1
|
Li R, Huddleston SJ, Prastein DJ. In-hospital outcome of type A aortic dissection repair in patients with chronic obstructive pulmonary disease: A population study of National Inpatient Sample from 2015 to 2020. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 69:19-23. [PMID: 38890061 DOI: 10.1016/j.carrev.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common comorbidity that has been linked to higher mortality and respiratory complications in cardiac surgery. However, the postoperative outcomes for COPD patients undergoing Type A Aortic Dissection (TAAD) repair remain unexplored. Thus, this study aimed to assess the impact of COPD on in-hospital outcomes of TAAD repair in a national registry. METHODS Patients undergoing TAAD repair were identified in National Inpatient Sample from the last quarter of 2015-2020. Multivariable logistic regressions were used to compare in-hospital outcomes between patients with and without COPD, where demographics, comorbidities, hospital characteristics, primary payer status, and transfer status were adjusted. RESULTS There were 701 (16.37 %) COPD patients and 3581 (83.63 %) non-COPD patients who went under TAAD repair, where the prevalence of COPD was higher than in the general population (6 %). COPD and non-COPD patients have comparable rates of in-hospital mortality (14.69 % vs 15.19 %, aOR 1.016, 95 CI 0.797-1.295, p = 0.9) and there was no indication of delayed surgery. However, COPD patients had a higher risk of mechanical ventilation (37.80 % vs 31.42 %, aOR 1.521, 95 CI 1.267-1.825, p < 0.01) and a higher rate of transferring out to other facilities (38.37 % vs 32.23 %, aOR 1.271, 95 CI 1.054-1.533, p = 0.01). In addition, COPD patients had a longer hospital length of stay (14.28 ± 11.32 vs 13.85 ± 12.78 days, F = 5.61, p = 0.01). CONCLUSION The presence of COPD could be a risk factor for the development of aortic dissection. However, outcomes for COPD patients were largely similar to those without COPD. These findings can be valuable for preoperative assessments and tailoring perioperative care for COPD patients undergoing TAAD repair.
Collapse
Affiliation(s)
- Renxi Li
- The George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America.
| | - Stephen J Huddleston
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Deyanira J Prastein
- The George Washington University Hospital, Department of Surgery, Washington, DC, United States of America
| |
Collapse
|
2
|
Li R, Sidawy A, Nguyen BN. The association of chronic obstructive pulmonary disease and 30-day outcomes of infrainguinal bypass surgery: A propensity-score matching study. Vascular 2024:17085381241269790. [PMID: 39075730 DOI: 10.1177/17085381241269790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Infrainguinal bypass surgery is an effective treatment for peripheral artery disease (PAD). While chronic obstructive pulmonary disease (COPD) has been linked to heightened risks of mortality and morbidity in major surgery, a thorough investigation into COPD's impact on infrainguinal bypass outcomes remained underexplored. Thus, this study aimed to assess the 30-day outcomes for COPD patients undergoing infrainguinal bypass surgery. METHODS COPD and non-COPD patients who underwent infrainguinal bypass were identified in American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database from 2011 to 2022. Patients of age<18 were excluded. A 1:1 propensity-score matching was used to match demographics, baseline characteristics, symptomatology, procedure, conduit, and anesthesia. Thirty postoperative outcomes were compared. RESULTS There were 3,183 (12.64%) and 22,004 (87.36%) patients with and without COPD, respectively, who underwent infrainguinal bypass. COPD patients had a higher comorbid burden. After propensity-score matching, COPD patients had higher sepsis (3.55% vs 2.42%, p = 0.01), wound complications (18.94% vs 16.40%, p = 0.01), and 30-day readmission (18.00% vs 14.92%, p < 0.01). However, COPD and non-COPD patients had comparable 30-day mortality (2.54% vs 2.67%, p = 0.81), and organ system complications including cardiac (3.58% vs 3.99%, p = 0.43), pulmonary (3.96% vs 3.20%, p = 0.12), and renal complications (1.70% vs 1.82%, p = 0.78). Limb-specific outcomes including major amputation (2.95% vs 2.50%, p = 0.30), untreated loss of patency (1.85% vs 1.38%, p = 0.16), and patent graft (98.24% vs 98.65%, p = 0.27) were also comparable between the cohorts. CONCLUSION While COPD might be associated with the development of PAD due to potentially shared pathophysiology, it may not be an independent risk factor for the major 30-day outcomes in infrainguinal bypass surgery.
