1
|
Ju Y, Sun X, Xu G, Tai Q, Gao W. Annexin A1 peptide Ac2-26 mitigates ventilator-induced lung injury in acute respiratory distress syndrome rats and partly depended on the endothelial nitric oxide synthase pathway. Acta Cir Bras 2023; 37:e371203. [PMID: 36651428 PMCID: PMC9974014 DOI: 10.1590/acb371203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Although mechanical ventilation is an essential support for acute respiratory distress syndrome (ARDS), ventilation also leads to ventilator-induced lung injury (VILI). This study aimed to estimate the effect and mechanism of Annexin A1 peptide (Ac2-26) on VILI in ARDS rats. METHODS Thirty-two rats were randomized into the sham (S), mechanical ventilation (V), mechanical ventilation/Ac2-26 (VA), and mechanical ventilation/Ac2-26/L-NIO (VAL) groups. The S group only received anesthesia, and the other three groups received endotoxin and then ventilation for 4 h. Rats in the V, VA and VAL groups received saline, Ac2-26, and A c2-26/N5-(1-iminoethyl)-l-ornithine (L-NIO), respectively. RESULTS All indexes deteriorated in the V, VA and VAL groups compared with the S group. Compared with V group, the PaO2/FiO2 ratio was increased, but the wet-to-dry weight ratio and protein levels in bronchoalveolar lavage fluid were decreased in the VA group. The inflammatory cells and proinflammatory factors were reduced by Ac2-26. The oxidative stress response, lung injury and apoptosis were also decreased by Ac2-26 compared to V group. All improvements of Ac2-26 were partly reversed by L-NIO. CONCLUSIONS Ac2-26 mitigates VILI in ARDS rats and partly depended on the endothelial nitric oxide synthase pathway.
Collapse
Affiliation(s)
- Yingnan Ju
- MD. Harbin Medical University – Department of Intensive Care Unit – Third Clinical College – Harbin, China
| | - Xikun Sun
- MS. Harbin Medical University – Department of Anesthesiology – The Second Affiliated Hospital – Harbin, China
| | - Guangxiao Xu
- MS. Harbin Medical University – Department of Anesthesiology – The Second Affiliated Hospital – Harbin, China
| | - Qihang Tai
- MS. Harbin Medical University – Department of Anesthesiology – The Second Affiliated Hospital – Harbin, China
| | - Wei Gao
- MS. Harbin Medical University – Department of Anesthesiology – The Second Affiliated Hospital – Harbin, China.,Corresponding author:
- (86-0451) 86605029
| |
Collapse
|
2
|
PI3Kγ stimulates a high molecular weight form of myosin light chain kinase to promote myeloid cell adhesion and tumor inflammation. Nat Commun 2022; 13:1768. [PMID: 35365657 PMCID: PMC8975949 DOI: 10.1038/s41467-022-29471-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells play key roles in cancer immune suppression and tumor progression. In response to tumor derived factors, circulating monocytes and granulocytes extravasate into the tumor parenchyma where they stimulate angiogenesis, immune suppression and tumor progression. Chemokines, cytokines and interleukins stimulate PI3Kγ-mediated Rap1 activation, leading to conformational changes in integrin α4β1 that promote myeloid cell extravasation and tumor inflammation Here we show that PI3Kγ activates a high molecular weight form of myosin light chain kinase, MLCK210, that promotes myosin-dependent Rap1 GTP loading, leading to integrin α4β1 activation. Genetic or pharmacological inhibition of MLCK210 suppresses integrin α4β1 activation, as well as tumor inflammation and progression. These results demonstrate a critical role for myeloid cell MLCK210 in tumor inflammation and serve as basis for the development of alternative approaches to develop immune oncology therapeutics. Myeloid cell recruitment during tumor inflammation depends on the VCAM-1 receptor integrin α4β1. Here the authors show that a high molecular weight form of myosin light chain kinase, MLCK210, is required for myeloid cell integrin α4β1 activation and adhesion and that MLCK210 inhibition reduces tumor growth and inflammation in preclinical cancer models.
Collapse
|
3
|
Kempf CL, Sammani S, Bermudez T, Song JH, Hernon VR, Hufford MK, Burt J, Camp SM, Dudek SM, Garcia JG. Critical Role for the Lung Endothelial Non‐Muscle Myosin Light Chain Kinase Isoform in the Severity of Inflammatory Murine Lung Injury. Pulm Circ 2022; 12:e12061. [PMID: 35514774 PMCID: PMC9063969 DOI: 10.1002/pul2.12061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Carrie L. Kempf
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Saad Sammani
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Tadeo Bermudez
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Jin H. Song
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | | | - Matthew K. Hufford
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Jessica Burt
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Sara M. Camp
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Steven M. Dudek
- Department of Medicine University of Illinois at Chicago Chicago IL USA
| | - Joe G.N. Garcia
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| |
Collapse
|
4
|
Advances in Intestinal Barrier Preservation and Restoration in the Allogeneic Hematopoietic Cell Transplantation Setting. J Clin Med 2021; 10:jcm10112508. [PMID: 34204044 PMCID: PMC8201017 DOI: 10.3390/jcm10112508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The intestinal barrier consists of an epithelial lining covered with specialized mucus inhabited by intestinal microbiota. An intact gut barrier ensures a resistance to bacteria and toxins translocation. On the other hand, gut permeability allows the absorption of essential nutrients, fluids and ions. This balance is achieved only by the complex structure and functional characteristics of the intestinal barrier. Allogenic hematopoietic cell transplantation remains the only curative treatment for many hematological diseases, but its application is limited because of possible transplant-related mortality mainly due to graft-versus-host disease and infectious complications. The intestinal barrier has been extensively studied in recent years as the primary site of graft-versus-host disease initiation and propagation. In the present review, we focused on the physiological structure and function of the gut barrier and the evidence of how the disruption of the gut barrier and increased intestinal permeability affects transplant recipients. Finally, therapeutic strategies aiming at intestinal barrier protection with a special focus on microbiome preservation and restoration in the allogenic hematopoietic cell transplantation setting are discussed.
