1
|
Carbone A, Vitullo P, Di Gioia S, Castellani S, Conese M. A New Frontier in Cystic Fibrosis Pathophysiology: How and When Clock Genes Can Affect the Inflammatory/Immune Response in a Genetic Disease Model. Curr Issues Mol Biol 2024; 46:10396-10410. [PMID: 39329970 PMCID: PMC11430433 DOI: 10.3390/cimb46090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome caused by variants in the CF Transmembrane Conductance Regulator (CFTR) gene, affecting various organ and systems, in particular the lung, pancreas, sweat glands, liver, gastrointestinal tract, vas deferens, and vascular system. While for some organs, e.g., the pancreas, a strict genotype-phenotype occurs, others, such as the lung, display a different pathophysiologic outcome in the presence of the same mutational asset, arguing for genetic and environmental modifiers influencing severity and clinical trajectory. CFTR variants trigger a pathophysiological cascade of events responsible for chronic inflammatory responses, many aspects of which, especially related to immunity, are not ascertained yet. Although clock genes expression and function are known modulators of the innate and adaptive immunity, their involvement in CF has been only observed in relation to sleep abnormalities. The aim of this review is to present current evidence on the clock genes role in immune-inflammatory responses at the lung level. While information on this topic is known in other chronic airway diseases (chronic obstructive pulmonary disease and asthma), CF lung disease (CFLD) is lacking in this knowledge. We will present the bidirectional effect between clock genes and inflammatory factors that could possibly be implicated in the CFLD. It must be stressed that besides sleep disturbance and its mechanisms, there are not studies directly addressing the exact nature of clock genes' involvement in inflammation and immunity in CF, pointing out the directions of new and deepened studies in this monogenic affection. Importantly, clock genes have been found to be druggable by means of genetic tools or pharmacological agents, and this could have therapeutic implications in CFLD.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
2
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
3
|
吴 迎, 左 谦, 罗 薇, 王 慧, 皮 大, 陈 前, 陈 利, 林 丽, 欧阳 明. [ Yifei Sanjie Pills alleviates cancer-related skeletal muscle atrophy in mice possibly by lowering inflammatory insulin resistance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1839-1849. [PMID: 38081600 PMCID: PMC10713459 DOI: 10.12122/j.issn.1673-4254.2023.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To evaluate the effects of Yifei Sanjie Pills (YFSJ) on weight, strength, pathology, glycogen and lipid contents and metabolism of skeletal muscles in tumor-bearing mice and explore the therapeutic mechanism of YFSJ for cancer-related skeletal muscle atrophy. METHODS Sixteen female ICR mice bearing intraperitoneal Lewis lung adenocarcinoma xenografts were randomized into model group and YFSJ treatment group (daily dose of 4 g/kg for 21 days, n=8), with another 8 normal mice as the normal control group. The changes in body weight and gastrocnemius muscle weight of the mice were recorded. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the drug components in YFSJ entering the blood. Enzyme-linked immunosorbent assay was used to detect serum blood glucose and insulin concentrations and inflammatory cytokine levels in the serum and gastrocnemius. RNA-seq was performed to analyze the signaling pathways involved in the pathologies of the gastrocnemius muscle, and lipid contents in the muscle were observed using Oil red O staining. Adenosine triphosphatase staining was used to assess the metabolic intensity of the gastrocnemius muscle, and inflammatory cell infiltration and P-AKT level were evaluated using immunohistochemical staining; the contents of creatine kinase, lactate dehydrogenase and myoglobin in the gastrocnemius muscle were also detected. RESULTS Treatment with YFSJ significantly increased skeletal muscle strength and gastrocnemius muscle weight (P < 0.001) and reduced the levels of gastrocnemius muscle injury markers in the tumor-bearing mice (P < 0.01). RNA-seq and LC-MS showed that YFSJ alleviated gastrocnemius muscle injury in the tumor-bearing mice possibly by improving inflammatory infiltration, insulin resistance and lipid metabolism (P < 0.05). YFSJ lowered inflammatory cytokine levels in both the serum and gastrocnemius muscle (P < 0.05), reduced pro-inflammatory cell infiltration, increased P-AKT level, and improved glycogen and lipid contents and metabolic levels in the gastrocnemius muscle. CONCLUSION YFSJ alleviates cancer-related skeletal muscle atrophy possibly by reducing inflammatory insulin resistance.