Collapse
Affiliation(s)
- Renxi Li
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- Department of Surgery, The George Washington University Hospital, Washington, DC, USA
| | - Anton Sidawy
- Department of Surgery, The George Washington University Hospital, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Department of Surgery, The George Washington University Hospital, Washington, DC, USA
| |
Collapse
|
3
|
Oh ES, Ro H, Ryu HW, Song YN, Park JY, Kim N, Kim HY, Oh SM, Lee SY, Kim DY, Kim S, Hong ST, Kim MO, Lee SU. Methyl lucidone inhibits airway inflammatory response by reducing TAK1 activity in human bronchial epithelial NCI-H292 cells. Heliyon 2023; 9:e20154. [PMID: 37809903 PMCID: PMC10559928 DOI: 10.1016/j.heliyon.2023.e20154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Background Methyl lucidone (ML), a methyl derivative of lucidone, has anti-inflammatory properties. However, the molecular mechanisms that reduce the inflammatory effect of ML in human lung epithelial cells remain unkown. This study aimed to elucidate the molecular mechanisms underlying the anti-inflammatory effect of ML. Methods Four compounds (ML, methyl linderone, kanakugiol, and linderone) from Lindera erythrocarpa Makino were evaluated for their ability to reduce MUC5AC secretion levels in phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells using ELISA. The expression and secretion levels of inflammatory response-related proteins were analyzed using quantitative reverse transcription-PCR, ELISA, and western blotting. To determine whether ML directly regulates TGF-β-activated kinase 1 (TAK1), we performed an in vitro kinase assay. Results ML treatment effectively reduced the levels of inflammatory cytokines, including interleukin-1β and TNF-α, increased by stimulation. Furthermore, ML downregulated the pathway cascade of both IκB kinase (IKK)/NF-κB and p38 mitogen-activated protein (MAP) kinase/CREB by inhibiting the upstream kinase TAK1. An in vitro kinase analysis confirmed that ML treatment significantly reduced the kinase activity of TAK1. Conclusion ML pretreatment repressed the PMA-stimulated inflammation reaction by reducing the TAK1-mediated IKK/NF-κB and p38 MAP kinase/CREB signaling. These findings suggest that ML may improve respiratory health and can be used as a dietary supplement or functional food to prevent inflammatory lung diseases.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Namho Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hae-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Seon Min Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Su-Yeon Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Sooil Kim
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| |
Collapse
|
4
|
Kim MO, Lee JW, Lee JK, Song YN, Oh ES, Ro H, Yoon D, Jeong YH, Park JY, Hong ST, Ryu HW, Lee SU, Lee DY. Black Ginseng Extract Suppresses Airway Inflammation Induced by Cigarette Smoke and Lipopolysaccharides In Vivo. Antioxidants (Basel) 2022; 11:antiox11040679. [PMID: 35453364 PMCID: PMC9025275 DOI: 10.3390/antiox11040679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor that can induce airway enlargement, airway obstruction, and airway mucus hypersecretion. Although studies have shown that Korean black ginseng extract (BGE) has potent anti-inflammatory and antioxidant activities, the CS-induced inflammatory responses and molecular mechanisms are yet to be examined. The aim of this study was to examine the effect of BGE on the airway inflammatory response and its molecular mechanisms, using CS/lipopolysaccharides (LPS)-exposed animals and PMA-stimulated human airway epithelial NCI-H292 cells. The results show that BGE inhibited the recruitment of immune cells and the release of inflammatory mediators, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, elastase, and reactive oxygen species (ROS) in the airways of CS/LPS-exposed animals. BGE inhibited mucus secretion and the expression of Mucin 5AC (MUC5AC). Furthermore, BGE exhibited an anti-inflammatory effect by downregulating a signaling pathway mediated by transforming growth factor-β-activated kinase (TAK) 1, an important protein that accelerates inflammation by cigarette smoke (CS). Overall, the findings show that BGE inhibits lung inflammation and mucus secretion by decreasing the activation of TAK1 both in human epithelial cells and in CS/LPS-exposed animals, and could be a potential adjuvant in the treatment and prevention of airway inflammatory diseases caused by airway irritants such as CS.
Collapse
Affiliation(s)
- Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae Kyoung Lee
- Rpbio Research Institute, Rpbio Co., Ltd., Suwon 16229, Korea;
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hyunju Ro
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
| | - Yun-Hwa Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Ji-Yoon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Sung-Tae Hong
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| |
Collapse
|
5
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Jung SY, Kim GD, Choi DW, Shin DU, Eom JE, Kim SY, Chai OH, Kim HJ, Lee SY, Shin HS. Epilobiumpyrricholophum Extract Suppresses Porcine Pancreatic Elastase and Cigarette Smoke Extract-Induced Inflammatory response in a Chronic Obstructive Pulmonary Disease Model. Foods 2021; 10:foods10122929. [PMID: 34945480 PMCID: PMC8700438 DOI: 10.3390/foods10122929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic airway exposure to harmful substances, such as deleterious gases, cigarette smoke (CS), and particulate matter, triggers chronic obstructive pulmonary disease (COPD), characterized by impaired lung function and unbridled immune responses. Emerging epigenomic and genomic evidence suggests that excessive recruitment of alveolar macrophages and neutrophils contributes to COPD pathogenesis by producing various inflammatory mediators, such as reactive oxygen species (ROS), neutrophil elastase, interleukin (IL) 6, and IL8. Recent studies showed that Epilobium species attenuated ROS, myeloperoxidase, and inflammatory cytokine production in murine and human innate immune cells. Although the Epilobium genus exerts anti-inflammatory, antioxidant, and antimicrobial effects, the question of whether the Epilobium species regulate lung inflammation and innate immune response in COPD has not been investigated. In this study, Epilobium pyrricholophum extract (EPE) suppressed inflammatory cell recruitment and clinical symptoms in porcine pancreatic elastase and CS extract-induced COPD mice. In addition, EPE attenuated inflammatory gene expression by suppressing MAPKs and NFκB activity. Furthermore, UPLC-Q-TOF MS analyses revealed the anti-inflammatory effects of the identified phytochemical constituents of EPE. Collectively, our studies revealed that EPE represses the innate immune response and inflammatory gene expression in COPD pathogenesis in mice. These findings provide insights into new therapeutic approaches for treating COPD.
Collapse
Affiliation(s)
- Sun Young Jung
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.J.); (G.-D.K.); (D.W.C.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea;
| | - Gun-Dong Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.J.); (G.-D.K.); (D.W.C.)
| | - Dae Woon Choi
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.J.); (G.-D.K.); (D.W.C.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea;
| | - Dong-Uk Shin
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea;
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea
| | - Ji-Eun Eom
- Food Functional Evaluation Support Team, Korea Food Research Institute, Wanju 55365, Korea;
| | - Seung Yong Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Ok Hee Chai
- Department of Anatomy, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Department of Food Science and Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Gyeongsangnam-do, Korea;
- EZmass. Co. Ltd., 501 Jinjudaero, Jinju 55365, Gyeongsangnam-do, Korea
| | - So-Young Lee
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea;
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea
- Correspondence: (S.-Y.L.); (H.S.S.); Tel.: +82-63-219-9348 (S.-Y.L.); +82-63-219-9296 (H.S.S.)
| | - Hee Soon Shin
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.J.); (G.-D.K.); (D.W.C.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea;
- Correspondence: (S.-Y.L.); (H.S.S.); Tel.: +82-63-219-9348 (S.-Y.L.); +82-63-219-9296 (H.S.S.)