Collapse
|
5
|
Lipoxin A4 Reduces Ventilator-Induced Lung Injury in Rats with Large-Volume Mechanical Ventilation. Mediators Inflamm 2020; 2020:6705985. [PMID: 33299377 PMCID: PMC7704204 DOI: 10.1155/2020/6705985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Ventilator-induced lung injury (VILI) is a severe and inevitable complication in patients who require mechanical ventilation (MV) for respiratory support. Lipoxin A4 is an endogenous anti-inflammatory and antioxidant mediator. The present study determined the effects of lipoxin A4 on VILI. Twenty-four rats were randomized to the sham, VILI, and lipoxin A4 (LX4) groups. The rats in the VILI and LX4 groups received large-volume MV for 4 hours to simulate VILI. Capillary permeability was evaluated using the PaO2/FiO2 ratio, lung wet/dry weight ratio, and protein level in the lung. VILI-induced inflammation was assessed by measuring cytokines in serum and lung tissue, the expression and activity of NF-κB, and phosphorylated myosin light chain. The oxidative stress response, lung tissue injury, and apoptosis in lung tissue were also estimated, and the expression of apoptotic proteins was examined. MV worsened all of the indices compared to the sham group. Compared to the VILI group, the LX4 group showed significantly improved alveolar-capillary permeability (increased PaO2/FiO2 and decreased wet/dry weight ratios and protein levels), ameliorated histological injury, and reduced local and systemic inflammation (downregulated proinflammatory factors and NF-κB expression and activity). Lipoxin A4 notably inhibited the oxidative stress response and apoptosis and balanced apoptotic protein levels in lung tissue. Lipoxin A4 protects against VILI via anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
|
6
|
Srivastava N, Tauseef M, Amin R, Joshi B, Joshi JC, Kini V, Klomp J, Li W, Knezevic N, Barbera N, Siddiqui S, Obukhov A, Karginov A, Levitan I, Komarova Y, Mehta D. Noncanonical function of long myosin light chain kinase in increasing ER-PM junctions and augmentation of SOCE. FASEB J 2020; 34:12805-12819. [PMID: 32772419 PMCID: PMC7496663 DOI: 10.1096/fj.201902462rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Increased endothelial permeability leads to excessive exudation of plasma proteins and leukocytes in the interstitium, which characterizes several vascular diseases including acute lung injury. The myosin light chain kinase long (MYLK-L) isoform is canonically known to regulate the endothelial permeability by phosphorylating myosin light chain (MLC-P). Compared to the short MYLK isoform, MYLK-L contains an additional stretch of ~919 amino acid at the N-terminus of unknown function. We show that thapsigargin and thrombin-induced SOCE was markedly reduced in Mylk-L-/- endothelial cells (EC) or MYLK-L-depleted human EC. These agonists also failed to increase endothelial permeability in MYLK-L-depleted EC and Mylk-L-/- lungs, thus demonstrating the novel role of MYLK-L-induced SOCE in increasing vascular permeability. MYLK-L augmented SOCE by increasing endoplasmic reticulum (ER)-plasma membrane (PM) junctions and STIM1 translocation to these junctions. Transduction of N-MYLK domain (amino acids 1-919 devoid of catalytic activity) into Mylk-L-/- EC rescued SOCE to the level seen in control EC in a STIM1-dependent manner. N-MYLK-induced SOCE augmented endothelial permeability without MLC-P via an actin-binding motif, DVRGLL. Liposomal-mediated delivery of N-MYLK mutant but not ∆DVRGLL-N-MYLK mutant in Mylk-L-/- mice rescued vascular permeability increase in response to endotoxin, indicating that targeting of DVRGLL motif within MYLK-L may limit SOCE-induced vascular hyperpermeability.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Mohammad Tauseef
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoILUSA
| | - Ruhul Amin
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Bhagwati Joshi
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Vidisha Kini
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Jennifer Klomp
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Weenan Li
- Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Nebojsa Knezevic
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Nicolas Barbera
- Department of MedicineThe Uniiversity of IllinoisChicagoILUSA
| | - Shahid Siddiqui
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Alexander Obukhov
- Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Andrei Karginov
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Irena Levitan
- Department of MedicineThe Uniiversity of IllinoisChicagoILUSA
| | - Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoILUSA
| |
Collapse
|
7
|
Sun H, Zhao X, Tai Q, Xu G, Ju Y, Gao W. Endothelial colony-forming cells reduced the lung injury induced by cardiopulmonary bypass in rats. Stem Cell Res Ther 2020; 11:246. [PMID: 32586365 PMCID: PMC7318475 DOI: 10.1186/s13287-020-01722-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Background Cardiopulmonary bypass (CPB) results in severe lung injury via inflammation and endothelial injury. The aim of this study was to evaluate the effect of endothelial colony-forming cells (ECFCs) on lung injury in rats subjected to CPB. Methods Thirty-two rats were randomized into the sham, CPB, CPB/ECFC and CPB/ECFC/L-NIO groups. The rats in the sham group received anaesthesia, and the rats in the other groups received CPB. The rats also received PBS, ECFCs and L-NIO-pre-treated ECFCs. After 24 h of CPB, pulmonary capillary permeability, including the PaO2/FiO2 ratio, protein levels in bronchoalveolar lavage fluid (BALF) and lung tissue wet/dry weight were evaluated. The cell numbers and cytokines in BALF and peripheral blood were tested. Endothelial injury, lung histological injury and apoptosis were assessed. The oxidative stress response and apoptosis-related proteins were analysed. Results After CPB, all the data deteriorated compared with those obtained in the S group (sham vs CPB vs CPB/ECFC vs CPB/ECFC/L-NIO: histological score 1.62 ± 0.51 vs 5.37 ± 0.91 vs 3.37 ± 0.89 vs 4.37 ± 0.74; PaO2/FiO2 389 ± 12 vs 233 ± 36 vs 338 ± 28 vs 287 ± 30; wet/dry weight 3.11 ± 0.32 vs 6.71 ± 0.73 vs 4.66 ± 0.55 vs 5.52 ± 0.57; protein levels in BALF: 134 ± 22 vs 442 ± 99 vs 225 ± 41 vs 337 ± 53, all P < 0.05). Compared to the CPB treatment, ECFCs significantly improved pulmonary capillary permeability and PaO2/FiO2. Similarly, ECFCs also decreased the inflammatory cell number and pro-inflammatory factors in BALF and peripheral blood, as well as the oxidative stress response in the lung tissue. ECFCs reduced the lung histological injury score and apoptosis and regulated apoptosis-related proteins in the lung tissue. Compared with the CPB/ECFC group, all the indicators were partly reversed by the L-NIO. Conclusions ECFCs significantly reduced lung injury induced by inflammation after CPB.
