysiology, flow cytometry, and confocal microscopy, respectively, in myocytes from normoxic control and LTH adult and near-term fetus BA. Electrophysiological data showed that BK channels in LTH myocytes exhibited 1) lowered Ca(2+) set points, 2) left-shifted activation voltages, and 3) longer dwell times. BK channels in LTH myocytes also appeared to be more dephosphorylated. These differences collectively make LTH BK channels more sensitive to activation. Studies using flow cytometry showed that the LTH fetus exhibited increased BK β1 subunit surface expression. In addition, in both fetal groups confocal microscopy revealed increased BK channel clustering and colocalization to myocyte lipid rafts. We conclude that increased BK channel activity in LTH BA occurred in association with increased channel affinity for Ca(2+) and left-shifted voltage activation. Increased cerebrovascular BK channel activity may be a mechanism by which LTH adult and near-term fetal sheep can acclimatize to long-term high altitude hypoxia. Our findings suggest that increasing BK channel activity in cerebral myocytes may be a therapeutic target to ameliorate the adverse effects of high altitude in adults or of intrauterine hypoxia in the fetus.
Collapse
Affiliation(s)
- Xiaoxiao Tao
- Division of Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Mike T Lin
- Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California; Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Glyne U Thorington
- Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Sean M Wilson
- Division of Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California; Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California; and
| | - Lawrence D Longo
- Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California; Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California; and
| | - David A Hessinger
- Division of Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California; Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California;
| |
Collapse
|
20
|
Sforna L, Cenciarini M, Belia S, D'Adamo MC, Pessia M, Franciolini F, Catacuzzeno L. The role of ion channels in the hypoxia-induced aggressiveness of glioblastoma. Front Cell Neurosci 2015; 8:467. [PMID: 25642170 PMCID: PMC4295544 DOI: 10.3389/fncel.2014.00467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 12/16/2022] Open
Abstract
The malignancy of glioblastoma multiform (GBM), the most common and aggressive form of human brain tumors, strongly correlates with the presence of hypoxic areas, but the mechanisms controlling the hypoxia-induced aggressiveness are still unclear. GBM cells express a number of ion channels whose activity supports cell volume changes and increases in the cytosolic Ca2+ concentration, ultimately leading to cell proliferation, migration or death. In several cell types it has previously been shown that low oxygen levels regulate the expression and activity of these channels, and more recent data indicate that this also occurs in GBM cells. Based on these findings, it may be hypothesized that the modulation of ion channel activity or expression by the hypoxic environment may participate in the acquisition of the aggressive phenotype observed in GBM cells residing in a hypoxic environment. If this hypothesis will be confirmed, the use of available ion channels modulators may be considered for implementing novel therapeutic strategies against these tumors.
Collapse
Affiliation(s)
- Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Marta Cenciarini
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Maria Cristina D'Adamo
- Faculty of Medicine, Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Mauro Pessia
- Faculty of Medicine, Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| |
Collapse
|
21
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
22
|
NS1619-induced vasodilation is enhanced and differentially mediated in chronically hypoxic lungs. Lung 2014; 192:811-7. [PMID: 25104232 DOI: 10.1007/s00408-014-9633-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE To identify the effect of the benzimidazalone derivative, NS1619, on modulating pulmonary vascular tone in lungs from rats exposed to normoxia (21% FiO2) or chronic hypoxia (10% FiO2) for three weeks. METHODS Isolated perfused lungs were preconstricted (U46619), and dose-dependent vasodilation to NS1619 was assessed. To elucidate the mechanisms responsible, NS1619 vasodilatory responses were assessed following inhibition of large-conductance Ca(2+)-activated (BKCa; iberiotoxin and paxilline), L-type Ca2+ (nifedipine), K+ (tetraethylammonium), Cl- (niflumic acid), and cation/TRP (lanthanum) channels, as well as nitric oxide synthase (L-NAME). RESULTS Compared to normoxia, NS1619-induced vasodilation was significantly greater following hypoxia; however, NO-dependent vasodilation and BKCa-mediated vasodilation, in response to NS1619, were similar in the normoxic and hypoxic lungs. In contrast, direct activation of L-type Ca2+ and non-BKCa K+ channel was involved in the NS1619-induced vasodilation only in hypoxic lungs. CONCLUSIONS NS1619 causes pulmonary vasodilation by affecting multiple complementary pathways, including stimulation of NO production, activation of BKCa channels, other TEA-sensitive K+ channels, and L-type Ca2+ channels, and could be considered as a therapeutic agent in hypoxic PH.