Collapse
Affiliation(s)
- 迎朝 吴
- 广州中医药大学第二临床医学院,广东 广州 510405Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- 广州中医药大学第二附属医院中医证候全国重点实验室,广东 广州 510120State Key Laboratory of Traditional Chinese Medicine Syndrome, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- 广东省中医院乳腺科,广东 广州 510120Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 广东省中医药科学院,广东 广州 510120Guangdong Academy of Traditional Chinese Medicine, Guangzhou 510120, China
- 暨南大学中医学院,广东 广州 510632College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - 谦 左
- 广州中医药大学第二附属医院中医证候全国重点实验室,广东 广州 510120State Key Laboratory of Traditional Chinese Medicine Syndrome, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- 广东省中医院乳腺科,广东 广州 510120Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 广东省中医药科学院,广东 广州 510120Guangdong Academy of Traditional Chinese Medicine, Guangzhou 510120, China
| | - 薇 罗
- 广州中医药大学第二临床医学院,广东 广州 510405Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- 广州中医药大学第二附属医院中医证候全国重点实验室,广东 广州 510120State Key Laboratory of Traditional Chinese Medicine Syndrome, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- 广东省中医院乳腺科,广东 广州 510120Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 广东省中医药科学院,广东 广州 510120Guangdong Academy of Traditional Chinese Medicine, Guangzhou 510120, China
| | - 慧 王
- 暨南大学中医学院,广东 广州 510632College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - 大锦 皮
- 暨南大学中医学院,广东 广州 510632College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - 前军 陈
- 广州中医药大学第二附属医院中医证候全国重点实验室,广东 广州 510120State Key Laboratory of Traditional Chinese Medicine Syndrome, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- 广东省中医院乳腺科,广东 广州 510120Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 广东省中医药科学院,广东 广州 510120Guangdong Academy of Traditional Chinese Medicine, Guangzhou 510120, China
| | - 利国 陈
- 暨南大学中医学院,广东 广州 510632College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - 丽珠 林
- 广州中医药大学第一附属医院肿瘤中心,广东 广州 510405Oncology Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - 明子 欧阳
- 暨南大学中医学院,广东 广州 510632College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Huangfu H, Huang Z, Liao W, Zou T, Shang X, Yu H. M1 linear ubiquitination of LKB1 inhibits vascular endothelial cell injury in atherosclerosis through activation of AMPK. Hum Cell 2023; 36:1901-1914. [PMID: 37632629 DOI: 10.1007/s13577-023-00950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/27/2023] [Indexed: 08/28/2023]
Abstract
Endothelial cell injury is confirmed to be the initial step in the atherosclerosis (AS) process. Here, we tried to elucidate the role of liver kinase B1 (LKB1) and adenosine phosphate protein kinase (AMPK) in modulating vascular endothelial cells (VECs) in AS. High-fat feed (HFD)-induced AS rat models were prepared and treated with AMPK activator A-769662 alone or combined with chloroquine. An analysis of VEC injury, inflammation response, and autophagy followed it. The M1 linear ubiquitination of LKB1 was assessed by co-immunoprecipitation. The interaction between LKB1 and AMPK was analyzed. Primary aortic VECs were isolated and induced by LPS to verify the effects of LKB1 and AMPK on VEC injury in AS. Activation of AMPK reduced the VEC injury and inflammatory response of VECs and promoted autophagy caused by AS. LKB1 could regulate the activation of AMPK in AS. M1 linear ubiquitination enhanced LKB1 activity and increased AMPK activation to protect against VEC injury in AS, which was validated by in vitro experiments. Our current study highlighted that M1 linear ubiquitination of LKB1 may induce the activation of LKB1 to activate AMPK, which inhibited VEC injury in AS.