Collapse
Affiliation(s)
- Haibin Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qihang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingnan Ju
- Department of ICU, Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Braun DJ, Bachstetter AD, Sudduth TL, Wilcock DM, Watterson DM, Van Eldik LJ. Genetic knockout of myosin light chain kinase (MLCK210) prevents cerebral microhemorrhages and attenuates neuroinflammation in a mouse model of vascular cognitive impairment and dementia. GeroScience 2019; 41:671-679. [PMID: 31104189 PMCID: PMC6885026 DOI: 10.1007/s11357-019-00072-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) is critical in maintenance of brain homeostasis, and loss of its functional integrity is a key feature across a broad range of neurological insults. This includes both acute injuries such as traumatic brain injury and stroke, as well as more chronic pathologies associated with aging, such as vascular cognitive impairment and dementia (VCID). A specific form of myosin light chain kinase (MLCK210) is a major regulator of barrier integrity in general, including the BBB. Studies have demonstrated the potential of MLCK210 as a therapeutic target for peripheral disorders involving tissue barrier dysfunction, but less is known about its potential as a target for chronic neurologic disorders. We report here that genetic knockout (KO) of MLCK210 protects against cerebral microhemorrhages and neuroinflammation induced by chronic dietary hyperhomocysteinemia. Overall, the results are consistent with an accumulating body of evidence supporting MLCK210 as a potential therapeutic target for tissue barrier dysfunction and specifically implicate it in BBB dysfunction and neuroinflammation in a model of VCID.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
9
|
Gao W, Jiang T, Liu YH, Ding WG, Guo CC, Cui XG. Endothelial progenitor cells attenuate the lung ischemia/reperfusion injury following lung transplantation via the endothelial nitric oxide synthase pathway. J Thorac Cardiovasc Surg 2019; 157:803-814. [PMID: 30391008 DOI: 10.1016/j.jtcvs.2018.08.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/28/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) can improve endothelial integrity. This study aimed to examine the effects and the mechanism of EPCs on lung ischemia-reperfusion injury (LIRI). METHODS Wistar rats were randomized into the sham or the left lung transplantation group. The recipients were randomized and treated with vehicle as the LIRI group, with EPC as the EPC group, or with N5-(1-iminoethyl)-l-ornithine-pretreated EPC as the EPC/L group (n = 8 per group). The ratios of arterial oxygen partial pressure to fractional inspiratory oxygen were measured. The lung wet-to-dry weight ratios, protein levels, and injury, as well as the levels of plasma cytokines, were examined. The levels of endothelin (ET)-1, endothelial nitric oxide synthase (eNOS), phosphorylated eNOS, inducible NOS, phosphorylated myosin light chain, nuclear factor-κBp65, Bax, Bcl-2, cleaved caspase-3, and myeloperoxidase in the graft lungs were detected. RESULTS Compared with the LIRI group, EPC treatment significantly increased the ratios of arterial oxygen partial pressure to fractional inspiratory oxygen and decreased the lung wet-to-dry weight ratios and protein levels in the grafts, accompanied by increasing eNOS expression and phosphorylation, but decreasing endothelin-1, inducible NOS, phosphorylated nuclear factor-kBp65, phosphorylated myosin light chain expression, and myeloperoxidase activity. EPCs reduced lung tissue damage and apoptosis associated with decreased levels of Bax and cleaved caspase-3 expression, but increased Bcl-2 expression. EPC treatment significantly reduced the levels of serum proinflammatory factors, but elevated levels of interleukin-10. In contrast, the protective effect of EPCs were mitigated and abrogated by N5-(1-iminoethyl)-l-ornithine pretreatment. CONCLUSIONS Data indicated that EPC ameliorated LIRI by increasing eNOS expression.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Jiang
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan-Hong Liu
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wen-Gang Ding
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chang-Chun Guo
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao-Guang Cui
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
10
|
Ju YN, Gong J, Wang XT, Zhu JL, Gao W. Endothelial Colony-forming Cells Attenuate Ventilator-induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Arch Med Res 2018; 49:172-181. [PMID: 30119979 DOI: 10.1016/j.arcmed.