| |
Collapse
|
7
|
Jing X, Luan Z, Liu B. miR-558 Reduces the Damage of HBE Cells Exposed to Cigarette Smoke Extract by Targeting TNFRSF1A and Inactivating TAK1/MAPK/NF-κB Pathway. Immunol Invest 2021; 51:787-801. [PMID: 33459100 DOI: 10.1080/08820139.2021.1874977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic smoking-related lung disease associated with higher mortality and morbidity. Herein, we attempted to investigate the function of miR-558/TNF Receptor Superfamily Member 1A (TNFRSF1A) in the progression of COPD. METHODS GEO database was applied to filtrate the differentially expressed mRNAs and miRNAs. KEGG enrichment was used to select the meaningful pathway related to the differentially expressed genes. TargetScan was used to predict the upstream regulator of TNFRSF1A, which was further affirmed by dual luciferase assay. HBE cells were stimulated by 20 μg/mL cigarette smoke extract (CSE) to mimic the COPD in vitro. The activity, apoptosis and inflammatory factors of HBE cells were evaluated by biological experiments. The levels of proteins related to TAK1/MAPK/NF-κB pathway were measured by Western blot. RESULTS TNFRSF1A is found to be highly expressed in COPD samples and enriched in TNF signaling pathway through bioinformatics analysis. miR-558 was verified as an upstream regulator of TNFRSF1A and negatively regulated TNFRSF1A expression. Up-regulation of miR-558 alleviated CSE-induced damage on HBE cells. The alleviative effect of miR-558 mimic on CSE-induced damage was suppressed by TNFRSF1A overexpression. The elevated expression of p-TAK1/p-p38 MAPK/p-NF-κB P65 in CSE condition was suppressed by miR-558 up-regulation. However, the results were reversed by TNFRSF1A overexpression. TAK1 inhibitor blocked the activation of TAK1/MAPK/NF-κB pathway, which was consistent with the results from miR-558 up-regulation. CONCLUSIONS Up-regulation of miR-558 relieved the damage of HBE cells-triggered by CSE via reducing TNFRSF1A and inactivating TAK1/MAPK/NF-κB pathway, affording novel molecules for COPD treatment.
Collapse
Affiliation(s)
- Xubo Jing
- Department of Infectious Disease, Yantai Mountain Hospital of Yantai, Yantai, Shandong, P. R. China
| | - Zhaoji Luan
- Department of Respiratory and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong, P. R. China
| | - Baoliang Liu
- Department of Respiratory and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong, P. R. China
| |
Collapse
|
8
|
Ramu S, Calvén J, Michaeloudes C, Menzel M, Akbarshahi H, Chung KF, Uller L. TLR3/TAK1 signalling regulates rhinovirus-induced interleukin-33 in bronchial smooth muscle cells. ERJ Open Res 2020; 6:00147-2020. [PMID: 33043044 PMCID: PMC7533303 DOI: 10.1183/23120541.00147-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background Asthma exacerbations are commonly associated with rhinovirus (RV) infection. Interleukin-33 (IL-33) plays an important role during exacerbation by enhancing Type 2 inflammation. Recently we showed that RV infects bronchial smooth muscle cells (BSMCs) triggering production of interferons and IL-33. Here we compared levels of RV-induced IL-33 in BSMCs from healthy and asthmatic subjects, and explored the involvement of pattern-recognition receptors (PRRs) and downstream signalling pathways in IL-33 expression. Method BSMCs from healthy and severe and non-severe asthmatic patients were infected with RV1B or stimulated with the PRR agonists poly(I:C) (Toll-like receptor 3 (TLR3)), imiquimod (TLR7) and poly(I:C)/LyoVec (retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated protein 5 (MDA5)). Knockdown of TLR3, RIG-I and MDA5 was performed, and inhibitors targeting TBK1, nuclear factor-κB (NF-κB) and transforming growth factor (TGF)-β-activated kinase 1 (TAK1) were used. Gene and protein expression were assessed. Results RV triggered IL-33 gene and protein expression in BSMCs. BSMCs from patients with non-severe asthma showed higher baseline and RV-induced IL-33 gene expression compared to cells from patients with severe asthma and healthy controls. Furthermore, RV-induced IL-33 expression in BSMCs from healthy and asthmatic individuals was attenuated by knockdown of TLR3. Inhibition of TAK1, but not NF-κB or TBK1, limited RV-induced IL-33. The cytokine secretion profile showed higher production of IL-33 in BSMCs from patients with non-severe asthma compared to healthy controls upon RV infection. In addition, BSMCs from patients with non-severe asthma had higher levels of RV-induced IL-8, TNF-α, IL-1β, IL-17A, IL-5 and IL-13. Conclusion RV infection caused higher levels of IL-33 and increased pro-inflammatory and Type 2 cytokine release in BSMCs from patients with non-severe asthma. RV-induced IL-33 expression was mainly regulated by TLR3 and downstream via TAK1. These signalling molecules represent potential therapeutic targets for treating asthma exacerbations. Rhinovirus-induced IL-33 is overexpressed in bronchial smooth muscle cells from asthmatics, and the production of IL-33 following infection is mediated by activation of TLR3 and downstream TAK1 signallinghttps://bit.ly/3fXH0h3
Collapse
Affiliation(s)
- Sangeetha Ramu
- Dept of Experimental Medical Science, Lund University, Lund, Sweden.,These authors contributed equally
| | - Jenny Calvén
- Dept of Experimental Medical Science, Lund University, Lund, Sweden.,These authors contributed equally
| | | | - Mandy Menzel
- Dept of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hamid Akbarshahi
- Dept of Experimental Medical Science, Lund University, Lund, Sweden.,Dept of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Kian Fan Chung
- Airway Disease section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Lena Uller
- Dept of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Kadowaki M, Yamada H, Sato K, Shigemi H, Umeda Y, Morikawa M, Waseda Y, Anzai M, Kamide Y, Aoki-Saito H, Hisada T, Okajima F, Ishizuka T. Extracellular acidification-induced CXCL8 production through a proton-sensing receptor OGR1 in human airway smooth muscle cells: a response inhibited by dexamethasone. JOURNAL OF INFLAMMATION-LONDON 2019; 16:4. [PMID: 30828266 PMCID: PMC6381743 DOI: 10.1186/s12950-019-0207-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/27/2019] [Indexed: 12/13/2022]
Abstract