Collapse
|
23
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
24
|
Yan J, Chen R, Liu P, Gu Y. Docosahexaenoic acid attenuates hypoxic pulmonary vasoconstriction by activating the large conductance Ca2+-activated K+ currents in pulmonary artery smooth muscle cells. Pulm Pharmacol Ther 2013; 28:9-16. [PMID: 24269522 DOI: 10.1016/j.pupt.2013.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 10/14/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND The inhibition of potassium (K(+)) channels plays an important role in pulmonary circulation for its close relationship with hypoxic pulmonary vasoconstriction (HPV). Docosahexaenoic acid (DHA), a n-3 polyunsaturated fatty acid, is well known for its prevention and treatment of cardiovascular diseases. However the role which DHA plays in HPV remains unclear. Here, we tested the hypothesis that DHA contributes to pulmonary vascular tone by activating the large conductance Ca(2+)-activated K(+) (BKCa) channels via calcium sparks. METHODS AND RESULTS Isolated resistance pulmonary artery preparation was used to study the vasomotor response to DHA. Pulmonary artery smooth muscle cells (PASMCs) were isolated from third- to fourth order branches of pulmonary arteries by collagenase digestion method. BKCa and the voltage-dependent potassium channel (Kv) currents in PASMCs were measured by the whole-cell patch-clamp technique. Fluo-8 was used as a fluorescence indicator for the real-time measurement of calcium dynamics in PASMCs. DHA dilated resistance pulmonary arteries in a dose-dependent manner in hypoxic or normoxic solution, and the effects of DHA were abolished after pre-treatment with heparin (100 μg/ml), a 1,4,5-triphosphate (IP3) receptor (IP3R) inhibitor or iberiotoxin (100 nmol/L), a specific inhibitor of BKCa channel. DHA activated BKCa channels in a dose-dependent manner, however, the activation induced by DHA was not seen in PASMCs pre-incubated with heparin. While the Kv currents decreased from 102.6 ± 5.4 to 36.5 ± 6.7 pA/pF by addition of 10 μmol/L DHA. DHA also caused calcium sparks in PASMCs. Moreover, hypoxia inhibited BKCa currents in PASMCs, but this inhibition was reversed by DHA. CONCLUSION Our findings suggest that DHA is a novel BKCa opener in PASMCs, which may indicate a potential therapeutic role in HPV.
Collapse
Affiliation(s)
- Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, China.
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, China
| | - Peijing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, China.
| | - Yuchun Gu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Abstract
Hypoxic pulmonary hypertension of the newborn is characterized by elevated pulmonary vascular resistance and pressure due to vascular remodeling and increased vessel tension secondary to chronic hypoxia during the fetal and newborn period. In comparison to the adult, the pulmonary vasculature of the fetus and the newborn undergoes tremendous developmental changes that increase susceptibility to a hypoxic insult. Substantial evidence indicates that chronic hypoxia alters the production and responsiveness of various vasoactive agents such as endothelium-derived nitric oxide, endothelin-1, prostanoids, platelet-activating factor, and reactive oxygen species, resulting in sustained vasoconstriction and vascular remodeling. These changes occur in most cell types within the vascular wall, particularly endothelial and smooth muscle cells. At the cellular level, suppressed nitric oxide-cGMP signaling and augmented RhoA-Rho kinase signaling appear to be critical to the development of hypoxic pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China
| | | |
Collapse
|
26
|
Hu XQ, Zhang L. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 2012; 17:974-87. [PMID: 22521666 PMCID: PMC3414640 DOI: 10.1016/j.drudis.2012.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/06/2012] [Accepted: 04/05/2012] [Indexed: 12/23/2022]
Abstract
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
27
|
Dospinescu C, Widmer H, Rowe I, Wainwright C, Cruickshank SF. Hypoxia sensitivity of a voltage-gated potassium current in porcine intrapulmonary vein smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2012; 303:L476-86. [PMID: 22773694 DOI: 10.1152/ajplung.00157.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.