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). AIM OF THE STUDY This study investigated whether endothelial colony-forming cells (ECFC) could inhibit VILI in a rat model of acute respiratory distress syndrome (ARDS). METHODS Male Wistar rats received the femoral artery and venous cannulation (sham group) or were injected intravenously with 500 μg/kg lipopolysaccharide to induce ARDS. The ARDS rats were subjected to MV. Immediately after the MV, the rats were randomized and injected intravenously with vehicle (ARDS group) or ECFC (ECFC group, n = 8 per group). The oxygen index, lung wet-to-dry weight (W/D) ratios, cytokine protein levels in serum or bronchoalveolar lavage fluid (BALF), neutrophil counts, neutrophil elastase and total protein levels in BALF, histology and cell apoptosis in the lung were detected. The protein levels of endothelin-1, inducible nitric oxide synthase (iNOS), endothelial NOS, matrix metalloproteinase (MMP)-9, Bax, Bcl-2, gelsolin, cleaved caspase-3, phosphorylated NF-κBp65 and myosin light chain (MLC) in the lung were analyzed. RESULTS Compared with the ARDS group, treatment with ECFC significantly increased the oxygen index, and decreased the lung W/D ratios and injury, and the numbers of apoptotic cells in the lungs, neutrophils counts, total protein and elastase concentrations in BALF of rats. ECFC treatment significantly minimized the protein levels of pro-inflammatory cytokines in BALF and serum, but increased interleukin 10 in rats. Furthermore, ECFC treatment significantly reduced the protein levels of endothelin-1, iNOS, Bax, Gelsolin, MMP-9, cleaved caspase-3, phosphorylated NF-κBp65 and MLC, but enhanced eNOS and Bcl-2 in the lungs of rats. CONCLUSIONS Therefore, ECFC attenuated inflammation, cell apoptosis and VILI in ARDS rats.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Gong
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Li Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
11
|
Abstract
Both acute and chronic lung injury are associated with up-regulation of the pulmonary expression of the purinergic receptors P2XR4 and P2XR7. Genetic deletion or blockade of P2XR7 attenuated pulmonary hyperinflammation, but simultaneous P2XR4 up-regulation compensated for P2XR7 deletion. Therefore, we tested the hypothesis whether genetic P2XR4 deletion would attenuate the pulmonary inflammatory response and thereby improve organ function after blunt chest trauma in mice with and without pretraumatic cigarette smoke (CS) exposure.After 3 weeks to 4 weeks of exposure to CS, anesthetized wildtype or P2XR4 mice (n = 32) underwent a blast wave-induced blunt chest trauma followed by 4 h of lung-protective mechanical ventilation, fluid resuscitation, and noradrenaline support to maintain mean arterial pressure >55 mm Hg. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1, B-cell lymphoma-extra large (Bcl-xL), endogenous nuclear factor-κB inhibitor (IκBα) expression, nitrotyrosine formation, purinergic receptor expression, and histological scoring.Despite a significant increase in the histopathology score in both CS-exposed groups, neither CS exposure nor P2XR4 deletion had any significant effect on post-traumatic pulmonary function and inflammatory response. However, P2XR4 deletion was associated with attenuated impairment of glucose homeostasis and acid-base-status after CS exposure and chest trauma.In conclusion, genetic P2XR4 deletion failed to attenuate the acute post-traumatic pulmonary inflammatory response. The improved glucose homeostasis and acid-base-status after CS exposure in the P2XR4 group was possibly due to less alveolar hypoxia-induced right ventricular remodeling resulting in preserved liver metabolic capacity.
Collapse
|
12
|
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:105-137. [PMID: 29047084 PMCID: PMC7120947 DOI: 10.1007/978-3-319-63245-2_8] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.
Collapse
Affiliation(s)
- Manuela Kellner
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Satish Noonepalle
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Qing Lu
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Anup Srivastava
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Evgeny Zemskov
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Stephen M Black
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA.
| |
Collapse
|
13
|
Shimizu Y, Camp SM, Sun X, Zhou T, Wang T, Garcia JGN. Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor-induced vascular permeability. Pulm Circ 2015; 5:707-15. [PMID: 26697178 DOI: 10.1086/684124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the important role played by the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier regulation and the implication of both nmMLCK and vascular endothelial growth factor (VEGF) in the pathogenesis of acute respiratory distress syndrome (ARDS), the role played by nmMLCK in VEGF-induced vascular permeability is poorly understood. In this study, the role played by nmMLCK in VEGF-induced vascular hyperpermeability was investigated. Human lung endothelial cell barrier integrity in response to VEGF is examined in both the absence and the presence of nmMLCK small interfering RNAs. Levels of nmMLCK messenger RNA (mRNA), protein, and promoter activity expression were monitored after VEGF stimulation in lung endothelial cells. nmMYLK promoter activity was assessed using nmMYLK promoter luciferase reporter constructs with a series of nested deletions. nmMYLK transcriptional regulation was further characterized by examination of a key transcriptional factor. nmMLCK plays an important role in VEGF-induced permeability. We found that activation of the VEGF signaling pathway in lung endothelial cells increases MYLK gene product at both mRNA and protein levels. Increased nmMLCK mRNA and protein expression is a result of increased nmMYLK promoter activity, regulated in part by binding of the Sp1 transcription factor on triggering by the VEGF signaling pathway. Taken together, these findings suggest that MYLK is an important ARDS candidate gene and a therapeutic target that is highly influenced by excessive VEGF concentrations in the inflamed lung.