Background Human airway smooth muscle cells (ASMCs) contribute to bronchial contraction and airway hyperresponsiveness in patients with bronchial asthma. They also generate cytokines, chemokines, and matricellular proteins. Ovarian cancer G protein-coupled receptor 1 (OGR1) senses extracellular protons and mediates the production of interleukin-6 (IL-6) and connective tissue growth factor (CTGF) in ASMCs. Methods ASMCs were stimulated for the indicated time by pH 6.3 or pH 7.4-adjusted Dulbecco’s Modified Eagle Medium (DMEM) containing 0.1% bovine serum albumin (BSA) (0.1% BSA-DMEM). As a control stimulant, pH 7.4-adjusted 0.1% BSA-DMEM containing 10 ng/mL tumor necrosis factor-α (TNF-α) was used. Interleukin-8/C-X-C motif chemokine ligand 8 (CXCL8) mRNA expression in ASMCs was quantified by RT-PCR using real-time TaqMan technology. CXCL8 secreted from ASMCs was measured by enzyme-linked immunosorbent assay (ELISA). Phosphorylation at serine 536 of NF-κB p65 and binding of p65 to oligonucleotide containing an NF-κB consensus binding site were analyzed by Western blotting and an ELISA-based kit. Results Acidic pH induced a significant increase of CXCL8 mRNA expression and CXCL8 protein secretion in ASMCs. ASMCs transfected with small interfering RNA (siRNA) targeted for OGR1 produced less CXCL8 compared with those transfected with non-targeting siRNA. Protein kinase C (PKC) inhibitor, MEK1/2 inhibitor, and the inhibitor of IκB phosphorylation reduced acidic pH-stimulated CXCL8 production in ASMCs. Dexamethasone also inhibited acidic pH-stimulated CXCL8 production of ASMCs in a dose-dependent manner. Dexamethasone did not affect either phosphorylation or binding to the consensus DNA site of NF-κB p65. Conclusions CXCL8 released from ASMCs by extracellular acidification may play a pivotal role in airway accumulation of neutrophils. Glucocorticoids inhibit acidic pH-stimulated CXCL8 production independent of serine 536 phosphorylation and the binding to DNA of NF-κB p65, although NF-κB activity is essential for CXCL8 production in ASMCs.
Collapse
Affiliation(s)
- Maiko Kadowaki
- 1Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193 Japan
| | - Hidenori Yamada
- 2Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebeshi, 371-8511 Japan
| | - Koichi Sato
- 3Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebeshi, 371-8511 Japan
| | - Hiroko Shigemi
- 1Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193 Japan
| | - Yukihiro Umeda
- 1Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193 Japan
| | - Miwa Morikawa
- 1Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193 Japan
| | - Yuko Waseda
- 1Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193 Japan
| | - Masaki Anzai
- 1Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193 Japan
| | - Yosuke Kamide
- 2Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebeshi, 371-8511 Japan
| | - Haruka Aoki-Saito
- 2Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebeshi, 371-8511 Japan
| | - Takeshi Hisada
- 2Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebeshi, 371-8511 Japan
| | - Fumikazu Okajima
- 4Laboratory of Signal Transduction, Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori, 030-0943 Japan
| | - Tamotsu Ishizuka
- 1Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193 Japan
| |
Collapse
|
10
|
Lin M, Zhang J, Chen X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Nayak AP, Deshpande DA, Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases. F1000Res 2018; 7. [PMID: 29904584 PMCID: PMC5981194 DOI: 10.12688/f1000research.14581.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling (AR) is a progressive pathological feature of the obstructive lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). The pathology manifests itself in the form of significant, progressive, and (to date) seemingly irreversible changes to distinct respiratory structural compartments. Consequently, AR correlates with disease severity and the gradual decline in pulmonary function associated with asthma and COPD. Although current asthma/COPD drugs manage airway contraction and inflammation, none of these effectively prevent or reverse features of AR. In this review, we provide a brief overview of the features and putative mechanisms affecting AR. We further discuss recently proposed strategies with promise for deterring or treating AR.
Collapse
Affiliation(s)
- Ajay P Nayak
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Raymond B Penn
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
12
|
IL-1β induced IL-8 and uPA expression/production of dental pulp cells: Role of TAK1 and MEK/ERK signaling. J Formos Med Assoc 2018; 117:697-704. [PMID: 29709340 DOI: 10.1016/j.jfma.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/PURPOSE Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine involved in the inflammatory processes of dental pulp. IL-8 and urokinase plasminogen activator (uPA) are two inflammatory mediators. However, the role of transforming growth factor beta-activated kinase-1 (TAK1) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways in responsible for the effects of IL-1β on IL-8 and uPA expression/secretion of dental pulp cells are not clear. METHODS Human dental pulp cells were exposed to IL-1β with/without pretreatment with 5z-7-oxozeaneaeol (a TAK1 inhibitor) or U0126 (a MEK/ERK inhibitor). TAK1 activation was determined by immunofluorescent staining. The protein expression of IL-8 was tested by western blot. The expression of IL-8 and uPA mRNA was studied by reverse transcriptase-polymerase chain reaction (RT-PCR). The secretion of IL-8 and uPA was measured by enzyme-linked immunosorbent assay. RESULTS Exposure of dental pulp cells to IL-1β (0.1-10 ng/ml) stimulated IL-8 and uPA expression. IL-1β also induced IL-8 and uPA secretion of dental pulp cells. IL-1β stimulated p-TAK1 activation of pulp cells. Pretreatment and co-incubation of pulp cells by 5z-7oxozeaenol (1 and 2.5 μM) and U0126 (10 and 20 μM) prevented the IL-1β-induced IL-8 and uPA expression. 5z-7oxozeaenol and U0126 also attenuated the IL-1β-induced IL-8 and uPA secretion. CONCLUSION IL-1β is important in the pathogenesis of pulpal inflammatory diseases and repair via stimulation of IL-8 and uPA expression and secretion. These events are associated with TAK1 and MEK/ERK signaling. Blocking of TAK1 and MEK/ERK signaling has potential to control inflammation of dental pulp.
