1
|
Abstract
PURPOSE OF REVIEW With the improvement in device technology and delivery methods of inhaled medications, along with development of novel compounds and recognition of the importance of personalized approach in the management of chronic airway diseases, nebulizers have not only maintained their place in the treatment hierarchy of airway disease but have also proven a vital platform for the development of new classes of drugs. RECENT FINDINGS This short review explores recent advances in nebulized drug delivery in chronic obstructive pulmonary disease and other chronic airway diseases, emphasizing the progress in nebulizer technology, physiologic advantages of nebulized drug delivery and the high versatility of currently available and developing nebulizer-delivered pharmacotherapies. SUMMARY Versatility and efficiency of nebulizers allows for a broad spectrum of existing and novel therapies to be clinically studied, facilitating the progress in phenotype-targeted pharmacotherapies in the management of chronic airway diseases.
Collapse
|
2
|
Brasil FB, de Almeida FJS, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. The isothiocyanate sulforaphane prevents mitochondrial impairment and neuroinflammation in the human dopaminergic SH-SY5Y and in the mouse microglial BV2 cells: role for heme oxygenase-1. Metab Brain Dis 2023; 38:419-435. [PMID: 35469083 DOI: 10.1007/s11011-022-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
Abstract
Sulforaphane (SFN) promotes protective effects in different cell types. Nonetheless, it remains to be clarified by which mechanism SFN exerts benefits in mammalian cells. Mitochondria are a major source of adenosine triphosphate (ATP) and reactive species in nucleated cells. Mitochondrial impairment result in cellular redox biology disruption, bioenergetic status collapse, and inflammation. Evidence suggest that mitochondrial dysfunction plays a role in neurological disorders. Since a cure was not discovered yet to some of these diseases, investigating strategies to promote mitochondrial protection is pharmacologically relevant and may improve life quality of patients suffering from these maladies. Natural molecules, such as SFN, are potent inducers of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and, consequently, stimulate the expression of genes whose products, such as heme oxygenase-1 (HO-1), induce cytoprotective actions in mammalian tissues. In this work, we investigated whether SFN (5 µM) would be capable to prevent the dysfunctions caused by chlorpyrifos (CPF) on the human dopaminergic SH-SY5Y cells. Moreover, we examined the effects of a pretreatment with SFN at the same concentration on the mouse microglial BV2 cells stimulated by lipopolysaccharide (LPS) in an experimental model of neuroinflammation. SFN prevented the mitochondrial impairment and the neuroinflammation caused by the chemical stressors in both cell types. Inhibition of heme oxygenase-1 (HO-1) suppressed the mitochondrial protection and anti-inflammatory action afforded by SFN in this experimental model. Overall, SFN promoted cytoprotection by a mechanism dependent on the HO-1 enzyme in the SH-SY5Y and BV2 cells.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras-Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação Em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| |
Collapse
|
3
|
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020; 15:3803-3826. [PMID: 32547029 PMCID: PMC7266405 DOI: 10.2147/ijn.s242516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent obstructive lung disease worldwide characterized by decline in lung function. It is associated with airway obstruction, oxidative stress, chronic inflammation, mucus hypersecretion, and enhanced autophagy and cellular senescence. Cigarette smoke being the major risk factor, other secondary risk factors such as the exposure to air pollutants, occupational exposure to gases and fumes in developing countries, also contribute to the pathogenesis of COPD. Conventional therapeutic strategies of COPD are based on anti-oxidant and anti-inflammatory drugs. However, traditional anti-oxidant pharmacological therapies are commonly used to alleviate the impact of COPD as they have many associated repercussions such as low diffusion rate and inappropriate drug pharmacokinetics. Recent advances in nanotechnology and stem cell research have shed new light on the current treatment of chronic airway disease. This review is focused on some of the anti-oxidant therapies currently used in the treatment and management of COPD with more emphasis on the recent advances in nanotechnology-based therapeutics including stem cell and gene therapy approaches for the treatment of chronic airway disease such as COPD and asthma.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sadia Shahid
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Gan M, Shen L, Fan Y, Tan Y, Zheng T, Tang G, Niu L, Zhao Y, Chen L, Jiang D, Li X, Zhang S, Zhu L. MicroRNA-451 and Genistein Ameliorate Nonalcoholic Steatohepatitis in Mice. Int J Mol Sci 2019; 20:E6084. [PMID: 31816816 PMCID: PMC6928943 DOI: 10.3390/ijms20236084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023] Open
Abstract
Effective, targeted therapy for chronic liver disease nonalcoholic steatohepatitis (NASH) is imminent. MicroRNAs (miRNAs) are a potential therapeutic target, and natural products that regulate miRNA expression may be a safe and effective treatment strategy for liver disease. Here, we investigated the functional role of miR-451 and the therapeutic effects of genistein in the NASH mouse model. MiR-451 was downregulated in various types of liver inflammation, and subsequent experiments showed that miR-451 regulates liver inflammation via IL1β. Genistein is a phytoestrogen with anti-inflammatory and anti-oxidant effects. Interestingly, we found that the anti-inflammatory effects of genistein were related to miR-451 and was partially antagonized by the miR-451 inhibitor. MiR-451 overexpression or genistein treatment inhibited IL1β expression and inflammation. Taken together, this study shows that miR-451 has a protective effect on hepatic inflammation, and genistein can be used as a natural promoter of miR-451 to ameliorate NASH.
Collapse
Affiliation(s)
- Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, China
| | - Ting Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Riani M, Le Jan S, Plée J, Durlach A, Le Naour R, Haegeman G, Bernard P, Antonicelli F. Bullous pemphigoid outcome is associated with CXCL10-induced matrix metalloproteinase 9 secretion from monocytes and neutrophils but not lymphocytes. J Allergy Clin Immunol 2016; 139:863-872.e3. [PMID: 27637385 DOI: 10.1016/j.jaci.2016.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The outcome of bullous pemphigoid (BP), the most frequent autoimmune skin-blistering disease, involves matrix metalloproteinase 9 (MMP-9), IL-17, and IL-23 release from infiltrated inflammatory cells. The chemokine CXCL10 has been associated with several autoimmune diseases, but its participation in BP pathophysiology still needs to be clarified. OBJECTIVE We sought to assess whether BP outcome was associated with different CXCL10 levels and to evaluate the contribution of CXCL10 to the described cytokine/protease inflammatory loop associated with disease outcome. METHODS Skin biopsy specimens (n = 16), serum (n = 114), blister fluid (n = 23), and primary inflammatory cells from patients with BP were used to investigate CXCL10 expression and function. RESULTS At baseline, both resident cells, such as keratinocytes and fibroblasts, and infiltrating immune cells expressed CXCL10 at lesional sites in skin of patients with BP. CXCL10 levels were higher in blister fluid (P < .0001) and serum (P < .005) from patients with BP than in serum from age- and sex-matched control subjects (n = 34). Furthermore, CXCL10 serum levels increased at day 60 only in patients who relapsed within the first year of treatment (n = 33, P < .005). Interestingly, CXCL10 expression could be upregulated by itself and IL-17 in inflammatory cells. Notably, neutrophils and monocytes from patients with BP, but not lymphocytes, responded to CXCL10 by increasing MMP-9 secretion through the activation of extracellular signal-regulated kinase 1/2, p38, phosphoinositide-3 kinase signaling pathways. Finally, CXCL10-increased MMP-9 secretion was inhibited by methylprednisolone and also by compound A, a novel nonsteroidal glucocorticoid receptor ligand. CONCLUSION We showed that increased levels of inflammatory biomarkers in patients with BP, such as CXCL10, favor neutrophil- and monocyte-associated MMP-9 release and disease relapse and opened new therapeutic horizons in patients with this autoimmune disease.