Collapse
Affiliation(s)
- Yuka Shimizu
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Sara M Camp
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Xiaoguang Sun
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Tong Zhou
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Ting Wang
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
14
|
Wagner K, Gröger M, McCook O, Scheuerle A, Asfar P, Stahl B, Huber-Lang M, Ignatius A, Jung B, Duechs M, Möller P, Georgieff M, Calzia E, Radermacher P, Wagner F. Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100% O2. PLoS One 2015. [PMID: 26225825 PMCID: PMC4520521 DOI: 10.1371/journal.pone.0132810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoking (CS) aggravates post-traumatic acute lung injury and increases ventilator-induced lung injury due to more severe tissue inflammation and apoptosis. Hyper-inflammation after chest trauma is due to the physical damage, the drop in alveolar PO2, and the consecutive hypoxemia and tissue hypoxia. Therefore, we tested the hypotheses that 1) CS exposure prior to blunt chest trauma causes more severe post-traumatic inflammation and thereby aggravates lung injury, and that 2) hyperoxia may attenuate this effect. Immediately after blast wave-induced blunt chest trauma, mice (n=32) with or without 3-4 weeks of CS exposure underwent 4 hours of pressure-controlled, thoraco-pulmonary compliance-titrated, lung-protective mechanical ventilation with air or 100 % O2. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1 (HO-1), activated caspase-3, and hypoxia-inducible factor 1-α (HIF-1α) expression, nuclear factor-κB (NF-κB) activation, nitrotyrosine formation, purinergic receptor 2X4 (P2XR4) and 2X7 (P2XR7) expression, and histological scoring. CS exposure prior to chest trauma lead to higher pulmonary compliance and lower PaO2 and Horovitz-index, associated with increased tissue IL-18 and blood MCP-1 concentrations, a 2-4-fold higher inflammatory cell infiltration, and more pronounced alveolar membrane thickening. This effect coincided with increased activated caspase-3, nitrotyrosine, P2XR4, and P2XR7 expression, NF-κB activation, and reduced HIF-1α expression. Hyperoxia did not further affect lung mechanics, gas exchange, pulmonary and systemic cytokine and chemokine concentrations, or histological scoring, except for some patchy alveolar edema in CS exposed mice. However, hyperoxia attenuated tissue HIF-1α, nitrotyrosine, P2XR7, and P2XR4 expression, while it increased HO-1 formation in CS exposed mice. Overall, CS exposure aggravated post-traumatic inflammation, nitrosative stress and thereby organ dysfunction and injury; short-term, lung-protective, hyperoxic mechanical ventilation have no major beneficial effect despite attenuation of nitrosative stress, possibly due to compensation of by regional alveolar hypoxia and/or consecutive hypoxemia, resulting in down-regulation of HIF-1α expression.
Collapse
MESH Headings
- Acute Lung Injury/etiology
- Acute Lung Injury/physiopathology
- Acute Lung Injury/therapy
- Animals
- Disease Models, Animal
- Female
- Hyperoxia/complications
- Hyperoxia/pathology
- Hyperoxia/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Oxidative Stress
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/therapy
- Reactive Nitrogen Species/metabolism
- Receptors, Purinergic P2X/metabolism
- Respiration, Artificial/adverse effects
- Smoking/adverse effects
- Thoracic Injuries/complications
- Thoracic Injuries/physiopathology
- Thoracic Injuries/therapy
- Wounds, Nonpenetrating/complications
- Wounds, Nonpenetrating/physiopathology
- Wounds, Nonpenetrating/therapy
Collapse
Affiliation(s)
- Katja Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | | | - Pierre Asfar
- Laboratoire HIFIH, UPRES EA 3859, PRES l’UNAM, IFR 132, CNRS UMR 6214, INSERM U1083, Université Angers, Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Bettina Stahl
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Markus Huber-Lang
- Klinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum, Ulm, Germany
| | - Anita Ignatius
- Institut für Unfallchirurgische Forschung und Biomechanik, Universitätsklinikum, Ulm, Germany
| | - Birgit Jung
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Matthias Duechs
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Peter Möller
- Institut für Pathologie, Universitätsklinikum, Ulm, Germany
| | | | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- * E-mail:
| | - Florian Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
15
|
Huang Y, Luo X, Li X, Song X, Wei L, Li Z, You Q, Guo Q, Lu N. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway. Vascul Pharmacol 2015; 72:43-52. [PMID: 25956732 DOI: 10.1016/j.vph.2015.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 10/24/2022]
Abstract
Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across EC monolayer. Miles vascular permeability assay proves that wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor.
Collapse
Affiliation(s)
- Yujie Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xuwei Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiaorui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiuming Song
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., PR China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qidong You
- JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
16
|
Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice. Pharmaceuticals (Basel) 2014; 7:894-912. [PMID: 25153040 PMCID: PMC4167202 DOI: 10.3390/ph7080894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA) damage and ventilator induced lung injury (VILI). In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII) which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP) was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH) and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.
Collapse
|
17
|
Wang T, Moreno-Vinasco L, Ma SF, Zhou T, Shimizu Y, Sammani S, Epshtein Y, Watterson DM, Dudek SM, Garcia JGN. Nonmuscle myosin light chain kinase regulates murine asthmatic inflammation. Am J Respir Cell Mol Biol 2014; 50:1129-35. [PMID: 24428690 PMCID: PMC4068916 DOI: 10.1165/rcmb.2013-0434oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myosin light chain kinase (MLCK; gene code, MYLK) is a multifunctional enzyme involved in isoform-specific nonmuscle (nm) and smooth muscle contraction, inflammation, and vascular permeability, processes directly relevant to asthma pathobiology. In this report, we highlight the contribution of the nm isoform (nmMLCK) to asthma susceptibility and severity, supported by studies in two lines of transgenic mice with knocking out nmMLCK or selectively overexpressing nmMLCK in endothelium. These mice were sensitized to exhibit ovalbumin-mediated allergic inflammation. Genetically engineered mice with targeted nmMLCK deletion (nmMLCK(-/-)) exhibited significant reductions in lung inflammation and airway hyperresponsiveness. Conversely, mice with overexpressed nmMLCK in endothelium (nmMLCK(ec/ec)) exhibited elevated susceptibility and severity in asthmatic inflammation. In addition, reduction of nmMLCK expression in pulmonary endothelium by small interfering RNA results in reduced asthmatic inflammation in wild-type mice. These pathophysiological assessments demonstrate the positive contribution of nmMLCK to asthmatic inflammation, and a clear correlation of the level of nmMLCK with the degree of experimental allergic inflammation. This study confirms MYLK as an asthma candidate gene, and verifies nmMLCK as a novel molecular target in asthmatic pathobiology.