Collapse
Affiliation(s)
- Ciprian Dospinescu
- School of Pharmacy and Life Sciences, Robert Gordon Univ, Schoolhill, Aberdeen, Scotland UK
| | | | | | | | | |
Collapse
|
28
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
29
|
Ahn YT, Kim YM, Adams E, Lyu SC, Alvira CM, Cornfield DN. Hypoxia-inducible factor-1α regulates KCNMB1 expression in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 302:L352-9. [PMID: 22114151 DOI: 10.1152/ajplung.00302.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we observed that hypoxia increases the expression of the β1-subunit (KCNMB1) of the calcium-sensitive potassium channel (BK(Ca)). Herein, we elucidate the mechanism whereby hypoxia increases KCNMB1 expression in human pulmonary artery smooth muscle cells (hPASMC). In response to hypoxia, the expression of both the transcription factor hypoxia-inducible factor 1-α (HIF-1α) and KCNMB1 are increased. Knockdown of HIF-1α using a shRNA plasmid blocked the hypoxic induction of KCNMB1 expression. Chromatin immunoprecipitation (ChIP) demonstrated HIF-1α binding to three discrete regions of the human KCNMB1 promoter known to contain hypoxia response elements (HREs). A KCNMB1 promoter reporter assay combined with site-directed mutagenesis identified two adjacent HREs located between -3,540 bp and -3,311 bp that are essential for the hypoxic induction of KCNMB1 promoter activity. Furthermore, additional ChIP assays demonstrated recruitment of the HIF-1α transcriptional coactivator, p300, to this same promoter region. Treatment of hPASMC with the histone deacetylase inhibitor, trichostatin, prolonged the increase in KCNMB1 observed with hypoxia, suggesting that alterations in chromatin remodeling function to limit the hypoxic induction of KCNMB1. Finally, KCNMB1 knockdown potentiated the hypoxia-induced increase in cytosolic calcium in hPASMC, highlighting the contribution of the β1-subunit in modulating vascular SMC tone in response to acute hypoxia. In conclusion, HIF-1α increases KCNMB1 expression in response to hypoxia in hPASMC by binding to two HREs located at -3,540 to -3,311 of the KCNMB1 promoter. We speculate that selective modulation of KCNMB1 expression may serve as a novel therapeutic approach to address diseases characterized by an increase in vascular tone.
Collapse
Affiliation(s)
- Yong-Tae Ahn
- Ctr. for Excellence in Pulmonary Biology, Division of Pediatric Pulmonary, Asthma and Critical Care Medicine, Stanford Univ. Medical School Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
30
|
Li Y, Connolly M, Nagaraj C, Tang B, Bálint Z, Popper H, Smolle-Juettner FM, Lindenmann J, Kwapiszewska G, Aaronson PI, Wohlkoenig C, Leithner K, Olschewski H, Olschewski A. Peroxisome proliferator-activated receptor-β/δ, the acute signaling factor in prostacyclin-induced pulmonary vasodilation. Am J Respir Cell Mol Biol 2011; 46:372-9. [PMID: 22021335 DOI: 10.1165/rcmb.2010-0428oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As powerful vasodilators, prostacyclin analogues are presently the mainstay in the treatment of severe pulmonary arterial hypertension. Although the hemodynamic effects of prostacyclin analogues are well known, the molecular mechanism of their acute effects on pulmonary vascular tone and systemic vascular tone remains poorly understood. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) was previously identified as a putative receptor responsible for the modulation of target gene expression in response to prostacyclin analogues. The present study investigated the signaling pathway of prostacyclin in human pulmonary arterial smooth muscle cells (PASMCs), and sought to define the role of PPARβ/δ in the acute vasodilating effect. In human PASMCs, prostacyclin rapidly activated TWIK-related acid-sensitive K channel 1 (TASK-1) and calcium-dependent potassium channels (K(Ca)). This pathway was mediated via the prostanoid I receptor-protein kinase A pathway. The silencing of PPARβ/δ demonstrated that the downstream K(Ca) activation was exclusively dependent on PPARβ/δ signaling, whereas the activation of TASK-1 was not. In addition, the PPARβ/δ-induced activation of K(Ca) was independent of NO. The acute prostacyclin-induced K(Ca) activation is critically dependent on PPARβ/δ as a rapid signaling factor. This accounts in part for the vasodilating effect of prostacyclin in pulmonary arteries, and provides insights into a new molecular explanation for the effects of prostanoids.
