1
|
Frazziano G, Champion HC, Pagano PJ. NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone. Am J Physiol Heart Circ Physiol 2012; 302:H2166-77. [PMID: 22427511 DOI: 10.1152/ajpheart.00780.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary vessel constriction results from an imbalance between vasodilator and vasoconstrictor factors released by the endothelium including nitric oxide, endothelin, prostanoids, and reactive oxygen species (ROS). ROS, generated by a variety of enzymatic sources (such as mitochondria and NADPH oxidases, a.k.a. Nox), appear to play a pivotal role in vascular homeostasis, whereas elevated levels effect vascular disease. The pulmonary circulation is very sensitive to changes in the partial pressure of oxygen and differs from the systemic circulation in its response to this change. In fact, the pulmonary vessels contract in response to low oxygen tension, whereas systemic vessels dilate. Growing evidence suggests that ROS production and ROS-related pathways may be key factors that underlie this differential response to oxygen tension. A major emphasis of our laboratory is the role of Nox isozymes in cardiovascular disease. In this review, we will focus our attention on the role of Nox-derived ROS in the control of pulmonary vascular tone.
Collapse
Affiliation(s)
- G Frazziano
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
2
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Perez-Vizcaino F, Cogolludo A, Moreno L. Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Physiol Neurobiol 2010; 174:212-20. [PMID: 20797450 DOI: 10.1016/j.resp.2010.08.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 02/07/2023]
Abstract
In recent years, it has become evident that reactive oxygen species (ROS) play a critical role in the regulation of several physiological and pathophysiological processes. Herein we review the main sources, targets and pathophysiological roles of ROS in pulmonary vascular smooth muscle. Mitochondria and NADPH oxidases represent the major sources of ROS in vascular cells. In addition, ROS can be produced by different pathways of arachidonic acid metabolism, endothelial NO synthase (eNOS) and xantine oxidase. There is increasing evidence for the role of ROS, specially hydrogen peroxide, as signaling moieties to induce increase in intracellular calcium concentration ([Ca2+]i) and contraction in pulmonary artery smooth muscle cells (PASMC) through the modulation of a variety of targets, such as Rho kinases (ROCK), protein kinase C (PKC), voltage-gated potassium K+ (Kv) channels and ryanodine receptors (RyR). Thus, an increase in ROS has been reported to contribute to the responses induced by different vasoconstrictor stimuli, including hypoxia. Finally, results from recent studies highlighting the involvement of ROS in the development of pulmonary hypertension are discussed in the present paper.
Collapse
Affiliation(s)
- Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, University Complutense of Madrid and Ciber Enfermedades Respiratorias (Ciberes), 28040 Madrid, Spain.
| | | | | |
Collapse
|
4
|
Abstract
Endothelial dysfunction can develop at an early age in children with risk factors for cardiovascular disease. A clear understanding of the nature of this dysfunction and how it can worsen over time requires detailed information on the normal growth-related changes in endothelial function on which the pathological changes are superimposed. This review summarizes our current understanding of these normal changes, as derived from studies in four different mammalian species. Although the endothelium plays an important role in controlling vascular tone from birth onward, the vasoactive molecules that mediate this control often change during postnatal or juvenile growth. The specifics of this transition to an adult endothelial cell phenotype can vary depending on the vascular bed. During growth, the contribution of nitric oxide to endothelium-dependent dilation generally increases in the lung, cerebral cortex, and skeletal muscle, but decreases in the intestine. Endothelial capacity for release of other vasoactive factors (e.g., cyclooxygenase products, hydrogen peroxide, carbon monoxide) can also increase or decrease during growth. Although these changes have been well documented, there is less information on their underlying cellular or molecular events. Further research is required to clarify these mechanisms, and to evaluate the functional significance of such shifts in endothelial phenotype.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/physiopathology
- Cerebrovascular Circulation/physiology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/physiology
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/physiopathology
- Humans
- Infant, Newborn
- Intestines/blood supply
- Models, Animal
- Muscle, Skeletal/blood supply
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/physiology
- Persistent Fetal Circulation Syndrome/etiology
- Persistent Fetal Circulation Syndrome/physiopathology
- Pulmonary Circulation/physiology
- Rats
- Risk Factors
- Sheep
- Swine
- Vascular Resistance/physiology
Collapse
Affiliation(s)
- Matthew A Boegehold
- Department of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26505-9105, USA.