Collapse
Affiliation(s)
- Ting Wang
- 1 Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, Arizona
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
19
|
Parker JC, Hashizumi M, Kelly SV, Francis M, Mouner M, Meyer AL, Townsley MI, Wu S, Cioffi DL, Taylor MS. TRPV4 calcium entry and surface expression attenuated by inhibition of myosin light chain kinase in rat pulmonary microvascular endothelial cells. Physiol Rep 2013; 1:e00121. [PMID: 24303188 PMCID: PMC3841052 DOI: 10.1002/phy2.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 02/02/2023] Open
Abstract
In previous studies, blockade or gene deletion of either myosin light chain kinase (MLCK) or the mechanogated transient receptor potential vanilloid 4 (TRPV4) channel attenuated mechanical lung injury. To determine their effects on calcium entry, rat pulmonary microvascular endothelial cells (RPMVEC) were labeled with fluo-4 and calcium entry initiated with the TRPV4 agonist, 4α-phorbol 12, 13-didecanoate (4αPDD). Mean calcium transients peaked at ∼25 sec and persisted ∼500 sec. The 4αPDD response was essentially abolished in calcium-free media, or after pretreatment with the MLCK inhibitor, ML-7. ML-7 also attenuated the 4αPDD-induced inward calcium current measured directly using whole-cell patch clamp. Pretreatment with dynasore, an inhibitor of dynamin produced an initial calcium transient followed by a 4αPDD transient of unchanged peak intensity. Automated averaging of areas under the curve (AUC) of calcium transients in individual cells indicated total calcium activity with a relationship between treatment groups of ML-7 + 4αPDD < 4αPDD only < dynasore + 4αPDD. Measurement of biotinylated surface TRPV4 protein indicated a significant reduction after ML-7 pretreatment, but no significant change with dynasore treatment. RPMVEC monolayer electrical resistances were decreased by only 3% with 10 μmol/L 4αPDD and the response was dose-related. Dynasore alone produced a 29% decrease in resistance, but neither ML-7 nor dynasore affected the subsequent 4αPDD resistance response. These studies suggest that MLCK may inhibit mechanogated calcium responses through reduced surface expression of stretch activated TRPV4 channels in the plasma membrane.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology and Center for Lung Biology, College of Medicine, University of South Alabama Mobile, Alabama, 36688
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rossi JL, Todd T, Bazan NG, Belayev L. Inhibition of Myosin light-chain kinase attenuates cerebral edema after traumatic brain injury in postnatal mice. J Neurotrauma 2013; 30:1672-9. [PMID: 23984869 DOI: 10.1089/neu.2013.2898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) in children less than 8 years of age leads to decline in intelligence and executive functioning. Neurological outcomes after TBI correlate to development of cerebral edema, which affect survival rates after TBI. It has been shown that myosin light-chain kinase (MLCK) increases cerebral edema and that pretreatment with an MLCK inhibitor (ML-7) reduces cerebral edema. The aim of this study was to determine whether inhibition of MLCK after TBI in postnatal day 24 (PND-24) mice would prevent breakdown of the blood-brain barrier (BBB) and development of cerebral edema and improve neurological outcome. We used a closed head injury model of TBI. ML-7 or saline treatment was administered at 4 h and every 24 h until sacrifice or 5 days after TBI. Mice were sacrificed at 24 h, 48 h, and 72 h and 7 days after impact. Mice treated with ML-7 after TBI had decreased levels of MLCK-expressing cells (20.7±4.8 vs. 149.3±40.6), less albumin extravasation (28.3±11.2 vs. 116.2±60.7 mm(2)) into surrounding parenchymal tissue, less Evans Blue extravasation (339±314 vs. 4017±560 ng/g), and showed a significant difference in wet/dry weight ratio (1.9±0.07 vs. 2.2±0.05 g), compared to saline-treated groups. Treatment with ML-7 also resulted in preserved neurological function measured by the wire hang test (57 vs. 21 sec) and two-object novel recognition test (old vs. new, 10.5 touches). We concluded that inhibition of MLCK reduces cerebral edema and preserves neurological function in PND-24 mice.
Collapse
Affiliation(s)
- Janet L Rossi
- 1 Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | | | | | | |
Collapse
|
21
|
Endothelial and epithelial barriers in graft-versus-host disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:105-31. [PMID: 23397621 DOI: 10.1007/978-1-4614-4711-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial and epithelial cells form selectively permeable barriers that separate tissue compartments. These cells coordinate movement between the lumen and tissue via the transcellular and paracellular pathways. The primary determinant of paracellular permeability is the tight junction, which forms an apical belt-like structure around endothelial and epithelial cells. This chapter discusses endothelial and epithelial barriers in graft-versus-host disease after allogeneic bone marrow transplantation, with a focus on the tight junction and its role in regulating paracellular permeability. Recent studies suggest that in graft-versus-host disease, pathological increases in paracellular permeability, or barrier dysfunction, are initiated by pretransplant conditioning and sustained by alloreactive cells and the proinflammatory milieu. The intestinal epithelium is a significant focus, as it is a target organ of graft-versus-host disease, and the mechanisms of barrier regulation in intestinal epithelium have been well characterized. Finally, we propose a model that incorporates endothelial and epithelial barrier dysfunction in graft-versus-host disease and discuss modulating barrier properties as a therapeutic approach.