Collapse
|
13
|
Nakajima M, Kawaguchi M, Matsuyama M, Ota K, Fujita J, Matsukura S, Huang SK, Morishima Y, Ishii Y, Satoh H, Sakamoto T, Hizawa N. Transcription Elongation Factor P-TEFb Is Involved in IL-17F Signaling in Airway Smooth Muscle Cells. Int Arch Allergy Immunol 2018; 176:83-90. [PMID: 29649811 DOI: 10.1159/000488154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND IL-17F is involved in the pathogenesis of several inflammatory diseases, including asthma and COPD. However, the effects of steroids on the function of IL-17F signaling mechanisms are largely unknown. One of the transcription elongation factors, positive transcription elongation factor b (P-TEFb) composed of cyclin T1 and cyclin-dependent kinase 9 (CDK9), is known as a novel checkpoint regulator of gene expression via bromodomain-containing protein 4 (Brd4). METHODS Human airway smooth muscle cells were stimulated with IL-17F and the expression of IL-8 was evaluated by real-time PCR and ELISA. Next, the phosphorylation of CDK9 was determined by Western blotting. The CDK9 inhibitor and short interfering RNAs (siRNAs) targeting Brd4, cyclin T1, and CDK9 were used to identify the effect on IL-17F-induced IL-8 expression. Finally, the effect of steroids and its signaling were evaluated. RESULTS IL-17F markedly induced the transcription of the IL-8 gene and the expression of the protein. Pretreatment of CDK9 inhibitor and transfection of siRNAs targeting CDK9 markedly abrogated IL-17F-induced IL-8 production. Transfection of siRNAs targeting Brd4 and cyclin T1 diminished IL-17F-induced phosphorylation of CDK9 and IL-8 production. Moreover, budesonide decreased CDK9 phosphorylation and markedly inhibited IL-17F-induced IL-8 production. CONCLUSIONS This is the first report that P-TEFb is involved in IL-17F-induced IL-8 expression and that steroids diminish it via the inhibition of CDK9 phosphorylation. IL-17F and P-TEFb might be novel therapeutic targets for airway inflammatory diseases.
Collapse
Affiliation(s)
- Masayuki Nakajima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mio Kawaguchi
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Matsuyama
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kyoko Ota
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Junichi Fujita
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Matsukura
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Shau-Ku Huang
- Johns Hopkins University, Asthma and Allergy Center, Baltimore, Maryland, USA.,National Health Research Institutes, Taiwan, Taiwan
| | - Yuko Morishima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukio Ishii
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Satoh
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tohru Sakamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Bao SY, Sun QX, Yao CL. The interaction of TAK1 and TAB1 enhances LPS-induced cytokine release via modulating NF-κB activation (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2018; 74:450-458. [PMID: 29325713 DOI: 10.1016/j.fsi.2018.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Transforming growth factor-β-activating kinase 1 (TAK1) is triggered by foreign pathogenic infection and involves in proinflammatory response through the activation of nuclear factor-κB (NF-κB), which is specifically regulated by TAK1-binding protein 1 (TAB1). However, the expression and regulatory characterizations of TAK1 and TAB1 in fish immune response remain largely unknown. In the present study, the cDNA sequences of TAK1 (LcTAK1) and TAB1 (LcTAB1) were identified from large yellow croaker, Larimichthys crocea. The open reading frame (ORF) of LcTAK1 was 1725 bp in length, encoding 574 amino acids. The putative LcTAK1 protein contained a protein kinase domain and a C-terminal coiled-coil region. The ORF of LcTAB1 was 1518 bp encoding 505 amino acids. And a typical PP2Cc domain and a conserved sequence motif (PYVDFSQFYLLWGSDH) at C-terminal were identified in the predicted LcTAB1 protein. Multiple alignments showed that LcTAK1 shared 74.0-97.9% and LcTAB1 shared 37.4-95.8% sequence identities with TAK1 and TAB1 proteins from other species, respectively. Quantitative PCR analysis indicated that both LcTAK1 and LcTAB1 were broadly expressed in all examined tissues, with the most predominant expression in brain and the weakest expression in muscle, respectively. Subcellular localization revealed that both LcTAK1 and LcTAB1 expressed in the cytoplasm. In addition, LcTAK1 transcripts increased significantly in LCK cells after flagellin, LPS and poly I:C stimulation while LcTAB1 enhanced greatly after LPS and poly I:C challenge. Furthermore, the roles of them in NF-κB activation were investigated by overexpression of LcTAK1 and LcTAB1 in HEK293T cells. Our results revealed that NF-κB luciferase promoter expression could not be induced by overexpression of LcTAK1 or LcTAB1 alone, however, it could be induced by co-expression of LcTAK1 and LcTAB1 together. Moreover, the roles of LcTAK1 and LcTAB1 in immune response analysis showed that NF-κB activation enhanced significantly in co-overexpressed HEK293T cells following LPS and poly I:C stimulation. However, the expression levels of tumor necrosis factor (TNF)-α, Interleukin-6 (IL-6) and IL-8 were induced only after LPS challenge (p < .05). These findings suggested that the TAK1-TAB1 complex of large yellow croaker might play an important role in pro-inflammatory cytokines and chemokine release after LPS stimulation via inducing NF-κB activation.