| |
Collapse
|
5
|
Perez-Vizcaino F, Duarte J, Andriantsitohaina R. Endothelial function and cardiovascular disease: Effects of quercetin and wine polyphenols. Free Radic Res 2009; 40:1054-65. [PMID: 17015250 DOI: 10.1080/10715760600823128] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endothelial dysfunction is an early pathophysiological feature and independent predictor of poor prognosis in most forms of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. In the present paper, we review the effects of flavonoids, especially quercetin and wine polyphenols, on endothelial function and dysfunction and its potential protective role in hypertension, ischemic heart disease and stroke. In vitro studies show that flavonoids may exert multiple actions on the NO-guanylyl cyclase pathway, endothelium-derived hyperpolarizing factor(s) and endothelin-1 and protect endothelial cells against apoptosis. In vivo, flavonoids prevent endothelial dysfunction and reduce blood pressure, oxidative stress and end-organ damage in hypertensive animals. Moreover, some clinical studies have shown that flavonoid-rich foods can improve endothelial function in patients with hypertension and ischemic heart disease. Altogether, the available evidence indicates that quercetin and wine polyphenols might be of therapeutic benefit in cardiovascular diseases even though prospective controlled clinical studies are still lacking.
Collapse
Affiliation(s)
- Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
6
|
Cogolludo A, Moreno L, Villamor E. Mechanisms controlling vascular tone in pulmonary arterial hypertension: implications for vasodilator therapy. Pharmacology 2006; 79:65-75. [PMID: 17148943 DOI: 10.1159/000097754] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 11/19/2022]
Abstract
Pulmonary vasoconstriction is believed to be an early component of pulmonary arterial hypertension. Intracellular calcium concentration ([Ca(2+)](i)) is a major trigger for pulmonary vasoconstriction; however, it is now well known that contractions and relaxations may also be elicited through Ca(2+)-independent mechanisms. A variety of intracellular protein kinases and cyclic nucleotides have been identified as key determinants in controlling pulmonary vascular tone. Herein, we provide an overview of the main signaling pathways, which include protein kinase C, Rho kinases and cyclic nucleotides (cAMP and cGMP). This review also focuses on the role of store-operated Ca(2+) channels and voltage-gated K(+) channels, which are currently considered especially attractive in the pulmonary circulation and may represent new targets in the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Angel Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain.
| | | | | |
Collapse
|
7
|
Cogolludo A, Frazziano G, Cobeño L, Moreno L, Lodi F, Villamor E, Tamargo J, Perez-Vizcaino F. Role of Reactive Oxygen Species in Kv Channel Inhibition and Vasoconstriction Induced by TP Receptor Activation in Rat Pulmonary Arteries. Ann N Y Acad Sci 2006; 1091:41-51. [PMID: 17341601 DOI: 10.1196/annals.1378.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Voltage-gated potassium channels (Kv) and thromboxane A(2) (TXA(2)) have been involved in several forms of human and experimental pulmonary hypertension. We have reported that the TXA(2) analog U46619, via activation of TP receptors and PKCzeta, inhibited Kv currents in rat pulmonary artery smooth muscle cells (PASMC), increased cytosolic calcium, and induced a contractile response in isolated rat and piglet pulmonary arteries (PA). Herein, we have analyzed the role of reactive oxygen species (ROS) in this signaling pathway. In rat PA, U46619 increased dichlorofluorescein fluorescence, an indicator of intracellular hydrogen peroxide, and this effect was prevented by the NADPH oxidase inhibitor apocynin and by polyethyleneglycol-catalase (PEG-catalase, a membrane-permeable form of catalase). U46619 inhibited Kv currents in native PASMC and these effects were strongly inhibited by apocynin. The contractile responses to U46619 in isolated PA were inhibited by PEG-catalase and the NADPH oxidase inhibitors diphenylene iodonium (DPI) and apocynin. A membrane permeable of hydrogen peroxide, t-butyl hydroperoxide, also inhibited Kv currents and induced a contractile response. Activation of NADPH oxidase and the subsequent production of hydrogen peroxide are involved in the Kv channel inhibition and the contractile response induced by TP receptor activation in rat PA.
Collapse
Affiliation(s)
- Angel Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
González-Luis G, Cogolludo A, Moreno L, Lodi F, Tamargo J, Pérez-Vizcaíno F, Villamor E. Relaxant Effects of the Soluble Guanylate Cyclase Activator and NO Sensitizer YC-1 in Piglet Pulmonary Arteries. Neonatology 2006; 90:66-72. [PMID: 16534188 DOI: 10.1159/000091968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND The indazole derivative YC-1 has been characterized as a nitric oxide (NO)-independent and heme dependent soluble guanylate cyclase (sGC) activator, which also sensitizes sGC to NO. OBJECTIVE To examine the effects of YC-1 on vascular relaxation in newborn and 2-week-old piglet pulmonary arteries. The effect of YC-1 on the relaxation induced by exogenous NO was also analyzed. METHODS Isolated rings from third branch pulmonary arteries and fifth-seventh-generation intrapulmonary arterioles were mounted in organ chambers for isometric tension recording. Arteries were precontracted with the thromboxane A2 mimetic U46619. RESULTS YC-1 induced relaxation was greater in 2-week-old pulmonary arteries and was abolished by the sGC inhibitor ODQ (10 microM). YC-1 induced relaxation was similar in conduit pulmonary arteries and arterioles. In the 2-week-old conduit pulmonary arteries, the response to YC-1 was significantly reduced when the endothelium was removed or after incubation with the NO synthase inhibitor L-NAME (0.1 mM). YC-1 augmented NO-induced relaxation in 2-week-old but not in neonatal conduit pulmonary arteries. CONCLUSIONS Our results indicate that YC-1 induced pulmonary vascular relaxation in conduit and resistance pulmonary arteries and these effects increased with postnatal age. In the 2-week-old conduit pulmonary arteries and besides being a direct activator of sGC, YC-1 produced endothelium-dependent relaxation and synergized with exogenous NO.