Collapse
|
22
|
Hashizume M, Mouner M, Chouteau JM, Gorodnya OM, Ruchko MV, Potter BJ, Wilson GL, Gillespie MN, Parker JC. Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice. Am J Physiol Lung Cell Mol Physiol 2013; 304:L287-97. [PMID: 23241530 PMCID: PMC3567361 DOI: 10.1152/ajplung.00071.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 12/13/2012] [Indexed: 01/11/2023] Open
Abstract
This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH(2)O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH(2)O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH(2)O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury.
Collapse
Affiliation(s)
- Masahiro Hashizume
- Department of Physiology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris N, Obukhov AG, Vogel SM, Schraufnagel DE, Dietrich A, Birnbaumer L, Malik AB, Mehta D. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. ACTA ACUST UNITED AC 2012; 209:1953-68. [PMID: 23045603 PMCID: PMC3478927 DOI: 10.1084/jem.20111355] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca(2+) entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca(2+) signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca(2+) entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca(2+) entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca(2+) entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R-associated kinase 4, which are required for NF-κB activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca(2+) entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin.
Collapse
Affiliation(s)
- Mohammad Tauseef
- Department of Pharmacology, 2 Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 61605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Khapchaev AY, Samsonov MV, Kazakova OA, Vilitkevich EL, Sidorova MV, Az’muko AA, Molokoedov AS, Bespalova ZD, Shirinsky VP. Suppression of vascular endothelium hyperpermeability by cell-permeating peptide inhibitors of myosin light chain kinase. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912050089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Cunningham KE, Turner JR. Myosin light chain kinase: pulling the strings of epithelial tight junction function. Ann N Y Acad Sci 2012; 1258:34-42. [PMID: 22731713 DOI: 10.1111/j.1749-6632.2012.06526.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic regulation of paracellular permeability is essential for physiological epithelial function, while dysregulated permeability is common in disease. The recent elucidation of the molecular composition of the epithelial tight junction complex has been accompanied by characterization of diverse intracellular mediators of paracellular permeabiltiy. Myosin light chain kinase (MLCK), which induces contraction of the perijunctional actomyosin ring through myosin II regulatory light chain phosphorylation, has emerged as a key regulator of tight junction permeability. Examination of the regulation and role of MLCK in tight junction dysfunction has helped to define pathological processes and characterize the role of barrier loss in disease pathogenesis, and may provide future therapeutic targets to treat intestinal disease.
Collapse
|
26
|
Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 2012; 33:911-33. [PMID: 22886693 DOI: 10.1002/med.21270] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microvascular barrier dysfunction is a serious problem that occurs in many inflammatory conditions, including sepsis, trauma, ischemia-reperfusion injury, cardiovascular disease, and diabetes. Barrier dysfunction permits extravasation of serum components into the surrounding tissue, leading to edema formation and organ failure. The basis for microvascular barrier dysfunction is hyperpermeability at endothelial cell-cell junctions. Endothelial hyperpermeability is increased by actomyosin contractile activity in response to phosphorylation of myosin light chain by myosin light chain kinase (MLCK). MLCK-dependent endothelial hyperpermeability occurs in response to inflammatory mediators (e.g., activated neutrophils, thrombin, histamine, tumor necrosis factor alpha, etc.), through multiple cell signaling pathways and signaling molecules (e.g., Ca(++) , protein kinase C, Src kinase, nitric oxide synthase, etc.). Other signaling molecules protect against MLCK-dependent hyperpermeability (e.g., sphingosine-1-phosphate or cAMP). In addition, individual MLCK isoforms play specific roles in endothelial barrier dysfunction, suggesting that isoform-specific inhibitors could be useful for treating inflammatory disorders and preventing multiple organ failure. Because endothelial barrier dysfunction depends upon signaling through MLCK in many instances, MLCK-dependent signaling comprises multiple potential therapeutic targets for preventing edema formation and multiple organ failure. The following review is a discussion of MLCK-dependent mechanisms and cell signaling events that mediate endothelial hyperpermeability.
Collapse
Affiliation(s)
- Robert R Rigor
- Department of Surgery, University of California at Davis School of Medicine, Sacramento, California, USA
| | | | | | | | | |
Collapse
|
27
|
Yu Y, Lv N, Lu Z, Zheng YY, Zhang WC, Chen C, Peng YJ, He WQ, Meng FQ, Zhu MS, Chen HQ. Deletion of myosin light chain kinase in endothelial cells has a minor effect on the lipopolysaccharide-induced increase in microvascular endothelium permeability in mice. FEBS J 2012; 279:1485-94. [DOI: 10.1111/j.1742-4658.2012.08541.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Duan Y, Learoyd J, Meliton AY, Leff AR, Zhu X. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury. Respir Res 2012; 13:4. [PMID: 22257498 PMCID: PMC3275485 DOI: 10.1186/1465-9921-13-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background Proline-rich tyrosine kinase 2 (Pyk2) is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI) remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1) myeloperoxidase content in lung tissues, 2) vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3) the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and that pharmacological inhibition of Pyk2 might provide a potential therapeutic strategy in the pretreatment for patients at imminent risk of developing acute lung injury.