Collapse
Affiliation(s)
- Yingji Li
- Division of Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Auenbruggerplatz 2.6, A-8036 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen Y, Luo F, Luo S, Wu Z, Zhou J. The augmenter of liver regeneration protects the kidneys after orthotopic liver transplantation possibly by upregulating HIF-1α and O2-sensitive K+ channels. Surg Today 2011; 41:382-9. [DOI: 10.1007/s00595-010-4282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 01/04/2010] [Indexed: 02/01/2023]
|
32
|
Liu B, Sun X, Zhu Y, Gan L, Xu H, Yang X. Biphasic effects of H(2)O(2) on BK(Ca) channels. Free Radic Res 2011; 44:1004-12. [PMID: 20560834 DOI: 10.3109/10715762.2010.495126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inhibitory or activating effect of H(2)O(2) on large conductance calcium and voltage-dependent potassium (BK(Ca)) channels has been reported. However, the mechanism by which this occurs is unclear. In this paper, BK(Ca) channels encoded by mouse Slo were expressed in HEK 293 cells and BK(Ca) channel activity was measured by electrophysiology. The results showed that H(2)O(2) inhibited BK(Ca) channel activity in inside-out patches but enhanced BK(Ca) channel activity in cell-attached patches. The inhibition by H(2)O(2) in inside-out patches may be due to oxidative modification of cysteine residues in BK(Ca) channels or other membrane proteins that regulate BK(Ca) channel function. PI3K/AKT signaling modulates the H(2)O(2)-induced BK(Ca) channel activation in cell-attached patches. BK(Ca) channels and PI3K signaling pathway were involved in H(2)O(2)-induced vasodilation and H(2)O(2)-induced vasodilation by PI3K pathway was mainly due to modulation of BK(Ca) channel activity.
Collapse
Affiliation(s)
- Bo Liu
- Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
33
|
The role of the large-conductance voltage-dependent and calcium-activated potassium (BKCa) channels in the regulation of rat ductus arteriosus tone. Heart Vessels 2010; 25:556-64. [DOI: 10.1007/s00380-010-0008-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 12/10/2009] [Indexed: 11/27/2022]
|
34
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Gurney AM, Joshi S, Manoury B. KCNQ potassium channels: new targets for pulmonary vasodilator drugs? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:405-17. [PMID: 20204745 DOI: 10.1007/978-1-60761-500-2_26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smooth muscle cells regulate the diameter of pulmonary arteries and the resistance to blood flow in the pulmonary circulation. These cells are normally relaxed to maintain low intrinsic vessel tone, but are contracted in pulmonary arterial hypertension (PAH). Potassium channels in the smooth muscle cell help to maintain low tone by polarising the membrane and preventing Ca(2+) influx through voltage-operated Ca(2+) channels. There is a loss of K(+) channel activity in PAH, so drugs that open K(+) channels are predicted to have a beneficial effect, provided their action can be restricted to the pulmonary circulation. Here we review the myriad of K(+) channels that are expressed in pulmonary arteries and suggest the roles that each might play in regulating pulmonary artery tone. We conclude that members of the KCNQ family of K(+) channels, the most recent K(+) channels to be discovered in pulmonary artery, may be a useful therapeutic target for the treatment of PAH. KCNQ channels appear to be preferentially expressed in pulmonary arteries and drugs that modulate their activity have potent effects on pulmonary artery tone.
Collapse
Affiliation(s)
- Alison M Gurney
- Faculty of Life Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK, Alison.
| | | | | |
Collapse
|
36
|
Han JG, Yang Q, Yao XQ, Kwan YW, Shen B, He GW. Role of Large-conductance Calcium-activated Potassium Channels of Coronary Arteries in Heart Preservation. J Heart Lung Transplant 2009; 28:1094-101. [DOI: 10.1016/j.healun.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/02/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022] Open
|
37
|
Zhu S, Browning DD, White RE, Fulton D, Barman SA. Mutation of protein kinase C phosphorylation site S1076 on alpha-subunits affects BK(Ca) channel activity in HEK-293 cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L758-66. [PMID: 19592459 DOI: 10.1152/ajplung.90518.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large conductance, calcium- and voltage-activated potassium (BK(Ca)) channels are important modulators of pulmonary vascular smooth muscle membrane potential, and phosphorylation of BK(Ca) channels by protein kinases regulates pulmonary arterial smooth muscle function. However, little is known about the effect of phosphorylating specific channel subunits on BK(Ca) channel activity. The present study was done to determine the effect of mutating protein kinase C (PKC) phosphorylation site serine 1076 (S1076) on transfected human BK(Ca) channel alpha-subunits in human embryonic kidney (HEK-293) cells, a heterologous expression system devoid of endogenous BK(Ca) channels. Results showed that mutating S1076 altered the effect of PKC activation on BK(Ca) channels in HEK-293 cells. Specifically, the phospho-deficient mutation BK(Ca)-alpha(S1076A)/beta(1) attenuated the excitatory effect of the PKC activator phorbol myristate acetate (PMA) on BK(Ca) channels, whereas the phospho-mimetic mutation BK(Ca)-alpha(S1076E)/beta(1) increased the excitatory effect of PMA on BK(Ca) channels. In addition, the phospho-null mutation S1076A blocked the activating effect of cGMP-dependent protein kinase G (PKG) on BK(Ca) channels. Collectively, these results suggest that specific putative PKC phosphorylation site(s) on human BK(Ca) channel alpha-subunits influences BK(Ca) channel activity, which may subsequently alter pulmonary vascular smooth muscle function and tone.