Collapse
Affiliation(s)
- Meriem Riani
- Laboratory of Dermatology, EA7319 Derm-I-C, University of Reims-Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, EA7319 Derm-I-C, University of Reims-Champagne-Ardenne, Reims, France
| | - Julie Plée
- Laboratory of Dermatology, EA7319 Derm-I-C, University of Reims-Champagne-Ardenne, Reims, France; Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Anne Durlach
- Laboratory Pol Bouin, Hospital Maison Blanche, University Hospital, Reims, France
| | - Richard Le Naour
- Laboratory IMAB, EA4683, University of Reims-Champagne-Ardenne, Reims, France
| | | | - Philippe Bernard
- Laboratory of Dermatology, EA7319 Derm-I-C, University of Reims-Champagne-Ardenne, Reims, France; Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, EA7319 Derm-I-C, University of Reims-Champagne-Ardenne, Reims, France; Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France.
| |
Collapse
|
6
|
Chronic Household Air Pollution Exposure Is Associated with Impaired Alveolar Macrophage Function in Malawian Non-Smokers. PLoS One 2015; 10:e0138762. [PMID: 26406307 PMCID: PMC4583259 DOI: 10.1371/journal.pone.0138762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Household air pollution in low income countries is an important cause of mortality from respiratory infection. We hypothesised that chronic smoke exposure is detrimental to alveolar macrophage function, causing failure of innate immunity. We report the relationship between macrophage function and prior smoke exposure in healthy Malawians. METHODS Healthy subjects exposed daily to cooking smoke at home volunteered for bronchoalveolar lavage. Alveolar macrophage particulate content was measured as a known correlate of smoke exposure. Phagocytosis and intraphagosomal function (oxidative burst and proteolysis) were measured by a flow cytometric assay. Cytokine responses in macrophages were compared following re-exposure in vitro to wood smoke, before and after glutathione depletion. RESULTS Volunteers had a range of alveolar macrophage particulate loading. The macrophage capacity for phagosomal oxidative burst was negatively associated with alveolar macrophage particulate content (n = 29, r2 = 0.16, p = 0.033), but phagocytosis per se and proteolytic function were unaffected. High particulate content was associated with lower baseline CXCL8 release (ratio 0.51, CI 0.29-0.89) and lower final concentrations on re-exposure to smoke in vitro (ratio 0.58, CI 0.34-0.97). Glutathione depletion augmented CXCL8 responses by 1.49x (CI 1.02-2.17) compared with wood smoke alone. This response was specific to smoke as macrophages response to LPS were not modulated by glutathione. CONCLUSION Chronic smoke exposure is associated with reduced human macrophage oxidative burst, and dampened inflammatory cytokine responses. These are critical processes in lung defence against infection and likely to underpin the relationship between air pollution and pneumonia.
Collapse
|
7
|
Uthayashanker RE, Rita MH. Preliminary screening of anti-inflammatory effect of phytochemicals on chemotaxis of human neutrophils. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jpp2015.0353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Di Gioia S, Trapani A, Castellani S, Carbone A, Belgiovine G, Craparo EF, Puglisi G, Cavallaro G, Trapani G, Conese M. Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier. Pulm Pharmacol Ther 2015; 34:8-24. [PMID: 26192479 DOI: 10.1016/j.pupt.2015.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
Abstract
Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials. Finally, we discuss the development of such polymer- and lipid-based NPs in the context of in vitro and in vivo disease models, such as lung cancer, as well as in clinical trials.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy; Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 12, 20122 Milan, Italy
| | - Giuliana Belgiovine
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Emanuela Fabiola Craparo
- Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giovanni Puglisi
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Gennara Cavallaro
- Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
9
|
Khodir AE, Ghoneim HA, Rahim MA, Suddek GM. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats. Hum Exp Toxicol 2015; 35:388-97. [DOI: 10.1177/0960327115591372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160–180 g) were assigned to five groups ( n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties.
Collapse
Affiliation(s)
- AE Khodir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Delta University, Mansoura, Egypt
| | - HA Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - MA Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - GM Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Khodir AE, Ghoneim HA, Rahim MA, Suddek GM. Montelukast reduces sepsis-induced lung and renal injury in rats. Can J Physiol Pharmacol 2014; 92:839-47. [PMID: 25243774 DOI: 10.1139/cjpp-2014-0191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study was undertaken to examine the effects of montelukast (MNT) on lung and kidney injury in lipopolysaccharide (LPS) induced systemic inflammatory response. Rats were randomized into 5 groups (n = 8 rats/group): (i) Control; (ii) LPS treated (10 mg/kg body mass, by intraperitoneal (i.p.) injection); (iii) LPS + MNT (10 mg/kg, per oral (p.o.)); (iv) LPS + MNT (20 mg/kg, p.o); (v) LPS + dexamethasone (DEX; 1 mg/kg, i.p.). Twenty-four hours after sepsis was induced, the lung or kidney:body mass ratio and percent survival of rats were determined. Creatinine, blood urea nitrogen (BUN), albumin, total protein, and LDH activity were measured. Lung and kidney samples were taken for histological assessment and for determination of their malondialdehyde (MDA) and glutathione (GSH) contents. The expression of tumour necrosis factor α (TNF-α) in tissue was evaluated immunohistochemically. LPS significantly increased the organ:body mass ratio, serum creatinine, BUN, and LDH, and decreased serum albumin and total protein levels. MDA levels increased in lung and kidney tissues after treatment with LPS, and there was a concomitant reduction in GSH levels. Immunohistochemical staining of lung and kidney specimens from LPS-treated rats revealed high expression levels of TNF-α. MNT suppresses the release of inflammatory and oxidative stress markers. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. These results demonstrate that MNT could have lung and renoprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and (or) anti-inflammatory properties.
Collapse
Affiliation(s)
- Ahmed E Khodir
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Delta University, Mansoura, Egypt
| | | | | | | |
Collapse
|
11
|
Aggarwal S, Gross CM, Kumar S, Dimitropoulou C, Sharma S, Gorshkov BA, Sridhar S, Lu Q, Bogatcheva NV, Jezierska-Drutel AJ, Lucas R, Verin AD, Catravas JD, Black SM. Dimethylarginine dimethylaminohydrolase II overexpression attenuates LPS-mediated lung leak in acute lung injury. Am J Respir Cell Mol Biol 2014; 50:614-25. [PMID: 24134589 DOI: 10.1165/rcmb.2013-0193oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute lung injury (ALI) is a severe hypoxemic respiratory insufficiency associated with lung leak, diffuse alveolar damage, inflammation, and loss of lung function. Decreased dimethylaminohydrolase (DDAH) activity and increases in asymmetric dimethylarginine (ADMA), together with exaggerated oxidative/nitrative stress, contributes to the development of ALI in mice exposed to LPS. Whether restoring DDAH function and suppressing ADMA levels can effectively ameliorate vascular hyperpermeability and lung injury in ALI is unknown, and was the focus of this study. In human lung microvascular endothelial cells, DDAH II overexpression prevented the LPS-dependent increase in ADMA, superoxide, peroxynitrite, and protein nitration. DDAH II also attenuated the endothelial barrier disruption associated with LPS exposure. Similarly, in vivo, we demonstrated that the targeted overexpression of DDAH II in the pulmonary vasculature significantly inhibited the accumulation of ADMA and the subsequent increase in oxidative/nitrative stress in the lungs of mice exposed to LPS. In addition, augmenting pulmonary DDAH II activity before LPS exposure reduced lung vascular leak and lung injury and restored lung function when DDAH activity was increased after injury. Together, these data suggest that enhancing DDAH II activity may prove a useful adjuvant therapy to treat patients with ALI.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Preliminary studies show that intranasal (i.n.) administration of BCG in mice induces M1 activation of alveolar macrophages (M∅) that increase TNF-α production and cyclooxygenase-2 (COX-2) expression but reduce constitutive peroxisome proliferator-activated receptor gamma (PPARγ) expression. However, COX-2 is catalytically inactive for prostaglandin E(2) release, unlike COX-2 that is active in M1 activation in vitro by BCG. In this study, we determined the role of PPARγ for BCG-induced M1 activation in vivo and in vitro. We found that treatment of mice with GW9662, a PPARγ antagonist, prior to i.n. BCG, partially restored PPARγ expression, and decreased TNF-α production and COX-2 expression. But COX-2 was still inactive. The decreased effects on TNF-α and COX-2 were also observed when alveolar M∅ were treated in vitro with GW9662/BCG, but COX-2 was still active. Our results indicate that PPARγ upregulates M1 activation of alveolar M∅, but inactive COX-2 formation is independent of PPARγ in mycobacterial pulmonary inflammation.
Collapse
|
13
|
Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration. J Neurol Sci 2012; 318:25-30. [PMID: 22560605 DOI: 10.1016/j.jns.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/25/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022]
Abstract
In our previous study, we reported that lipopolysaccharide (LPS) activated microglia and accelerated cerebral ischemic injury in the rat brain through the overexpression of cytokines in microglia. In the present study, we investigated the effect of the intraperitoneal administration of fucoidin, a potent inhibitor of leukocyte rolling and anti-inflammatory agent, against accelerated cerebral ischemic injury by LPS pretreatment using rats. We found that fucoidin treatment inhibited the expressions of some brain cytokine or chemokine mRNA such as IL-8, TNF-α and iNOS in the brain of the rats treated only with LPS. We also observed that fucoidin treatment dramatically decreased the infarct size in accelerated cerebral ischemic injury induced by LPS treatment at an early time after ischemic injury. In addition, the immunoreactivity of myleoperoxidase (MPO), a marker for quantifying neutrophil accumulation, was distinctively decreased in the ischemic brain of the fucoidin-treated rat. In brief, our results indicate that fucoidin showed a neuroprotective effect on LPS accelerated cerebral ischemic injury through inhibiting the expression of some cytokine/chemokine and neutrophil recruitments.