Collapse
Affiliation(s)
- Haiquan Huangfu
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China
| | - Zhichao Huang
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China
| | - Weiqian Liao
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China
| | - Tianyu Zou
- Department of Encephalopathy, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518004, People's Republic of China
| | - Xiaoming Shang
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China.
| | - Hairui Yu
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Zhou YH, Gallins PJ, Pace RG, Dang H, Aksit MA, Blue EE, Buckingham KJ, Collaco JM, Faino AV, Gordon WW, Hetrick KN, Ling H, Liu W, Onchiri FM, Pagel K, Pugh EW, Raraigh KS, Rosenfeld M, Sun Q, Wen J, Li Y, Corvol H, Strug LJ, Bamshad MJ, Blackman SM, Cutting GR, Gibson RL, O’Neal WK, Wright FA, Knowles MR. Genetic Modifiers of Cystic Fibrosis Lung Disease Severity: Whole-Genome Analysis of 7,840 Patients. Am J Respir Crit Care Med 2023; 207:1324-1333. [PMID: 36921087 PMCID: PMC10595435 DOI: 10.1164/rccm.202209-1653oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.
Collapse
Affiliation(s)
- Yi-Hui Zhou
- Bioinformatics Research Center
- Department of Biological Sciences, and
| | | | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | | | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Medical Genetics, Department of Medicine
| | | | | | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research and
| | | | - Kurt N. Hetrick
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | | | - Kymberleigh Pagel
- The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth W. Pugh
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | - Margaret Rosenfeld
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | | | | | - Yun Li
- Department of Biostatistics
- Department of Genetics, and
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Paris, France
- Centre de Recherche Saint Antoine, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Lisa J. Strug
- Division of Biostatistics, Dalla Lana School of Public Health
- Department of Statistical Sciences, and
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; and
- Program in Genetics and Genome Biology and
- The Center for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Genetic Medicine, Department of Pediatrics
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Scott M. Blackman
- McKusick-Nathans Department of Genetic Medicine
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ronald L. Gibson
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Fred A. Wright
- Bioinformatics Research Center
- Department of Biological Sciences, and
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | | |
Collapse
|
6
|
Fang CT, Kuo HH, Amartuvshin O, Hsu HJ, Liu SL, Yao JS, Yih LH. Inhibition of acetyl-CoA carboxylase impaired tubulin palmitoylation and induced spindle abnormalities. Cell Death Dis 2023; 9:4. [PMID: 36617578 PMCID: PMC9826786 DOI: 10.1038/s41420-023-01301-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Tubulin s-palmitoylation involves the thioesterification of a cysteine residue in tubulin with palmitate. The palmitate moiety is produced by the fatty acid synthesis pathway, which is rate-limited by acetyl-CoA carboxylase (ACC). While it is known that ACC is phosphorylated at serine 79 (pSer79) by AMPK and accumulates at the spindle pole (SP) during mitosis, a functional role for tubulin palmitoylation during mitosis has not been identified. In this study, we found that modulating pSer79-ACC level at the SP using AMPK agonist and inhibitor induced spindle defects. Loss of ACC function induced spindle abnormalities in cell lines and in germ cells of the Drosophila germarium, and palmitic acid (PA) rescued the spindle defects in the cell line treated transiently with the ACC inhibitor, TOFA. Furthermore, inhibition of protein palmitoylating or depalmitoylating enzymes also induced spindle defects. Together, these data suggested that precisely regulated cellular palmitate level and protein palmitoylation may be required for accurate spindle assembly. We then showed that tubulin was largely palmitoylated in interphase cells but less palmitoylated in mitotic cells. TOFA treatment diminished tubulin palmitoylation at doses that disrupt microtubule (MT) instability and cause spindle defects. Moreover, spindle MTs comprised of α-tubulins mutated at the reported palmitoylation site exhibited disrupted dynamic instability. We also found that TOFA enhanced the MT-targeting drug-induced spindle abnormalities and cytotoxicity. Thus, our study reveals that precise regulation of ACC during mitosis impacts tubulin palmitoylation to delicately control MT dynamic instability and spindle assembly, thereby safeguarding nuclear and cell division.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Hui Kuo
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Oyundari Amartuvshin
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Hwei-Jan Hsu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Sih-Long Liu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jhong-Syuan Yao