Collapse
Affiliation(s)
- Gema González-Luis
- Department of Pediatrics, University Hospital Maastricht, Research Institute Growth and Development, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
González-Luis G, Pérez-Vizcaíno F, García-Muñoz F, de Mey JGR, Blanco CE, Villamor E. Age-related differences in vasoconstrictor responses to isoprostanes in piglet pulmonary and mesenteric vascular smooth muscle. Pediatr Res 2005; 57:845-52. [PMID: 15845638 DOI: 10.1203/01.pdr.0000161411.01208.83] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Isoprostanes are prostaglandin (PG)-like compounds produced nonenzymatically by free radical-catalyzed peroxidation of arachidonic acid. Isoprostanes evoke potent vascular effects but their actions in the neonatal vasculature are poorly known. We aimed to study the effects of 8-iso-PGE(1), 8-iso-PGE(2), 8-iso-PGF(1alpha), 8-iso-PGF(1beta), 8-iso-PGF(2alpha), and 8-iso-PGF(2beta) in pulmonary arteries (PA), pulmonary veins (PV), and mesenteric arteries (MA) from newborn and 2-wk-old piglets. Isoprostanes produced concentration-dependent contractions of PA, PV, and MA (magnitudes up to 1.5- to 2-fold greater than the responses to 62.5 mM KCl) but they were markedly less potent vasoconstrictors than the thromboxane A(2) (TXA(2)) mimetic U46619. Neonatal PA were more sensitive to 8-iso-PGF(1alpha), 8-iso-PGF(1beta), and 8-iso-PGF(2beta) than 2-wk-old PA. Neonatal PV were more sensitive to 8-iso-PGE(2) and 8-iso-PGF(1alpha), and neonatal MA were more sensitive to 8-iso-PGE(2), 8-iso-PGF(1alpha), 8-iso-PGF(1beta), 8-iso-PGF(2alpha), and 8-iso-PGF(2beta) than the corresponding 2-wk-old vessels. The sensitivity to U46619 decreased with postnatal age in MA but did not change in PA and PV. The contractile responses to all the isoprostanes and to U46619 were reverted by the TXA(2) receptor (TP) antagonist SQ 29,548. Moreover, isoprostane-evoked contractions in 2-wk-old PA were reduced by inhibitors of tyrosine kinase (genistein) and Rho kinase (Y 27632 and hydroxyfasudil) but not by inhibitors of protein kinase C (chelerythrine), mitogen-activated protein kinase kinase (PD 98059) or p38-kinase (SB 203580). In conclusion, isoprostanes produced compound-, tissue-, and age-dependent constriction of neonatal porcine pulmonary and mesenteric vascular smooth muscle. Isoprostane-evoked PA vasoconstriction involved TP receptors and activation of tyrosine kinases and Rho kinases.
Collapse
Affiliation(s)
- Gema González-Luis
- Department of Pediatrics, University Hospital Maastricht, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Moreno L, Losada B, Cogolludo AL, Lodi F, Lugnier C, Villamor E, Moro M, Tamargo J, Pérez-Vizcaíno F. Postnatal maturation of phosphodiesterase 5 (PDE5) in piglet pulmonary arteries: activity, expression, effects of PDE5 inhibitors, and role of the nitric oxide/cyclic GMP pathway. Pediatr Res 2004; 56:563-70. [PMID: 15295092 DOI: 10.1203/01.pdr.0000139412.58594.d0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
After birth and during the first days of extrauterine life, pulmonary arterial pressure is progressively reduced to reach the adult values. We hypothesized that changes in PDE5 activity might be involved in the pulmonary postnatal maturation of the nitric oxide (NO)/cGMP pathway. The PDE5 inhibitor sildenafil produced vasorelaxant responses in isolated pulmonary arteries. These effects were similar in newborn (3-18 h) and 2-wk-old piglets, unchanged by endothelium removal, and markedly inhibited by the soluble guanylyl cyclase inhibitor ODQ. The peak of the transient vasorelaxant response to NO gas increased with postnatal age but was unaffected by PDE inhibition. However, the duration of the response to NO was significantly increased. The vasorelaxant response to sodium nitroprusside was potentiated by sildenafil in both age groups. The PDE5 inhibitors dipyridamole and zaprinast, produced qualitatively similar effects but with lower potency. Both total and PDE5-dependent cGMP hydrolytic activity and PDE5 protein expression increased with postnatal age. All these results suggest that PDE5 is a key regulator of NO-induced vasodilation in the postnatal pulmonary arteries. PDE5 inhibition is able to produce pulmonary vasodilation even in the absence of a functional endothelium and potentiates the vasorelaxant response to exogenous NO and nitroprusside. However, PDE5 is not responsible for the maturational increase of NO bioactivity during the first days of extrauterine life.