Collapse
|
14
|
Nader MA, Baraka HN. Effect of betulinic acid on neutrophil recruitment and inflammatory mediator expression in lipopolysaccharide-induced lung inflammation in rats. Eur J Pharm Sci 2012; 46:106-13. [DOI: 10.1016/j.ejps.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/17/2012] [Accepted: 02/22/2012] [Indexed: 11/29/2022]
|
15
|
Li X, Kato N, Mezawa M, Li Z, Wang Z, Yang L, Sasaki Y, Kaneko T, Takai H, Yoshimura A, Ogata Y. Transcriptional regulation of bone sialoprotein gene by Porphyromonas gingivalis lipopolysaccharide. J Cell Biochem 2010; 110:823-33. [PMID: 20564183 DOI: 10.1002/jcb.22594] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lipopolysaccharide (LPS) is a major mediator of inflammatory response. Periodontopathic bacterium Porphyromonas gingivalis LPS has quite different character from Escherichia coli LPS. E. coli LPS is agonist for Toll-like receptor 4 (TLR4), whereas P. gingivalis LPS worked as antagonist for TLR4. Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. To investigate the effects of P. gingivalis LPS on BSP transcription, we used rat osteoblast-like ROS17/2.8 cells. BSP mRNA levels were decreased by 0.1 microg/ml and increased by 0.01 microg/ml P. gingivalis LPS at 12 h. Results of luciferase assays showed that 0.1 microg/ml decreased and 0.01 microg/ml P. gingivalis LPS increased BSP transcription in -116 to +60 BSP construct. The effects of P. gingivalis LPS were abrogated by double mutations in cAMP response element (CRE) and FGF2 response element (FRE). Tyrosine kinase inhibitor herbimycin A, ERK1/2 inhibitor and antioxidant N-acetylcystein inhibited effects of P. gingivalis LPS. Protein kinase A inhibitor and PI3-kinase/Akt inhibitor only abolished the effect of 0.01 microg/ml P. gingivalis LPS. Furthermore, 0.1 microg/ml LPS decreased the CRE- and FRE-protein complexes formation, whereas 0.01 microg/ml P. gingivalis LPS increased the nuclear protein binding to CRE and FRE. ChIP assays revealed increased binding of CREB1, JunD, Fra2, Runx2, Dlx5, and Smad1 to a chromatin fragment containing the CRE and FRE by 0.01 microg/ml P. gingivalis LPS. These studies therefore indicated that 0.1 microg/ml suppressed, and 0.01 microg/ml P. gingivalis LPS increased BSP gene transcription mediated through CRE and FRE elements in the rat BSP gene promoter.
Collapse
Affiliation(s)
- Xinyue Li
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
An active site water network in the plasminogen activator pla from Yersinia pestis. Structure 2010; 18:809-18. [PMID: 20637417 DOI: 10.1016/j.str.2010.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 01/28/2023]
Abstract
The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.
Collapse
|
17
|
Mechanisms and modification of chlorine-induced lung injury in animals. Ann Am Thorac Soc 2010; 7:278-83. [PMID: 20601632 DOI: 10.1513/pats.201001-009sm] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chlorine (Cl(2)) is a reactive oxidant gas used extensively in industrial processes. Exposure of both humans and animals to high concentrations of Cl(2) results in acute lung injury, which may resolve spontaneously or progress to acute respiratory failure. Injury to airway and alveolar epithelium may result from chemical reactions of Cl(2), from HOCl (the hydrolysis product of Cl(2)), and/or from the various reaction products, such as chloramines, that are formed from the reactions of these chlorinating species with biological molecules. Subsequent reactions may initiate self-propagating reactions and induce the production of inflammatory mediators compounding injury to pulmonary surfactant, ion channels, and components of lung epithelial and airway cells. Low-molecular-weight antioxidants, such as ascorbate, glutathione, and urate, present in the lung epithelial lining fluid and tissue, remove Cl(2) and HOCl and thus decrease injury to critical target biological targets. However, levels of lung antioxidants of animals exposed to Cl(2) in concentrations likely to be encountered in the vicinity of industrial accidents decrease rapidly and irreversibly. Our measurements show that prophylactic administration of a mixture containing ascorbate and desferal N-acetyl-cysteine, a precursor of reduced glutathione, prevents Cl(2)-induced injury to the alveolar epithelium of rats exposed to Cl(2). The clinical challenge is to deliver sufficient quantities of antioxidants noninvasively, after Cl(2) exposure, to decrease morbidity and mortality.
Collapse
|
18
|
Zhang W, Fievez L, Cheu E, Bureau F, Rong W, Zhang F, Zhang Y, Advenier C, Gustin P. Anti-inflammatory effects of formoterol and ipratropium bromide against acute cadmium-induced pulmonary inflammation in rats. Eur J Pharmacol 2010; 628:171-8. [DOI: 10.1016/j.ejphar.2009.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 12/31/2022]
|
19
|
Ferguson HE, Thatcher TH, Olsen KC, Garcia-Bates TM, Baglole CJ, Kottmann RM, Strong ER, Phipps RP, Sime PJ. Peroxisome proliferator-activated receptor-gamma ligands induce heme oxygenase-1 in lung fibroblasts by a PPARgamma-independent, glutathione-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2009; 297:L912-9. [PMID: 19734319 DOI: 10.1152/ajplung.00148.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of pulmonary fibrosis. Heme oxygenase-1 (HO-1) is a key antioxidant enzyme, and overexpression of HO-1 significantly decreases lung inflammation and fibrosis in animal models. Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a transcription factor that regulates adipogenesis, insulin sensitization, and inflammation. We report here that the PPARgamma ligands 15d-PGJ2 and 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), which have potent antifibrotic effects in vitro, also strongly induce HO-1 expression in primary human lung fibroblasts. Pharmacological and genetic approaches are used to demonstrate that induction of HO-1 is PPARgamma independent. Upregulation of HO-1 coincides with decreased intracellular glutathione (GSH) levels and can be inhibited by N-acetyl cysteine (NAC), a thiol antioxidant and GSH precursor. Upregulation of HO-1 is not inhibited by Trolox, a non-thiol antioxidant, and does not involve the transcription factors AP-1 or Nrf2. CDDO and 15d-PGJ2 contain an alpha/beta unsaturated ketone that acts as an electrophilic center that can form covalent bonds with free reduced thiols. Rosiglitazone, a PPARgamma ligand that lacks an electrophilic center, does not induce HO-1. These data suggest that in human lung fibroblasts, 15d-PGJ2 and CDDO induce HO-1 via a GSH-dependent mechanism involving the formation of covalent bonds between 15d-PGJ2 or CDDO and GSH. Inhibiting HO-1 upregulation with NAC has only a small effect on the antifibrotic properties of 15d-PGJ2 and CDDO in vitro. These results suggest that CDDO and similar electrophilic PPARgamma ligands may have great clinical potential as antifibrotic agents, not only through direct effects on fibroblast differentiation and function, but indirectly by bolstering antioxidant defenses.
Collapse
Affiliation(s)
- Heather E Ferguson
- Department of Environmental Medicine, University of Rochester, 601 Elmwood Ave., Box 692, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cornell TT, Hinkovska-Galcheva V, Sun L, Cai Q, Hershenson MB, Vanway S, Shanley TP. Ceramide-dependent PP2A regulation of TNFalpha-induced IL-8 production in respiratory epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 296:L849-56. [PMID: 19286927 DOI: 10.1152/ajplung.90516.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
IL-8 is a key mediator in the pathophysiology of acute lung injury. TNFalpha stimulates IL-8 production in respiratory epithelial cells by activating both the NF-kappaB and MAP kinase pathways. The precise mechanism by which these pathways are downregulated to terminate IL-8 production remains unclear. We studied the regulatory role of the serine/threonine phosphatase, PP2A, on the signaling pathways involved in IL-8 production from respiratory epithelial cells. Inhibition of PP2A using okadaic acid or gene knockdown using siRNA resulted in an augmentation of TNFalpha-induced IL-8 production. We also found that PP2A inhibition resulted in prolonged activation of JNK, p38, and ERK resulting in both increased transcriptional activation of the IL-8 promoter and posttranscriptional stabilization of IL-8 mRNA. Because TNFalpha had been shown to activate ceramide accumulation, and separate studies had linked ceramide with activation of PP2A, we hypothesized the pathway of TNFalpha-inducing ceramide to activate PP2A comprised an endogenous regulatory pathway. Inhibition of the immediate sphingomyelinase-dependent pathway as well as the de novo synthesis pathway of ceramide production reduced serine/threonine phosphatase activity and augmented IL-8 production. These data suggest that ceramide plays a role in activating PP2A to terminate ongoing IL-8 production. In summary, our data suggest that in respiratory epithelium, TNFalpha induces ceramide accumulation, resulting in subsequent activation of PP2A, which targets those kinases responsible for transcriptional activation of IL-8.