Collapse
Affiliation(s)
- Shi-Yuan Bao
- Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Qing-Xue Sun
- Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Cui-Luan Yao
- Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
15
|
Tuleta I, Farrag T, Busse L, Pizarro C, Schaefer C, Pingel S, Nickenig G, Skowasch D, Schahab N. High prevalence of COPD in atherosclerosis patients. Int J Chron Obstruct Pulmon Dis 2017; 12:3047-3053. [PMID: 29089753 PMCID: PMC5655122 DOI: 10.2147/copd.s141988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis and COPD are both systemic inflammatory diseases that may influence each other. The aim of the present study was to determine the prevalence of COPD in patients with cerebral and/or peripheral artery disease and to assess factors associated with the presence of COPD. Following the diagnosis of cerebral and/or peripheral artery disease by means of duplex sonography, 166 consecutive patients underwent body plethysmography with capillary blood gas analysis. Thereafter, blood tests with determination of different parameters such as lipid profile, inflammatory and coagulation markers were conducted in remaining 136 patients who fulfilled inclusion criteria of the study. Thirty-six out of 136 patients suffered from COPD, mostly in early stages of the disease. Residual volume indicating emphysema was increased (162.9%±55.9% vs 124.5%±37.0%, p<0.05) and diffusion capacity was decreased (55.1%±19.5% vs 75.3%±18.6%, p<0.05) in COPD patients vs non-COPD group. In capillary blood gas analysis, COPD patients had lower partial pressure of oxygen (70.9±11.5 vs 75.2±11.0 mmHg, p<0.05) and higher partial pressure of carbon dioxide (36.8±7.5 vs 34.4±4.4 mmHg, p<0.05) compared with non-COPD individuals. Presence of COPD was associated with predominance of diabetes mellitus, interleukin-8-related systemic neutrophilic inflammation and anemia. In conclusion, COPD is highly prevalent in patients with atherosclerotic artery disease.
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Tarik Farrag
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Laura Busse
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Christian Schaefer
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Simon Pingel
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Nadjib Schahab
- Department of Internal Medicine II – Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2017; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
17
|
Porcine reproductive and respiratory syndrome virus (PRRSV) up-regulates IL-8 expression through TAK-1/JNK/AP-1 pathways. Virology 2017; 506:64-72. [PMID: 28347884 PMCID: PMC7111726 DOI: 10.1016/j.virol.2017.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
The acute phase of respiratory distress caused by porcine reproductive and respiratory syndrome virus (PRRSV) is likely a consequence of the release of inflammatory cytokines in the lung. IL-8, the main chemokine and activator of neutrophils, might be related to the lung injury upon PRRSV infection. In this study, we showed that PRRSV induced IL-8 expression in vivo and in vitro. Subsequently, we demonstrated that JNK and NF-κB pathways were activated upon PRRSV infection and required for the enhancement of IL-8 expression. We further verified that PRRSV-activated TAK-1 was essential for the activation of JNK and NF-κB pathways and IL-8 expression. Moreover, we revealed an AP-1 binding motif in the cloned porcine IL-8 (pIL-8) promoter, and deletion of this motif abolished the pIL-8 promoter activity. Finally, we found that the JNK-activated AP-1 subunit c-Jun was critical for the up-regulation of IL-8 expression by PRRSV. These data suggest that PRRSV-induced IL-8 production is likely through the TAK-1/JNK/AP-1 pathways. PRRSV infection induces IL-8 expression in vitro and in vivo. PRRSV up-regulates IL-8 expression through TAK-1/JNK/AP-1 pathways. AP-1 element in porcine IL-8 promoter is essential for PRRSV induced IL-8 expression.
Collapse
|
18
|
Nakajima M, Kawaguchi M, Ota K, Fujita J, Matsukura S, Huang SK, Morishima Y, Ishii Y, Satoh H, Sakamoto T, Hizawa N. IL-17F induces IL-6 via TAK1-NFκB pathway in airway smooth muscle cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:124-131. [PMID: 28474507 PMCID: PMC5418132 DOI: 10.1002/iid3.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022]
Abstract
Introduction Interleukin (IL)‐17F plays a critical role in the pathophysiology of asthma. However, the precise role of IL‐17F in airway smooth muscle cells (ASMCs) and its regulatory mechanisms remain to be defined. Therefore, we sought to investigate the expression of IL‐6 by IL‐17F and the involvement of transforming growth factor β‐activated kinase 1 (TAK1) and nuclear factor (NF)‐κB by in ASMCs. Methods ASMCs were cultured in the presence or absence of IL‐17F. The expression of IL‐6 gene and protein was analyzed using real‐time PCR and ELISA, and the activation of TAK1 and NF‐κB was detected by Western blotting. The effect of TAK1 inhibitor 5Z‐7‐oxozeaenol and NF‐κB inhibitor BAY 11‐7082 on the expression of IL‐6 was investigated. Finally, the short interfering RNAs (siRNAs) targeting TAK1 and a subunit of NF‐κB, p65 were transfected into ASMCs. Results The expression of IL‐6 gene and protein was significantly induced by IL‐17F. IL‐17F activated TAK1 and NF‐κB in ASMCs. Transfection of siRNAs targeting TAK1 abolished IL‐17F‐induced phosphorylation of p65. Both 5Z‐7‐oxozeaenol and BAY 11‐7082 significantly inhibited IL‐17F‐induced IL‐6 production in a dose‐dependent manner. Similarly, transfection of the cells with siRNAs targeting TAK1 and p65 inhibited the expression of IL‐6. Conclusions Collectively, these results provided evidence supporting the potential importance of the Th17‐ASMCs crosstalk via the IL‐17F‐IL‐6 axis in airway inflammation and as a candidate pharmacological target for airway inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Masayuki Nakajima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mio Kawaguchi
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kyoko Ota
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Junichi Fujita
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Matsukura
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Shau-Ku Huang
- Asthma and Allergy Center, Johns Hopkins University, Baltimore, Maryland, USA.,National Health Research Institutes, Taipei, Taiwan
| | - Yuko Morishima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukio Ishii
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Satoh
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tohru Sakamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Guan P, Cai W, Yu H, Wu Z, Li W, Wu J, Chen J, Feng G. Cigarette smoke extract promotes proliferation of airway smooth muscle cells through suppressing C/EBP-α expression. Exp Ther Med 2017; 13:1408-1414. [PMID: 28413486 PMCID: PMC5377277 DOI: 10.3892/etm.2017.4126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
Cigarette smoke has been considered a major contributor to the pathogenesis of chronic obstructive pulmonary disease (COPD). In COPD patients, the airway smooth muscle layer has been observed to be markedly thickened and the proliferation of airway smooth muscle cells (ASMCs) was therefore used by the present study as a model to assess the impact of cigarette smoke extract (CSE). ASMCs were exposed to various concentrations of CSE and the proliferation of the cells was analyzed by an MTT assay. Furthermore, the expression levels of calreticulin and CCAAT/enhancer-binding protein alpha (C/EBP-α) in CSE-stimulated ASMCs were determined by polymerase chain reaction and western blot analyses. In addition, the effects of RNA interference (RNAi) to knockdown calreticulin and/or C/EBP-α on ASMC proliferation were studied. CSE was found to promote the proliferation of ASMCs, which was associated with increased expression of calreticulin and decreased expression of C/EBP-α. Knockdown of calreticulin resulted in the upregulation of C/EBP-α and inhibition of cell proliferation, while simultaneous knockdown of C/EBP-α promoted cell proliferation. The present study revealed that CSE promoted the proliferation of ASMCs, which was mediated by inhibition of C/EBP-α. These findings shed new light on airway remodeling in COPD and may provide novel approaches for therapies.