Collapse
Affiliation(s)
- Laura Moreno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moreno L, Gonzalez-Luis G, Cogolludo A, Lodi F, Lopez-Farre A, Tamargo J, Villamor E, Perez-Vizcaino F. Soluble guanylyl cyclase during postnatal porcine pulmonary maturation. Am J Physiol Lung Cell Mol Physiol 2004; 288:L125-30. [PMID: 15447938 DOI: 10.1152/ajplung.00244.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nitric oxide (NO)/cGMP pathway plays a key role in the regulation of pulmonary vascular tone during the transition from the fetal to the neonatal circulation, and it is impaired in pathophysiological conditions such as pulmonary hypertension. In the present study, we have analyzed the changes in the function and expression of soluble guanylyl cyclase (sGC) in pulmonary arteries during early postnatal maturation in isolated third-branch pulmonary arteries from newborn (3-18 h of age) and 2-wk-old piglets. The expression of sGC beta(1)-subunit in pulmonary arteries increased with postnatal age both at the level of mRNA and protein. The catalytic region of porcine sGC beta(1) was sequenced, showing a 92% homology with the human sequence. This age-dependent increase in sGC expression correlated with increased vasorelaxant responses to the physiological sGC activator NO and to the exogenous sGC activator YC-1, but not to the membrane-permeable cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate. In conclusion, an increased expression of sGC in pulmonary conduit arteries from 2-wk-old compared with newborn piglets explains, at least partly, the age-dependent increase in the vasorelaxant response of NO and other activators of sGC.
Collapse
Affiliation(s)
- Laura Moreno
- Dept. Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Villamor E, Kessels CGA, Fischer MAJ, Bast A, de Mey JGR, Blanco CE. Role of superoxide anion on basal and stimulated nitric oxide activity in neonatal piglet pulmonary vessels. Pediatr Res 2003; 54:372-81. [PMID: 12788981 DOI: 10.1203/01.pdr.0000077481.15081.c8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The superoxide anion (O2*-) appears to be an important modulator of nitric oxide bioavailability. Enzymatic scavenging of O2*- is carried out by superoxide dismutase (SOD). The present study was designed to characterize the developmental changes on pulmonary vascular reactivity induced by 1) exogenous Cu/Zn SOD, 2) several putative SOD mimetics, and 3) endogenous SOD inhibition. We also analyzed age-related changes on pulmonary SOD activity and vascular O2*- levels. SOD (1-300 U/mL) produced endothelium-dependent relaxation of U46619-contracted intrapulmonary arteries (fourth branch) and veins from 12- to 24-h-old and 2-wk-old piglets. SOD-induced relaxation was greater in pulmonary arteries and was abolished by the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester. SOD induced a greater pulmonary artery relaxation in the 2-wk-old than in the 12- to 24-h-old piglet. SOD (100 U/mL) did not modify acetylcholine-induced relaxation in pulmonary arteries. In contrast, endogenous SOD inhibition by diethyldithiocarbamate (3 mM) impaired acetylcholine-induced relaxation in pulmonary arteries from newborn but not from 2-wk-old piglets. Total SOD activity in lung tissue did not change with postnatal age. With the use of dihydroethidium, an oxidant-sensitive fluorescent probe, we did not find significant age- or vessel-related differences in O2*- presence. From the putative SOD mimetics tested, only the metal salts MnCl2 and CuSO4 reproduced the vascular effects of SOD. In summary, SOD produces endothelium-dependent pulmonary vascular relaxation by protecting nitric oxide from destruction by O2*-. This effect was less marked in newborns than in 2-wk-old piglets. In contrast, pulmonary arteries from newborn piglets are more sensitive to the inhibition of endogenous SOD.
Collapse
Affiliation(s)
- Eduardo Villamor
- Department of Pediatrics, University Hospital Maastricht, Research Institute Growth and Development (GROW), University of Maastricht, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|