Collapse
Affiliation(s)
- Timothy T Cornell
- Division of Pediatric Critical Care Medicine, C. S. Mott Children's Hospital, Ann Arbor, MI 48109-0243, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Alessandrini F, Beck-Speier I, Krappmann D, Weichenmeier I, Takenaka S, Karg E, Kloo B, Schulz H, Jakob T, Mempel M, Behrendt H. Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. Am J Respir Crit Care Med 2009; 179:984-91. [PMID: 19264975 DOI: 10.1164/rccm.200807-1061oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE The effects of ultrafine particle inhalation on allergic airway inflammation are of growing interest. The mechanisms underlying these effects are currently under investigation. OBJECTIVES To investigate the role of oxidative stress on the adjuvant activity of inhaled elemental carbon ultrafine particles (EC-UFPs) on allergic airway inflammation. METHODS Ovalbumin-sensitized mice were exposed to EC-UFPs (504 microg/m(3) for 24 h) or filtered air immediately before allergen challenge and systemically treated with N-acetylcysteine or vehicle before and during EC-UFP inhalation. Allergic inflammation was measured up to 1 week after allergen challenge by means of bronchoalveolar lavage, cytokine/total protein assays, lung function, and histology. Isoprostane levels in lung tissue served to measure oxidative stress. Transmission electron microscopy served to localize EC-UFPs in lung tissue and both electrophoretic mobility shift assay and immunohistochemistry to quantify/localize nuclear factor-kappaB (NF-kappaB) activation. MEASUREMENTS AND MAIN RESULTS In sensitized and challenged mice EC-UFP inhalation increased allergen-induced lung lipid peroxidation and NF-kappaB activation in addition to inflammatory infiltrate, cytokine release, and airway hyperresponsiveness. Prominent NF-kappaB activation was observed in the same cell types in which EC-UFPs were detected. N-acetylcysteine treatment significantly reduced the adjuvant activity of EC-UFPs. In nonsensitized or sensitized but not challenged mice EC-UFP exposure induced a moderate increase in isoprostanes but no significant effect on other parameters of lung inflammation. CONCLUSIONS Our findings demonstrate a critical role for oxidative stress in EC-UFP-induced augmentation of allergen-induced lung inflammation, where EC-UFP exposure has potentiating effects in lung allergic inflammation. Our data support the concept that allergic individuals are more susceptible to the adverse health effects of EC-UFPs.
Collapse
Affiliation(s)
- Francesca Alessandrini
- Division of Environmental Dermatology and Allergy, Helmholtz Zentrum/Technische Universität München, ZAUM Center for Allergy and Environment, Helmholtz Zentrum München, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 2009; 61:115-27. [PMID: 19146894 PMCID: PMC7103358 DOI: 10.1016/j.addr.2008.09.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 09/22/2008] [Indexed: 12/11/2022]
Abstract
Respiratory gene therapy has been considered for the treatment of a broad range of pulmonary disorders. However, respiratory secretions form an important barrier towards the pulmonary delivery of therapeutic nucleic acids. In this review we will start with a brief description of the biophysical properties of respiratory mucus and alveolar fluid. This must allow the reader to gain insights into the mechanisms by which respiratory secretions may impede the gene transfer efficiency of nucleic acid containing nanoparticles (NANs). Subsequently, we will summarize the efforts that have been done to understand the barrier properties of respiratory mucus and alveolar fluid towards the respiratory delivery of therapeutic nucleic acids. Finally, new and current strategies that can overcome the inhibitory effects of respiratory secretions are discussed.
Collapse
|
23
|
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a high incidence of morbidity and mortality. Cigarette smoke-induced oxidative stress is intimately associated with the progression and exacerbation of COPD and therefore targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to have beneficial outcome in the treatment of COPD. Among the various antioxidants tried so far, thiol antioxidants and mucolytic agents, such as glutathione, N-acetyl-L-cysteine, N-acystelyn, erdosteine, fudosteine and carbocysteine; Nrf2 activators; and dietary polyphenols (curcumin, resveratrol, and green tea catechins/quercetin) have been reported to increase intracellular thiol status along with induction of GSH biosynthesis. Such an elevation in the thiol status in turn leads to detoxification of free radicals and oxidants as well as inhibition of ongoing inflammatory responses. In addition, specific spin traps, such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo in the lung. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants and mucolytics will be effective in management of COPD. However, a successful outcome will critically depend upon the choice of antioxidant therapy for a particular clinical phenotype of COPD, whose pathophysiology should be first properly understood. This article will review the various approaches adopted to enhance lung antioxidant levels, antioxidant therapeutic advances and recent past clinical trials of antioxidant compounds in COPD.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
24
|
Nadeem A, Masood A, Siddiqui N. Oxidant--antioxidant imbalance in asthma: scientific evidence, epidemiological data and possible therapeutic options. Ther Adv Respir Dis 2009; 2:215-35. [PMID: 19124374 DOI: 10.1177/1753465808094971] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prevalence of asthma has increased considerably in recent decades throughout the world especially in developed countries. Airway inflammation is thought to be prime cause for repeated episodes of airway obstruction in asthmatics. Several studies have shown that reactive oxygen species (ROS) play a key role in initiation as well as amplification of inflammation in asthmatic airways. Excessive ROS production in asthma leads to alteration in key enzymatic as well as nonenzymatic antioxidants such as glutathione, vitamins C and E, beta-carotene, uric acid, thioredoxin, superoxide dismutases, catalase, and glutathione peroxidases leading to oxidant-antioxidant imbalance in airways. Oxidant-antioxidant imbalance leads to pathophysiological effects associated with asthma such as vascular permeability, mucus hypersecretion, smooth muscle contraction, and epithelial shedding. Epidemiological data also support the scientific evidence of oxidant-antioxidant imbalance in asthmatics. Therefore, the supplementation of antioxidants to boost the endogenous antioxidants or scavenge excessive ROS production could be utilized to dampen/prevent the inflammatory response in asthma by restoring oxidant-antioxidant balance. This review summarizes the scientific and epidemiological evidence linking asthma with oxidant-antioxidant imbalance and possible antioxidant strategies that can be used therapeutically for better management of asthma.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Physiology and Pharmacology, Health Sciences Center North West Virginia University Morgantown WV 26506, USA.
| | | | | |
Collapse
|
25
|
Schmelzer C, Lorenz G, Rimbach G, Döring F. In Vitro Effects of the Reduced Form of Coenzyme Q(10) on Secretion Levels of TNF-alpha and Chemokines in Response to LPS in the Human Monocytic Cell Line THP-1. J Clin Biochem Nutr 2008; 44:62-6. [PMID: 19177190 PMCID: PMC2613501 DOI: 10.3164/jcbn.08-182] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 07/25/2008] [Indexed: 02/01/2023] Open
Abstract
Ubiquinol-10 (QH2), the reduced form of Coenzyme Q10 (CoQ10) serves as a potent antioxidant of lipid membranes. Because many antioxidants reveal potent anti-inflammatory effects, the influence of QH2 on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and chemokines were determined in the human monocytic cell line THP-1. Stimulation of cells with LPS resulted in a distinct release of Tumour necrosis factor-alpha (TNF-α), Macrophage inflammatory protein-1 alpha (MIP-1α), Regulated upon activation, normal T cell expressed and secreted (RANTES) and Monocyte chemotattractant protein-1 (MCP-1). The LPS-induced responses were significantly decreased by pre-incubation of cells with QH2 to 60.27 ± 9.3% (p = 0.0009), 48.13 ± 6.93% (p = 0.0007) and 74.36 ± 7.25% (p = 0.008) for TNF-α, MIP-1α and RANTES, respectively. In conclusion, our results indicate anti-inflammatory effects of the reduced form of CoQ10 on various proinflammatory cytokines and chemokines in vitro.