Collapse
Affiliation(s)
- Shu Zhu
- Dept. of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
38
|
Expression of BK(Ca) channels in human pulmonary arteries: relationship with remodeling and hypoxic pulmonary vasoconstriction. Vascul Pharmacol 2008; 49:178-84. [PMID: 18723123 DOI: 10.1016/j.vph.2008.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/18/2008] [Accepted: 07/25/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND Potassium channels are important in pulmonary circulation because they have been closely related to hypoxic pulmonary vasoconstriction (HPV). The objective of the study was to determine whether structural changes in pulmonary arteries (PA), such as those observed in patients with chronic obstructive pulmonary disease (COPD), might be associated with changes in the mRNA expression of both BK(Ca) and K(V) channels and their potential relationship with HPV. METHODS PA (about 1.5 mm in diameter) were obtained from 16 patients who underwent resective lung surgery. Intimal thickening was evaluated morphometrically. mRNA expression of BK(Ca), K(V)1.2, K(V)1.5, K(V)2.1 and K(V)3.1 was evaluated by RT-PCR in PA homogenates. Endothelial function and HPV were assessed in vitro in isolated PA using an organ bath. RESULTS Intimal enlargement was closely associated with an increase in the expression of BK(Ca) channel (r=0.57, p<0.05). Pulmonary arteries incubated with charybdotoxin, a BK(Ca) channel blocking agent, showed lower response to endothelium-dependent vasodilators indicating its contribution to reduce vascular tone. Pulmonary arteries with more pronounced responses to hypoxia were those with greater gene expression of BK(Ca) channels, suggesting a potential role in attenuating HPV (r=0.52, p<0.05). No changes in the expression of K(V) channels were found in remodeled arteries. CONCLUSIONS Structural changes of PA in COPD could alter the response to hypoxia due to changes in BK(Ca) potassium channel distribution. Since BK(Ca) channels contribute to diminish vascular tone, their increased expression in remodeled PA might play a role in attenuating HPV.
Collapse
|
39
|
Marino M, Bény JL, Peyter AC, Bychkov R, Diaceri G, Tolsa JF. Perinatal hypoxia triggers alterations in K+ channels of adult pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1171-82. [PMID: 17720874 DOI: 10.1152/ajplung.00126.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adverse events during the perinatal period, like hypoxia, have been associated with adult diseases. In pulmonary vessels, K(+) channels play an important role in the regulation of vascular tone. In the fetus, Ca(2+)-activated K(+) channels (K(Ca)) are predominant, whereas from birth voltage-gated K(+) channels (K(V)) prevail in the adult. We postulated that perinatal hypoxia could alter this maturational shift and influence regulation of pulmonary vascular tone in relation to K(+) channels in adulthood. We evaluated the effects of perinatal hypoxia on K(V) and K(Ca) channels in the adult main pulmonary artery (PA) using a murine model. Electrophysiological measurements showed a greater outward current in PA smooth muscle cells of mice born in hypoxia than in controls. In controls, only K(V) channels contributed to this current, whereas in mice born in hypoxia both K(V) and K(Ca) channels were implicated. K(V) channel activity was even higher in mice born in hypoxia than in controls. Therefore, perinatal hypoxia results in increased K(Ca) and K(V) channel activity in adult PA. Moreover, PA of adults born in hypoxia displayed higher large-conductance K(Ca) alpha-subunit and K(V)1.5 alpha-subunit protein expression than controls. Interestingly, relaxation induced by nitric oxide (NO) donors [S-nitroso-N-acetyl-D,l-penicillamine, 2-(N,N-diethylamino)-diazenolate-2-oxide] in isolated PA of control mice was not mediated by K(Ca) channels and only slightly by K(V) channels, whereas following perinatal hypoxia both K(Ca) and K(V) channels contributed to this relaxation. Thus perinatal hypoxia results in altered expression and activity of different K(+) channels in the adult main PA, which could contribute to modifications of pulmonary vasoreactivity.