Collapse
Affiliation(s)
- Pin Guan
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China.,Department of Medical Center, People's Hospital of Hainan, Haikou, Hainan 570311, P.R. China
| | - Wentao Cai
- Department of Orthopedics, People's Hospital of Hainan, Haikou, Hainan 570311, P.R. China
| | - Huapeng Yu
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhiyong Wu
- Department of Medical Center, People's Hospital of Hainan, Haikou, Hainan 570311, P.R. China
| | - Wei Li
- Department of Medical Center, People's Hospital of Hainan, Haikou, Hainan 570311, P.R. China
| | - Jie Wu
- Institute of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Juan Chen
- Department of Medical Center, People's Hospital of Hainan, Haikou, Hainan 570311, P.R. China
| | - Guangqiu Feng
- Department of Medical Center, People's Hospital of Hainan, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
20
|
Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling. Inflammation 2016; 39:16-29. [PMID: 26242865 DOI: 10.1007/s10753-015-0218-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Upregulation of WISP1 has been demonstrated in lung remodeling. Moreover, it has been recently found that some signaling components of WNT pathway can activate GSK3β signaling to mediate remodeling of airway smooth muscle (ASM) in asthma. Therefore, we hypothesized that WISP1, a signaling molecule downstream of the WNT signaling pathway, is involved in PI3K/GSK3β signaling to mediate ASM remodeling in asthma. Our results showed that WISP1 depletion partly suppressed OVA-induced ASM hypertrophy in vivo. In vitro, WISP1 could induce hBSMC hypertrophy and proliferation, accompanied by upregulation of levels of PI3K, p-Akt, p-GSK3β, and its own expression. TGF-β treatment could increase expression of PI3K, p-Akt, p-GSK3β, and WISP1. SH-5 treatment could partly suppress TGF-β-induced hypertrophy and proliferation of hBSMC, and depress expression of p-GSK3β and WISP1. In conclusion, WISP1 may be a potential inducer of ASM proliferation and hypertrophy in asthma. The pro-remodeling effect of WISP1 is likely due to be involved in PI3K-GSK3β-dependent noncanonical TGF-β signaling.
Collapse
|
21
|
Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis 2016; 11:1391-401. [PMID: 27382275 PMCID: PMC4922809 DOI: 10.2147/copd.s106009] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials) and those of heavy metals (from paint) are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles) or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7) may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections.
Collapse
Affiliation(s)
- John Wong
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Bruce E Magun
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Lisa J Wood
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
22
|
Han B, Poppinga WJ, Zuo H, Zuidhof AB, Bos IST, Smit M, Vogelaar P, Krenning G, Henning RH, Maarsingh H, Halayko AJ, van Vliet B, Stienstra S, Graaf ACVD, Meurs H, Schmidt M. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Sci Rep 2016; 6:26928. [PMID: 27229886 PMCID: PMC4882609 DOI: 10.1038/srep26928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antioxidants/pharmacology
- Cell Line, Transformed
- Chromans/chemistry
- Chromans/pharmacology
- Complex Mixtures/antagonists & inhibitors
- Complex Mixtures/pharmacology
- Disease Models, Animal
- Gene Expression Regulation
- Guinea Pigs
- Humans
- Hydrogen Sulfide/agonists
- Hydrogen Sulfide/blood
- Hypersensitivity/etiology
- Hypersensitivity/immunology
- Hypersensitivity/metabolism
- Hypersensitivity/prevention & control
- Inflammation
- Interleukin-8/antagonists & inhibitors
- Interleukin-8/genetics
- Interleukin-8/immunology
- Lipopolysaccharides/administration & dosage
- Lung
- Male
- Malondialdehyde/antagonists & inhibitors
- Malondialdehyde/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/pathology
- NF-E2-Related Factor 2/antagonists & inhibitors
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/immunology
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/pathology
- Oxidative Stress
- Piperazines/chemistry
- Piperazines/pharmacology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Reactive Oxygen Species/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Tars/chemistry
- Tars/toxicity
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/immunology
Collapse
Affiliation(s)
- Bing Han
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Wilfred J. Poppinga
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Haoxiao Zuo
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Annet B. Zuidhof
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
| | - I. Sophie T. Bos
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
| | - Marieke Smit
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
| | | | - Guido Krenning
- University of Groningen, University Medical Center Groningen, Dept. Pathology and Medical Biology, Laboratory for Cardiovascular Regenerative Medicine, Groningen, the Netherlands
| | - Robert H. Henning
- University of Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Harm Maarsingh
- Palm Beach Atlantic University, Lloyd L. Gregory School of Pharmacy, Department of Pharmaceutical Sciences, West Palm Beach, FL, USA
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | - Herman Meurs
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
23
|
Koo JB, Han JS. Cigarette smoke extract-induced interleukin-6 expression is regulated by phospholipase D1 in human bronchial epithelial cells. J Toxicol Sci 2016; 41:77-89. [DOI: 10.2131/jts.41.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jun Bon Koo
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| |
Collapse
|
24
|
Lee SU, Sung MH, Ryu HW, Lee J, Kim HS, In HJ, Ahn KS, Lee HJ, Lee HK, Shin DH, Lee Y, Hong ST, Oh SR. Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells. Cytokine 2015; 77:168-75. [PMID: 26318254 DOI: 10.1016/j.cyto.2015.08.262] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of MUC5AC, are significant risk factors in asthma and chronic obstructive pulmonary disease (COPD) patients. Previously, we reported that verproside, a catalpol derivative iridoid glycoside isolated from Pseudolysimachion rotundum var. subintegrum, is a potent anti-asthmatic candidate drug in vivo. However, the molecular mechanisms underlying the pharmacological actions of verproside remain unknown. Here, we found that verproside significantly reduces the expression levels of tumor necrosis factor alpha (TNF-α)-induced MUC5AC mRNA and protein by inhibiting both nuclear factor kappa B (NF-κB) transcriptional activity and the phosphorylation of its upstream effectors such as IκB kinase (IKK)β, IκBα, and TGF-β-activated kinase 1 (TAK1) in NCI-H292 cells. Moreover, verproside attenuated TNF-α-induced MUC5AC transcription more effectively when combined with an IKK (BAY11-7082) or a TAK1 (5z-7-oxozeaenol) inhibitor than when administered alone. Importantly, we demonstrated that verproside negatively modulates the formation of the TNF-α-receptor (TNFR) 1 signaling complex [TNF-RSC; TNFR1-recruited TNFR1-associated death domain protein (TRADD), TNFR-associated factor 2 (TRAF2), receptor-interacting protein kinase 1 (RIP1), and TAK1], the most upstream signaling factor of NF-κB signaling. In silico molecular docking studies show that verproside binds between TRADD and TRAF2 subunits. Altogether, these results suggest that verproside could be a good therapeutic candidate for treatment of inflammatory airway diseases such as asthma and COPD by blocking the TNF-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Min Hee Sung