Collapse
Affiliation(s)
- Constance Schmelzer
- Institute of Human Nutrition and Food Science, Molecular Nutrition, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
26
|
Fu P, Birukova AA, Xing J, Sammani S, Murley JS, Garcia JGN, Grdina DJ, Birukov KG. Amifostine reduces lung vascular permeability via suppression of inflammatory signalling. Eur Respir J 2008; 33:612-24. [PMID: 19010997 DOI: 10.1183/09031936.00014808] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite an encouraging outcome of antioxidant therapy in animal models of acute lung injury, effective antioxidant agents for clinical application remain to be developed. The present study investigated the effect of pre-treatment with amifostine, a thiol antioxidant compound, on lung endothelial barrier dysfunction induced by Gram-negative bacteria wall-lipopolysaccharide (LPS). Endothelial permeability was monitored by changes in transendothelial electrical resistance. Cytoskeletal remodelling and reactive oxygen species (ROS) production was examined by immunofluorescence. Cell signalling was assessed by Western blot. Measurements of Evans blue extravasation, cell count and protein content in bronchoalveolar lavage fluid were used as in vivo parameters of lung vascular permeability. Hydrogen peroxide, LPS and interleukin-6 caused cytoskeletal reorganisation and increased permeability in the pulmonary endothelial cells, reflecting endothelial barrier dysfunction. These disruptive effects were inhibited by pre-treatment with amifostine and linked to the amifostine-mediated abrogation of ROS production and redox-sensitive signalling cascades, including p38, extracellular signal regulated kinase 1/2, mitogen-activated protein kinases and the nuclear factor-kappaB pathway. In vivo, concurrent amifostine administration inhibited LPS-induced oxidative stress and p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and neutrophil recruitment to the lungs. The present study demonstrates, for the first time, protective effects of amifostine against lipopolysaccharide-induced lung vascular leak in vitro and in animal models of lipopolysaccharide-induced acute lung injury.
Collapse
Affiliation(s)
- P Fu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, 929 E. 57th Street, GCIS Bldg, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jacobs DR, Andersen LF, Blomhoff R. Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women's Health Study. Am J Clin Nutr 2007; 85:1606-14. [PMID: 17556700 DOI: 10.1093/ajcn/85.6.1606] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It has recently been shown that oxidative stress, infection, and inflammation are predominant pathophysiologic factors for several major diseases. OBJECTIVE We investigated the association of whole-grain intake with death attributed to noncardiovascular, noncancer inflammatory diseases. DESIGN Postmenopausal women (n = 41 836) aged 55-69 y at baseline in 1986 were followed for 17 y. After exclusions for cardiovascular disease, cancer, diabetes, colitis, and liver cirrhosis at baseline, 27 312 participants remained, of whom 5552 died during the 17 y. A proportional hazards regression model was adjusted for age, smoking, adiposity, education, physical activity, and other dietary factors. RESULTS Inflammation-related death was inversely associated with whole-grain intake. Compared with the hazard ratios in women who rarely or never ate whole-grain foods, the hazard ratio was 0.69 (95% CI: 0.57, 0.83) for those who consumed 4-7 servings/wk, 0.79 (0.66, 0.95) for 7.5-10.5 servings/wk, 0.64 (0.53, 0.79) for 11-18.5 servings/wk, and 0.66 (0.54, 0.81) for >or=19 servings/wk (P for trend = 0.01). Previously reported inverse associations of whole-grain intake with total and coronary heart disease mortality persisted after 17 y of follow-up. CONCLUSIONS The reduction in inflammatory mortality associated with habitual whole-grain intake was larger than that previously reported for coronary heart disease and diabetes. Because a variety of phytochemicals are found in whole grains that may directly or indirectly inhibit oxidative stress, and because oxidative stress is an inevitable consequence of inflammation, we suggest that oxidative stress reduction by constituents of whole grain is a likely mechanism for the protective effect.
Collapse
Affiliation(s)
- David R Jacobs
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
28
|
Kushwah R, Oliver JR, Cao H, Hu J. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways. Gene Ther 2007; 14:1243-8. [PMID: 17525704 DOI: 10.1038/sj.gt.3302968] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors.
Collapse
Affiliation(s)
- R Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Yeh CC, Kao SJ, Lin CC, Wang SD, Liu CJ, Kao ST. The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci 2007; 80:1821-31. [PMID: 17400256 DOI: 10.1016/j.lfs.2007.01.052] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 12/31/2006] [Accepted: 01/09/2007] [Indexed: 11/21/2022]
Abstract
To investigate the modulation of lung local immune responses of hesperidin (HES) on the acute lung inflammation induced by LPS in vivo. Mice were challenged with intratracheal lipopolysaccharide (100 microg) 30 min before with treatment hesperidin (200 mg/kg oral administration) or vehicle. After 4 and 24 h, bronchoalveolar lavage fluid was obtained to measure proinflammatory (TNF-alpha, IL-1 beta, IL-6), anti-inflammatory (IL-10, IL-4, IL-12) cytokines, chemokines (KC, MCP-1 and MIP-2), total cell counts, nitric oxide production, and proteins. Lung histology was performed in inflated-fixed lungs. Hesperidin downregulate the LPS-induced expression of TNF-alpha, IL-1 beta, IL-6, KC, MIP-2, MCP-1, and IL-12. It also enhanced the production of IL-4, IL-10. Total leukocyte counts; nitric oxide production, iNOS expression, and proteins were significantly decreased by hesperidin. In vitro, HES suppressed the expression of IL-8 on A549 cells and THP-1 cells, the expression of TNF-alpha, IL-1 beta, and IL-6 on THP-1 cells, the expression of ICAM-1 and VCAM-1 on A549 cells which effect cell adhesion function. The suppression of those molecules is controlled by NF-kappaB and AP-1, which are activated by I kappa B and MAPK pathways. HES inhibits those pathways, thereby suppressing the expression of IL-8, TNFalpha, IL-1 beta, IL-6, IL-12, ICAM-1 and VCAM-1. This study indicates that HES had a markedly immunomodulatory effect in a clinically relevant model of ARDS. Nevertheless, further investigations are required to determine the potential clinical usefulness of HES in the adjunctive therapy of ARDS.
Collapse
Affiliation(s)
- Chia-Chou Yeh
- Institute of Chinese Medical Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Grandjean-Laquerriere A, Antonicelli F, Gangloff SC, Guenounou M, Le Naour R. UVB-induced IL-18 production in human keratinocyte cell line NCTC 2544 through NF-κB activation. Cytokine 2007; 37:76-83. [PMID: 17399992 DOI: 10.1016/j.cyto.2007.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/08/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
In the present study, we investigated the implication of NF-kappaB in the production of pro-inflammatory cytokine IL-18 by human keratinocytes stimulated by UVB. We demonstrated that NCTC 2544 keratinocyte cell line irradiated by UVB enhanced the IL-18 mRNA and protein secretion under its bioactive form. Overexpression of IL-18 by UVB irradiation was accompanied by NF-kappaB transcription factor activation using specific IL-18 gene sequence corresponding to NF-kappaB DNA binding site. The relationship between these transcription factors and IL-18 expression was confirmed using curcumin and PDTC, two inhibitors of NF-kappaB. Our results show that UVB and curcumin or PDTC co-treatment led to a down-regulation of IL-18 expression associated with an inhibition of NF-kappaB DNA binding. Hence, our results demonstrated that this transcription factor is implicated in biologically active IL-18 production by human keratinocytes irradiated by UVB.
Collapse
Affiliation(s)
- Alexia Grandjean-Laquerriere
- Laboratoire d'Immunologie et de Microbiologie, IPCM, EA3796, IFR53, UFR de Pharmacie, 1 rue du Maréchal Juin, 51096 Reims Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Huh JW, Hong SB, Kim MJ, Lim CM, Koh Y. The Efficacy of α-lipoic Acid on the Endotoxin-induced Acute Lung Injury. Tuberc Respir Dis (Seoul) 2007. [DOI: 10.4046/trd.2007.62.2.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jin Won Huh
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University, Goyang, Korea
| | - Sang Bum Hong
- Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of ulsan College of Medicine, Seoul, Korea
| | - Mi Jung Kim
- Asan Institute for Life Sciences, Seoul, Korea
| | - Chae-Man Lim
- Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of ulsan College of Medicine, Seoul, Korea
| | - Younsuck Koh
- Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Cantin AM, White TB, Cross CE, Forman HJ, Sokol RJ, Borowitz D. Antioxidants in cystic fibrosis. Conclusions from the CF antioxidant workshop, Bethesda, Maryland, November 11-12, 2003. Free Radic Biol Med 2007; 42:15-31. [PMID: 17157190 PMCID: PMC2696206 DOI: 10.1016/j.freeradbiomed.2006.09.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 09/11/2006] [Accepted: 09/25/2006] [Indexed: 02/07/2023]
Abstract
Although great strides are being made in the care of individuals with cystic fibrosis (CF), this condition remains the most common fatal hereditary disease in North America. Numerous links exist between progression of CF lung disease and oxidative stress. The defect in CF is the loss of function of the transmembrane conductance regulator (CFTR) protein; recent evidence that CFTR expression and function are modulated by oxidative stress suggests that the loss may result in a poor adaptive response to oxidants. Pancreatic insufficiency in CF also increases susceptibility to deficiencies in lipophilic antioxidants. Finally the airway infection and inflammatory processes in the CF lung are potential sources of oxidants that can affect normal airway physiology and contribute to the mechanisms causing characteristic changes associated with bronchiectasis and loss of lung function. These multiple abnormalities in the oxidant/antioxidant balance raise several possibilities for therapeutic interventions that must be carefully assessed.