Collapse
Affiliation(s)
- M Marino
- Laboratory of Vascular Cell Physiology, Department of Zoology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Fountain SJ, Cheong A, Li J, Dondas NY, Zeng F, Wood IC, Beech DJ. K(v)1.5 potassium channel gene regulation by Sp1 transcription factor and oxidative stress. Am J Physiol Heart Circ Physiol 2007; 293:H2719-25. [PMID: 17660393 DOI: 10.1152/ajpheart.00637.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(V)1.5, a voltage-gated potassium channel, has functional importance in regulating blood vessel tone and cardiac action potentials and is a target for numerous therapeutic drug development programs. Despite the importance of K(V)1.5, there is little knowledge of the mechanisms controlling expression of its underlying gene, Kcna5. We identified a 5' flanking region of the murine Kcna5 gene that drives expression of a luciferase reporter gene in primary smooth muscle cells and a smooth muscle cell line. The promoter contained CACCC nucleotide motifs, which we have shown to bind the Sp1 transcription factor in the aorta under physiological conditions in vivo. Inhibition of Sp1-Kcna5 promoter interactions using mithramycin A, a dominant-negative Sp1 mutant, or disruption of the CACCC boxes by mutagenesis inhibited promoter activity. Conversely, expression of exogenous Sp1 augmented promoter activity. Sp1 has known sensitivity to oxidative stress and, consistent with this property, Kcna5 promoter activity was suppressed by hydrogen peroxide-induced oxidative stress. Our results show that Kcna5 promoter activity in vascular smooth muscle is critically dependent on Sp1 regulation via CACCC box motifs and identify mechanisms that potentially influence the expression of K(V)1.5 channel expression in physiological or pathological conditions.
Collapse
Affiliation(s)
- Samuel J Fountain
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhao G, Adebiyi A, Xi Q, Jaggar JH. Hypoxia reduces KCa channel activity by inducing Ca2+ spark uncoupling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2007; 292:C2122-8. [PMID: 17314264 PMCID: PMC2241735 DOI: 10.1152/ajpcell.00629.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arterial smooth muscle cell large-conductance Ca(2+)-activated potassium (K(Ca)) channels have been implicated in modulating hypoxic dilation of systemic arteries, although this is controversial. K(Ca) channel activity in arterial smooth muscle cells is controlled by localized intracellular Ca(2+) transients, termed Ca(2+) sparks, but hypoxic regulation of Ca(2+) sparks and K(Ca) channel activation by Ca(2+) sparks has not been investigated. We report here that in voltage-clamped (-40 mV) cerebral artery smooth muscle cells, a reduction in dissolved O(2) partial pressure from 150 to 15 mmHg reversibly decreased Ca(2+) spark-induced transient K(Ca) current frequency and amplitude to 61% and 76% of control, respectively. In contrast, hypoxia did not alter Ca(2+) spark frequency, amplitude, global intracellular Ca(2+) concentration, or sarcoplasmic reticulum Ca(2+) load. Hypoxia reduced transient K(Ca) current frequency by decreasing the percentage of Ca(2+) sparks that activated a transient K(Ca) current from 89% to 63%. Hypoxia reduced transient K(Ca) current amplitude by attenuating the amplitude relationship between Ca(2+) sparks that remained coupled and the evoked transient K(Ca) currents. Consistent with these data, in inside-out patches at -40 mV hypoxia reduced K(Ca) channel apparent Ca(2+) sensitivity and increased the K(d) for Ca(2+) from approximately 17 to 32 microM, but did not alter single-channel amplitude. In summary, data indicate that hypoxia reduces K(Ca) channel apparent Ca(2+) sensitivity via a mechanism that is independent of cytosolic signaling messengers, and this leads to uncoupling of K(Ca) channels from Ca(2+) sparks. Transient K(Ca) current inhibition due to uncoupling would oppose hypoxic cerebrovascular dilation.
Collapse
Affiliation(s)
- Guiling Zhao
- Dept. of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|