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Jinhyuk Lee
- Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hui-Seong Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyun Ju In
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyeong-Kyu Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Dae-Hee Shin
- Central R&D Institute, Yungjin Pharm. Co., Ltd., Suwon 443-270, Republic of Korea
| | - Yongnam Lee
- Central R&D Institute, Yungjin Pharm. Co., Ltd., Suwon 443-270, Republic of Korea
| | - Sung-Tae Hong
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Guseong-Dong, Yusong-Gu, Daejeon 305-701, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
25
|
Ota K, Kawaguchi M, Fujita J, Kokubu F, Huang SK, Morishima Y, Matsukura S, Kurokawa M, Ishii Y, Satoh H, Sakamoto T, Hizawa N. Synthetic double-stranded RNA induces interleukin-32 in bronchial epithelial cells. Exp Lung Res 2015; 41:335-43. [DOI: 10.3109/01902148.2015.1033569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Zuo L, He F, Sergakis GG, Koozehchian MS, Stimpfl JN, Rong Y, Diaz PT, Best TM. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am J Physiol Lung Cell Mol Physiol 2014; 307:L205-18. [DOI: 10.1152/ajplung.00330.2013] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cigarette smoking (CS) can impact the immune system and induce pulmonary disorders such as chronic obstructive pulmonary disease (COPD), which is currently the fourth leading cause of chronic morbidity and mortality worldwide. Accordingly, the most significant risk factor associated with COPD is exposure to cigarette smoke. The purpose of the present study is to provide an updated overview of the literature regarding the effect of CS on the immune system and lungs, the mechanism of CS-induced COPD and oxidative stress, as well as the available and potential treatment options for CS-induced COPD. An extensive literature search was conducted on the PubMed/Medline databases to review current COPD treatment research, available in the English language, dating from 1976 to 2014. Studies have investigated the mechanism by which CS elicits detrimental effects on the immune system and pulmonary function through the use of human and animal subjects. A strong relationship among continued tobacco use, oxidative stress, and exacerbation of COPD symptoms is frequently observed in COPD subjects. In addition, therapeutic approaches emphasizing smoking cessation have been developed, incorporating counseling and nicotine replacement therapy. However, the inability to reverse COPD progression establishes the need for improved preventative and therapeutic strategies, such as a combination of intensive smoking cessation treatment and pharmaceutical therapy, focusing on immune homeostasis and redox balance. CS initiates a complex interplay between oxidative stress and the immune response in COPD. Therefore, multiple approaches such as smoking cessation, counseling, and pharmaceutical therapies targeting inflammation and oxidative stress are recommended for COPD treatment.
Collapse
Affiliation(s)
- Li Zuo
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Feng He
- Department of Health and Kinesiology, Purdue University, Lafayette, Indiana
| | - Georgianna G. Sergakis
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Majid S. Koozehchian
- Exercise and Sport Nutrition Laboratory, Department of Health & Kinesiology, Texas A&M University, College Station, Texas
| | - Julia N. Stimpfl
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yi Rong
- Department of Radiation Oncology, James Cancer Hospital, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Philip T. Diaz
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Thomas M. Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health & Performance Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
27
|
Kumawat K, Menzen MH, Slegtenhorst RM, Halayko AJ, Schmidt M, Gosens R. TGF-β-activated kinase 1 (TAK1) signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin. PLoS One 2014; 9:e94801. [PMID: 24728340 PMCID: PMC3984265 DOI: 10.1371/journal.pone.0094801] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/20/2014] [Indexed: 12/22/2022] Open
Abstract
WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1) is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK) signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Mark H. Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| | - Ralph M. Slegtenhorst
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| | - Andrew J. Halayko
- Departments of Physiology & Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
28
|
Kooltheat N, Sranujit RP, Chumark P, Potup P, Laytragoon-Lewin N, Usuwanthim K. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients 2014; 6:697-710. [PMID: 24553063 PMCID: PMC3942728 DOI: 10.3390/nu6020697] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022] Open
Abstract
Moringa oleifera Lam. (MO) has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE)-induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF) was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM) pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8) which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6) which mediate tissue disease and damage.
Collapse
Affiliation(s)
- Nateelak Kooltheat
- Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | | | - Pilaipark Chumark
- Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Pachuen Potup
- Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Nongnit Laytragoon-Lewin
- Department of Radiology, Oncology and Radiation Science, Faculty of Medicine, Uppsala University, Uppsala 75105, Sweden.
| | - Kanchana Usuwanthim
- Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|