Collapse
Affiliation(s)
- André M. Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | - Carroll E. Cross
- Pulmonary-Critical Care Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Henry Jay Forman
- Division of Natural Sciences, University of California, Merced, CA, USA
| | - Ronald J. Sokol
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and The Children's Hospital, Denver, CO, USA
| | - Drucy Borowitz
- Pediatric Pulmonology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
33
|
McQueen DS, Donaldson K, Bond SM, McNeilly JD, Newman S, Barton NJ, Duffin R. Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation. Toxicol Appl Pharmacol 2006; 219:62-71. [PMID: 17239416 DOI: 10.1016/j.taap.2006.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 01/19/2023]
Abstract
To investigate the role of the vagus nerve in acute inflammatory and cardiorespiratory responses to diesel particulate (DP) in the rat airway, we measured changes in respiration, blood pressure and neutrophils in lungs of urethane anesthetized Wistar rats 6-h post-instillation of DP (500 microg) and studied the effect of mid-cervical vagotomy or atropine (1 mg kg(-1)) pre-treatment. In conscious rats, we investigated DP, with and without atropine pre-treatment. DP increased neutrophil level in BAL (bronchoalveolar lavage) fluid from intact anesthetized rats to 2.5+/-0.7x10(6) cells (n=8), compared with saline instillation (0.3+/-0.1x10(6), n=7; P<0.05). Vagotomy reduced DP neutrophilia to 0.8+/-0.2x10(6) cells (n=8; P<0.05 vs. intact); atropine reduced DP-induced neutrophilia to 0.3+/-0.2x10(6) (n=4; P<0.05). In conscious rats, DP neutrophilia of 8.5+/-1.8x10(6), n=4, was reduced by pre-treatment with atropine to 2.2+/-1.2x10(6) cells, n=3. Hyperventilation occurred 6 h after DP in anesthetized rats with intact vagi, but not in bilaterally vagotomized or atropine pre-treated animals and was abolished by vagotomy (P<0.05, paired test). There were no significant differences in the other variables (mean blood pressure, heart rate and heart rate variability) measured before and 360 min after DP. In conclusion, DP activates a pro-inflammatory vago-vagal reflex which is reduced by atropine. Muscarinic ACh receptors in the rat lung are involved in DP-induced neutrophilia, and hence muscarinic antagonists may reduce airway and/or cardiovascular inflammation evoked by inhaled atmospheric DP in susceptible individuals.
Collapse
Affiliation(s)
- D S McQueen
- University of Edinburgh, School of Biomedical Sciences, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Beeh KM, Beier J. Handle with care: targeting neutrophils in chronic obstructive pulmonary disease and severe asthma? Clin Exp Allergy 2006; 36:142-57. [PMID: 16433851 DOI: 10.1111/j.1365-2222.2006.02418.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils play an important role in the pathogenesis of airway inflammation in both chronic obstructive pulmonary disease (COPD) and severe asthma. Currently available drugs have only limited effects on neutrophilic airway inflammation, particularily in COPD. Therefore, great efforts are undertaken to address neutrophilic inflammation in chronic respiratory disorders, in particular COPD. This review summarizes the rationale for anti-neutrophilic treatment in COPD and asthma and gives a critical overview of current developments in drug therapy. Moreover, unanswered questions and limitations of clinical trial design and choice of outcome parameters for proof-of-concept studies with novel anti-neutrophilic drugs are discussed as well as potential safety issues.
Collapse
Affiliation(s)
- K M Beeh
- Insaf Respiratory Research Institute, Wiesbaden, Germany.
| | | |
Collapse
|
35
|
Malhotra S, Man SFP, Sin DD. Emerging drugs for the treatment of chronic obstructive pulmonary disease. Expert Opin Emerg Drugs 2006; 11:275-91. [PMID: 16634702 DOI: 10.1517/14728214.11.2.275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
By 2020 chronic obstructive pulmonary disease (COPD) will be the third leading cause of mortality and fifth leading cause of morbidity. Research over the past two decades has shed important insights on the pathobiology of COPD, leading to the development of novel drugs. In the past, symptomatic treatment with bronchodilators was the predominant focus of COPD management. With increased awareness of the importance of airway inflammation in COPD progression, there has been a shift in emphasis to drugs that attack various targets in the inflammatory cascade. These drugs include phosphodiesterase 4 inhibitors, leukotriene modifiers and TNF antagonists, which are poised to enter the COPD market in the very near future. Tyrosine kinase antagonists, inhibitors of NF-kappaB, neutrophil elastase inhibitors, chemokine antagonists, mucolytics and novel antibiotics are being evaluated for possible effectiveness in COPD. Many of these drugs may enter the COPD market within the next decade. This paper reviews the molecular rationale for these emerging drugs and their potential efficacy in COPD.
Collapse
Affiliation(s)
- Samir Malhotra
- University of British Columbia & The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, Department of Medicine (Respiratory Division), St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada.
| | | | | |
Collapse
|
36
|
Debret R, Le Naour RR, Sallenave JM, Deshorgue A, Hornebeck WG, Guenounou M, Bernard P, Antonicelli FD. Elastin fragments induce IL-1beta upregulation via NF-kappaB pathway in melanoma cells. J Invest Dermatol 2006; 126:1860-8. [PMID: 16675961 DOI: 10.1038/sj.jid.5700337] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a previous work, we reported the influence of elastin fragments (EFs) on matrix metalloproteinases-2 and -14 expression and activation in melanoma cells in vitro. We hypothesized that EFs might also modulate expression of other mediators involved during melanoma progression. Therefore we investigated the contribution of EFs on IL-1beta expression, a cytokine playing a key role in melanoma cells activation. Our results evidenced that high tumorigenic melanoma cells (M3Da cells) treated with EFs led to IL-1beta mRNA and protein upregulation. The effects of EFs on M3Da cells were found to be mediated by receptor (spliced galactosidase) occupancy, as being suppressed by lactose and reproduced by cell stimulation with the VGVAPG peptide. Binding of EFs to their receptor induced a rapid activation of extracellular signal-regulated kinase 1/2; and p38 mitogen-activated protein kinase pathways. However, these pathways were not associated with IL-1beta mRNA upregulation by EFs. Concomitantly, we demonstrated that EFs stimulation induced NF-kappaB nuclear translocation and DNA binding on IL-1beta promoter region whereas inhibition of NF-kappaB with the specific chemical inhibitor SN-50 or by overexpression of IkappaB, the endogenous inhibitor of NF-kappaB pathway, totally abolished EFs-mediated IL-1beta mRNA overexpression. These results demonstrate that EFs induce NF-kappaB activation, leading to IL-1beta upregulation in invasive melanoma cells.
Collapse
Affiliation(s)
- Romain Debret
- Department of Dermatology, CNRS UMR 6198 Faculty of Medicine, University of Reims, Champagne-Ardenne, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
El-Obeid A, Hassib A, Pontén F, Westermark B. Effect of herbal melanin on IL-8: a possible role of Toll-like receptor 4 (TLR4). Biochem Biophys Res Commun 2006; 344:1200-6. [PMID: 16650380 DOI: 10.1016/j.bbrc.2006.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 11/25/2022]
Abstract
The production of IL-8 can be induced by LPS via TLR4 signaling pathway. In this study, we tested the effect of a herbal melanin (HM) extract, from black cumin seeds (Nigella sativa L.), on IL-8 production. We used HM and LPS in parallel to induce IL-8 production by THP-I, PBMCs, and TLR4-transfected HEK293 cells. Both HM and LPS induced IL-8 mRNA expression and protein production in THP-1 and PBMCs. On applying similar treatment to HEK293 cells that express TLR4, MD2, and CD14, both HM and LPS significantly induced IL-8 protein production. We have also demonstrated that HM and LPS had identical effects in terms of IL-8 stimulation by HEK293 transfected with either TLR4 or MD2-CD14. Melanin extracted from N. sativa L. mimics the action of LPS in the induction of IL-8 by PBMC and the other used cell lines. Our results suggest that HM may share a signaling pathway with LPS that involves TLR4.