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Barbato E, Darrah R, Kelley TJ. The circadian system in cystic fibrosis mice is regulated by histone deacetylase 6. Am J Physiol Cell Physiol 2022; 323:C1112-C1120. [PMID: 36062879 PMCID: PMC9555305 DOI: 10.1152/ajpcell.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Disordered sleep experienced by people with cystic fibrosis (CF) suggest a possible disruption in circadian regulation being associated with the loss of cystic fibrosis transmembrane conductance regulator (Cftr) function. To test this hypothesis, circadian regulation was assessed in an F508del/F508del CF mouse model. CF mice exhibited significant alterations in both timing of locomotor activity and in mean activity per hour in both light-dark (LD) and dark-dark (DD) photoperiods compared with wild-type (WT) controls. It was also noted that in DD periodicity increased in CF mice, whereas shortening in WT mice as is expected. CF mice also exhibited altered timing of circadian gene expression and a reduction of melatonin production at all time points. Mechanistically, the role of microtubules in regulating these outcomes was explored. Mice lacking expression of tubulin polymerization promoting protein (Tppp) effectively mimicked CF mouse phenotypes with each measured outcome. Depleting expression of the microtubule regulatory protein histone deacetylase 6 (Hdac6) from CF mice (CF/Hdac6) resulted in the reversal of each phenotype to WT profiles. These data demonstrate an innate disruption of circadian regulation in CF mice and identify a novel microtubule-related mechanism leading to this disruption that can be targeted for therapeutic intervention.
Collapse
|
8
|
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022; 21:283-305. [PMID: 35031766 PMCID: PMC8758994 DOI: 10.1038/s41573-021-00367-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Fatty acids are essential for survival, acting as bioenergetic substrates, structural components and signalling molecules. Given their vital role, cells have evolved mechanisms to generate fatty acids from alternative carbon sources, through a process known as de novo lipogenesis (DNL). Despite the importance of DNL, aberrant upregulation is associated with a wide variety of pathologies. Inhibiting core enzymes of DNL, including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), represents an attractive therapeutic strategy. Despite challenges related to efficacy, selectivity and safety, several new classes of synthetic DNL inhibitors have entered clinical-stage development and may become the foundation for a new class of therapeutics. De novo lipogenesis (DNL) is vital for the maintenance of whole-body and cellular homeostasis, but aberrant upregulation of the pathway is associated with a broad range of conditions, including cardiovascular disease, metabolic disorders and cancers. Here, Steinberg and colleagues provide an overview of the physiological and pathological roles of the core DNL enzymes and assess strategies and agents currently in development to therapeutically target them.
Collapse
Affiliation(s)
- Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
9
|
Lu B, Corey DA, Kelley TJ. Resveratrol restores intracellular transport in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1145-L1157. [PMID: 32267731 DOI: 10.1152/ajplung.00006.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have demonstrated previously that intracellular transport is impaired in cystic fibrosis (CF) epithelial cells. This impairment is related to both growth and inflammatory regulation in CF cell and animal models. Understanding how transport in CF cells is regulated and identifying means to manipulate that regulation are key to identifying new therapies that can address key CF phenotypes. It was hypothesized that resveratrol could replicate these benefits since it interfaces with multiple pathways identified to affect microtubule regulation in CF. It was found that resveratrol treatment significantly restored intracellular transport as determined by monitoring both cholesterol distribution and the distribution of rab7-positive organelles in CF cells. This restoration of intracellular transport is due to correction of both microtubule formation rates and microtubule acetylation in cultured CF cell models and primary nasal epithelial cells. Mechanistically, the effect of resveratrol on microtubule regulation and intracellular transport was dependent on peroxisome proliferator-activated receptor-γ signaling and its ability to act as a pan-histone deacetylase (HDAC) inhibitor. Resveratrol represents a candidate compound with known anti-inflammatory properties that can restore both microtubule formation and acetylation in CF epithelial cells.
Collapse
Affiliation(s)
- Binyu Lu
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Deborah A Corey
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Thomas J Kelley
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|