Collapse
Affiliation(s)
- Adila El-Obeid
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
38
|
Andersen LF, Jacobs DR, Carlsen MH, Blomhoff R. Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women's Health Study. Am J Clin Nutr 2006; 83:1039-46. [PMID: 16685044 DOI: 10.1093/ajcn/83.5.1039] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Coffee is the major source of dietary antioxidants. The association between coffee consumption and risk of death from diseases associated with inflammatory or oxidative stress has not been studied. OBJECTIVE We studied the relation of coffee drinking with total mortality and mortality attributed to cardiovascular disease, cancer, and other diseases with a major inflammatory component. DESIGN A total of 41,836 postmenopausal women aged 55-69 y at baseline were followed for 15 y. After exclusions for cardiovascular disease, cancer, diabetes, colitis, and liver cirrhosis at baseline, 27,312 participants remained, resulting in 410,235 person-years of follow-up and 4265 deaths. The major outcome measure was disease-specific mortality. RESULTS In the fully adjusted model, similar to the relation of coffee intake to total mortality, the hazard ratio of death attributed to cardiovascular disease was 0.76 (95% CI: 0.64, 0.91) for consumption of 1-3 cups/d, 0.81 (95% CI: 0.66, 0.99) for 4-5 cups/d, and 0.87 (95% CI: 0.69, 1.09) for > or =6 cups/d. The hazard ratio for death from other inflammatory diseases was 0.72 (95% CI: 0.55, 0.93) for consumption of 1-3 cups/d, 0.67 (95% CI: 0.50, 0.90) for 4-5 cups/d, and 0.68 (95% CI: 0.49, 0.94) for > or =6 cups/d. CONCLUSIONS Consumption of coffee, a major source of dietary antioxidants, may inhibit inflammation and thereby reduce the risk of cardiovascular and other inflammatory diseases in postmenopausal women.
Collapse
Affiliation(s)
- Lene Frost Andersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
39
|
Kirkham P, Rahman I. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 2006; 111:476-94. [PMID: 16458359 DOI: 10.1016/j.pharmthera.2005.10.015] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 01/10/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are inflammatory lung diseases that are characterized by systemic and chronic localized inflammation and oxidative stress. Sources of oxidative stress arise from the increased burden of inhaled oxidants, as well as elevated amounts of reactive oxygen species (ROS) released from inflammatory cells. Increased levels of ROS, either directly or via the formation of lipid peroxidation products, may play a role in enhancing the inflammatory response in both asthma and COPD. Moreover, in COPD it is now recognized as the main pathogenic factor for driving disease progression and increasing severity. ROS and lipid peroxidation products can influence the inflammatory response at many levels through its impact on signal transduction mechanisms, activation of redox-sensitive transcriptions factors, and chromatin regulation resulting in pro-inflammatory gene expression. It is this impact of ROS on chromatin regulation by reducing the activity of the transcriptional co-repressor, histone deacetylase-2 (HDAC-2), that leads to the poor efficacy of corticosteroids in COPD, severe asthma, and smoking asthmatics. Thus, the presence of oxidative stress has important consequences for the pathogenesis, severity, and treatment of asthma and COPD. However, for ROS to have such an impact, it must first overcome a variety of antioxidant defenses. It is likely, therefore, that a combination of antioxidants may be effective in the treatment of asthma and COPD. Various approaches to enhance the lung antioxidant screen and clinical trials of antioxidant compounds are discussed.
Collapse
Affiliation(s)
- Paul Kirkham
- Respiratory Diseases, Novartis Institutes for Biomedical Research, Horsham, West Sussex, RH12 5AB, UK.
| | | |
Collapse
|
40
|
Sadowska AM, Verbraecken J, Darquennes K, De Backer WA. Role of N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis 2006; 1:425-34. [PMID: 18044098 PMCID: PMC2707813 DOI: 10.2147/copd.2006.1.4.425] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The importance of the underlying local and systemic oxidative stress and inflammation in chronic obstructive pulmonary disease (COPD) has long been established. In view of the lack of therapy that might inhibit the progress of the disease, there is an urgent need for a successful therapeutic approach that, through affecting the pathological processes, will influence the subsequent issues in COPD management such as lung function, airway clearance, dyspnoea, exacerbation, and quality of life. N-acetylcysteine (NAC) is a mucolytic and antioxidant drug that may also influence several inflammatory pathways. It provides the sulfhydryl groups and acts both as a precursor of reduced glutathione and as a direct reactive oxygen species (ROS) scavenger, hence regulating the redox status in the cells. The changed redox status may, in turn, influence the inflammation-controlling pathways. Moreover, as a mucolytic drug, it may, by means of decreasing viscosity of the sputum, clean the bronchi leading to a decrease in dyspnoea and improved lung function. Nevertheless, as successful as it is in the in vitro studies and in vivo studies with high dosage, its actions at the dosages used in COPD management are debatable. It seems to influence exacerbation rate and limit the number of hospitalization days, however, with little or no influence on the lung function parameters. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives with their multiple molecular modes of action remain promising medication once doses and route of administration are optimized.
Collapse
Affiliation(s)
- Anna M Sadowska
- Department of Pulmonary Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
41
|
Pelaia G, Vatrella A, Gallelli L, Renda T, Caputi M, Maselli R, Marsico SA. Biological targets for therapeutic interventions in COPD: clinical potential. Int J Chron Obstruct Pulmon Dis 2006; 1:321-34. [PMID: 18046869 PMCID: PMC2707155 DOI: 10.2147/copd.2006.1.3.321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
COPD is a widespread inflammatory respiratory disorder characterized by a progressive, poorly reversible airflow limitation. Currently available therapies are mostly based on those used to treat asthma. However, such compounds are not able to effectively reduce the gradual functional deterioration, as well as the ongoing airway and lung inflammation occurring in COPD patients. Therefore, there is an urgent need to improve the efficacy of the existing drug classes and to develop new treatments, targeting the main cellular and molecular mechanisms underlying disease pathogenesis. These therapeutic strategies will be highlighted in the present review.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Foronjy RF, Mirochnitchenko O, Propokenko O, Lemaitre V, Jia Y, Inouye M, Okada Y, D'Armiento JM. Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am J Respir Crit Care Med 2005; 173:623-31. [PMID: 16387805 PMCID: PMC3982860 DOI: 10.1164/rccm.200506-850oc] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Oxidants are believed to play a major role in the development of emphysema. OBJECTIVES This study aimed to determine if the expression of human copper-zinc superoxide dismutase (CuZnSOD) within the lungs of mice protects against the development of emphysema. METHODS Transgenic CuZnSOD and littermate mice were exposed to cigarette smoke (6 h/d, 5 d/wk, for 1 yr) and compared with nonexposed mice. A second group was treated with intratracheal elastase to induce emphysema. MEASUREMENTS Lung inflammation was measured by cell counts and myeloperoxidase levels. Oxidative damage was assessed by immunofluorescence for 3-nitrotyrosine and 8-hydroxydeoxyguanosine and lipid peroxidation levels. The development of emphysema was determined by measuring the mean linear intercept (Lm). MAIN RESULTS Smoke exposure caused a fourfold increase in neutrophilic inflammation and doubled lung myeloperoxidase activity. This inflammatory response did not occur in the smoke-exposed CuZnSOD mice. Similarly, CuZnSOD expression prevented the 58% increase in lung lipid peroxidation products that occurred after smoke exposure. Most important, CuZnSOD prevented the onset of emphysema in both the smoke-induced model (Lm, 68 exposed control vs. 58 exposed transgenic; p < 0.04) and elastase-generated model (Lm, 80 exposed control vs. 63 exposed transgenic; p < 0.03). These results demonstrate for the first time that antioxidants can prevent smoke-induced inflammation and can counteract the proteolytic cascade that leads to emphysema formation in two separate animal models of the disease. CONCLUSIONS These findings indicate that strategies aimed at enhancing or supplementing lung antioxidants could be effective for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Robert F Foronjy
- Department of Medicine, Columbia University, 630 West 168th Street, P&S 8-401, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Möller W, Brown DM, Kreyling WG, Stone V. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. Part Fibre Toxicol 2005; 2:7. [PMID: 16202162 PMCID: PMC1262770 DOI: 10.1186/1743-8977-2-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 10/04/2005] [Indexed: 11/25/2022] Open
Abstract
Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.
Collapse
Affiliation(s)
- Winfried Möller
- GSF National Research Center for Environment and Health, Clinical research group 'Inflammatory Lung Diseases', Robert Koch Allee 29, D-82131 Munich-Gauting, Germany
- GSF National Research Center for Environment and Health, Institute for Inhalation Biology, and Focus Network Aerosols and Health, Ingolstädter Landstr. 1, D-85746 Neuherberg/München, Germany
| | - David M Brown
- Napier University, School of Life Sciences, Edinburgh EH10 5DT, UK
| | - Wolfgang G Kreyling
- GSF National Research Center for Environment and Health, Institute for Inhalation Biology, and Focus Network Aerosols and Health, Ingolstädter Landstr. 1, D-85746 Neuherberg/München, Germany
| | - Vicki Stone
- Napier University, School of Life Sciences, Edinburgh EH10 5DT, UK
| |
Collapse
|
44
|
Debret R, Antonicelli F, Theill A, Hornebeck W, Bernard P, Guenounou M, Le Naour R. Elastin-derived peptides induce a T-helper type 1 polarization of human blood lymphocytes. Arterioscler Thromb Vasc Biol 2005; 25:1353-8. [PMID: 15860743 DOI: 10.1161/01.atv.0000168412.50855.9f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Increased level of elastin-derived peptides (EDPs) is observed in the serum of patients with manifestations of arterial diseases. We here investigated whether EDPs might exert, at systemic level, a regulatory role for the T-helper type 1 (Th-1)/Th-2 cellular immune response by human peripheral blood lymphocytes (PBLs) expressing the spliced-galactosidase (S-gal)-elastin receptor. METHODS AND RESULTS Using flow cytometry and Western blot analysis, we demonstrated that EDPs led to an activation of the S-gal-elastin receptor associated with cytokine production on PBLs and CD4+ T cell subpopulations. The constitutive expression of the S-gal-elastin receptor at the surface of human PBLs was upregulated at the mRNA (RT-PCR) and protein (ELISA) levels on cell activation. In nonactivated and phytohemagglutinin-activated conditions, expressions of the predominant Th-2 cytokine interleukin-5 (IL-5) and IL-10 were reduced, whereas those of the major Th-1 cytokines interferon-gamma and IL-2 were enhanced by EDPs. Furthermore, we evidenced that EDPs could not only potentiate the IL-12-induced Th-1 profile but also could reverse the Th-2 (over Th-1) profile induced by IL-4. Finally, Th-1 cytokine upregulation was associated to an increased activator protein-1 DNA binding and enhanced pro-matrix metalloproteinase-9 secretion. CONCLUSIONS This study highlights the importance of EDPs as stimuli for Th-1 differentiation, whether T cells are in an inactivated state or already orientated toward a Th-1 (IL-12) or Th-2 (IL-4) response.
Collapse
Affiliation(s)
- Romain Debret
- Laboratoire d'Immunologie, Virologie et Bactériologie, Reims, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Current World Literature. Curr Opin Allergy Clin Immunol 2005. [DOI: 10.1097/01.all.0000162314.10050.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Abstract
Chronic inflammation and oxidative stress are important features in the pathogenesis of COPD. The increased oxidative stress in patients with COPD is the result of an increased burden of inhaled oxidants, as well as increased amounts of reactive oxygen species (ROS) generated by various inflammatory, immune and epithelial cells of the airways. Oxidative stress has important implications on several events of lung physiology and for the pathogenesis of COPD. These include oxidative inactivation of antiproteases and surfactants, mucus hypersecretion, membrane lipid peroxidation, mitochondrial respiration, alveolar epithelial injury, remodeling of extracellular matrix, and apoptosis. An increased level of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs, and blood in patients with COPD. The biomarkers of oxidative stress such as H2O2, F2-isoprostanes, malondialdehyde and 4-hydroxy-2-nonenal have been successfully measured in breath condensate. ROS and aldehydes play a key role in enhancing the inflammation through the activation of mitogen-activated protein kinases and redox-sensitive transcription factors such as nuclear factor kappa B and activator protein-1. Oxidative stress also alters nuclear histone acetylation and deacetylation leading to increased gene expression of pro-inflammatory mediators in the lung. Oxidative stress may play a role in the poor clinical efficacy of corticosteroids in the treatment of COPD. Since a variety of oxidants, free radicals, and aldehydes are implicated in the pathogenesis of COPD it is likely that a combination of antioxidants may be effective in the treatment of COPD. Antioxidant compounds may also be of therapeutic value in monitoring oxidative biomarkers indicating disease progression. Various approaches to enhance the lung antioxidant screen and the clinical effectiveness of antioxidant compounds in the treatment of COPD are discussed.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
47
|
Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 2004; 42:987-1014. [PMID: 15829290 DOI: 10.1016/j.molimm.2004.09.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/29/2004] [Indexed: 12/17/2022]
Abstract
Of the antioxidant/prooxidant mechanisms mediating the regulation of inflammatory mediators, particularly cytokines, oxidative stress-related pathways remain a cornerstone. It is conspicuous that there is a strong association between free radical accumulation (ROS/RNS; oxidative stress) and the evolution of inflammation and inflammatory-related responses. The scenario that upholds a consensus on the aforementioned is still evolving to unravel, from an immunologic perspective, the molecular mechanisms associated with ROS/RNS-dependent inflammation. Cytokines are keynote players when it comes to defining an intimate relationship among reduction-oxidation (redox) signals, oxidative stress and inflammation. How close we are to identifying the molecular basis of this intricate association should be weighed against the involvement of specific signaling molecules and, potentially, transcription factors. L-gamma-Glutamyl-L-cysteinyl-glycine, or glutathione (GSH), an antioxidant thiol, has shaped, and still is refining, the face of oxidative signaling in terms of regulating the milieu of inflammatory mediators, ostensibly via the modulation (expression/repression) of oxygen- and redox-responsive transcription factors, hence termed redox(y)-sensitive cofactors. When it comes to the arena of oxygen sensing, oxidative stress and inflammation, nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha) are key players that determine antioxidant/prooxidant responses with oxidative challenge. It is the theme therein to underlie current understanding of the molecular association hanging between oxidative stress and the evolution of inflammation, walked through an elaborate discussion on the role of transcription factors and cofactors. Would that classify glutathione and other redox signaling cofactors as potential anti-inflammatory molecules emphatically remains of particular interest, especially in the light of identifying upstream and downstream molecular pathways for conceiving therapeutic, alleviating strategy for oxidant-mediated, inflammatory-related disease conditions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
48
|
Zager RA, Johnson ACM, Hanson SY, Lund S. Parenteral iron compounds sensitize mice to injury-initiated TNF-alpha mRNA production and TNF-alpha release. Am J Physiol Renal Physiol 2004; 288:F290-7. [PMID: 15494544 DOI: 10.1152/ajprenal.00342.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intravenous Fe is widely used to treat anemia in renal disease patients. However, concerns of potential Fe toxicity exist. To more fully define its spectrum, this study tested Fe's impact on systemic inflammation following either endotoxemia or the induction of direct tissue damage (glycerol-mediated rhabdomyolysis). The inflammatory response was gauged by tissue TNF-alpha message expression and plasma TNF-alpha levels. CD-1 mice received either intravenous Fe sucrose, -gluconate, or -dextran (FeS, FeG, or FeD, respectively; 2 mg), followed by either endotoxin (LPS) or glycerol injection 0-48 h later. Plasma TNF-alpha was assessed by ELISA 2-3 h after the LPS or glycerol challenge. TNF-alpha mRNA expression (RT-PCR) was measured in the kidney, heart, liver, lung, and spleen with Fe +/- LPS treatment. Finally, the relative impacts of intramuscular vs. intravenous Fe and of glutathione (GSH) on Fe/LPS- induced TNF-alpha generation were assessed. Each Fe preparation significantly enhanced LPS- or muscle injury-mediated TNF-alpha generation. This effect was observed for at least 48 h post-Fe injection, a time at which plasma iron levels were increased by levels insufficient to fully saturate transferrin. Fe did not independently increase plasma TNF-alpha or tissue mRNA. However, it potentiated postinjury-induced TNF-alpha mRNA increments and did so in an organ-specific fashion (kidney, heart, and lung; but not in liver or spleen). Intramuscular administration, but not GSH treatment, negated Fe's ability to synergize LPS-mediated TNF-alpha release. We conclude 1) intravenous Fe can enhance TNF-alpha generation during LPS- or glycerol-induced tissue damage; 2) increased TNF-alpha gene transcription in the kidney, heart, and lung may contribute to this result; and 3) intramuscular administration, but not GSH, might potentially mitigate some of Fe's systemic toxic effects.
Collapse
|