Collapse
Affiliation(s)
- Yingli Duan
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
29
|
Rossi JL, Ralay Ranaivo H, Patel F, Chrzaszcz M, Venkatesan C, Wainwright MS. Albumin causes increased myosin light chain kinase expression in astrocytes via p38 mitogen-activated protein kinase. J Neurosci Res 2011; 89:852-61. [PMID: 21360574 DOI: 10.1002/jnr.22600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/30/2022]
Abstract
Myosin light chain kinase (MLCK) plays an important role in the reorganization of the cytoskeleton, leading to disruption of vascular barrier integrity in multiple organs, including the blood-brain barrier (BBB), after traumatic brain injury (TBI). MLCK has been linked to transforming growth factor (TGF) and rho kinase signaling pathways, but the mechanisms regulating MLCK expression following TBI are not well understood. Albumin leaks into the brain parenchyma following TBI, activates glia, and has been linked to TGF-β receptor signaling. We investigated the role of albumin in the increase of MLCK in astrocytes and the signaling pathways involved in this increase. After midline closed-skull TBI in mice, there was a significant increase in MLCK-immunoreactive (IR) cells and albumin extravasation, which was prevented by treatment with the MLCK inhibitor ML-7. Using immunohistochemical methods, we identified the MLCK-IR cells as astrocytes. In primary astrocytes, exposure to albumin increased both isoforms of MLCK, 130 and 210. Inhibition of the TGF-β receptor partially prevented the albumin-induced increase in both isoforms, which was not prevented by inhibition of smad3. Inhibition of p38 MAPK, but not ERK, JNK, or rho kinase, also prevented this increase. These results are further evidence of a role of MLCK in the mechanisms of BBB compromise following TBI and identify astrocytes as a cell type, in addition to endothelium in the BBB, that expresses MLCK. These findings implicate albumin, acting through p38 MAPK, in a novel mechanism by which activation of MLCK following TBI may lead to compromise of the BBB.
Collapse
Affiliation(s)
- Janet L Rossi
- Department of Pediatrics, Divisions of Critical Care, Children's Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | | | | | | | |
Collapse
|
30
|
Miao H, Crabb AW, Hernandez MR, Lukas TJ. Modulation of factors affecting optic nerve head astrocyte migration. Invest Ophthalmol Vis Sci 2010; 51:4096-103. [PMID: 20375339 DOI: 10.1167/iovs.10-5177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The authors investigated the role of myosin light chain kinase (MYLK) and transforming growth factor beta (TGFbeta) receptor pathways in optic nerve head (ONH) astrocyte migration. They further investigated how the expression of these genes is altered by elevated hydrostatic pressure (HP). METHODS PCR was used to determine the isoforms of MYLK expressed in ONH astrocytes. siRNAs against MYLK (all isoforms) and TGFbeta receptor 2 (TGFBR2) were prepared and tested for effects on the migration of cultured ONH astrocytes. Finally, the effects of elevated HP (24-96 hours) on the expression of MYLK isoforms and selected TGFbeta pathway components were measured. RESULTS Multiple isoforms of MYLK are present in ONH astrocytes from Caucasian (CA) and African American (AA) donors. Both populations express the short form (MYLK-130) and the long form (MYLK-210) of MYLK and a splicing variant within MYLK-210. MYLK-directed siRNA decreased MYLK expression and cell migration compared with control siRNA. siRNA directed against TGFbeta receptor 2 also decreased cell migration compared with control and decreased extracellular matrix genes regulated by TGFbeta signaling. Elevated HP increased the expression of MYLK-130 and MYLK-210 in both populations of astrocytes. However, TGFbeta2 was uniquely upregulated by exposure to elevated HP in CA compared with AA astrocytes. CONCLUSIONS Differential expression of TGFbeta pathway genes and MYLK isoforms observed in populations of glaucomatous astrocytes applies to the elevated HP model system. MYLK may be a new target for intervention in glaucoma to alter reactive astrocyte migration in the ONH.
Collapse
Affiliation(s)
- Haixi Miao
- Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
31
|
Matt U, Warszawska JM, Bauer M, Dietl W, Mesteri I, Doninger B, Haslinger I, Schabbauer G, Perkmann T, Binder CJ, Reingruber S, Petzelbauer P, Knapp S. Bβ15–42Protects against Acid-induced Acute Lung Injury and SecondaryPseudomonasPneumoniaIn Vivo. Am J Respir Crit Care Med 2009; 180:1208-17. [DOI: 10.1164/rccm.200904-0626oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Chico LK, Van Eldik LJ, Watterson DM. Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 2009; 8:892-909. [PMID: 19876042 PMCID: PMC2825114 DOI: 10.1038/nrd2999] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood-brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges.
Collapse
Affiliation(s)
- Laura K Chico
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
33
|
Dixon DL, De Smet HR, Bersten AD. Lung mechanics are both dose and tidal volume dependant in LPS-induced lung injury. Respir Physiol Neurobiol 2009; 167:333-40. [DOI: 10.1016/j.resp.2009.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/14/2009] [Accepted: 06/09/2009] [Indexed: 11/26/2022]
|
34
|
Maniatis NA, Kotanidou A, Catravas JD, Orfanos SE. Endothelial pathomechanisms in acute lung injury. Vascul Pharmacol 2008; 49:119-33. [PMID: 18722553 PMCID: PMC7110599 DOI: 10.1016/j.vph.2008.06.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 06/09/2008] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its most severe extreme the acute respiratory distress syndrome (ARDS) refer to increased-permeability pulmonary edema caused by a variety of pulmonary or systemic insults. ALI and in particular ARDS, are usually accompanied by refractory hypoxemia and the need for mechanical ventilation. In most cases, an exaggerated inflammatory and pro-thrombotic reaction to an initial stimulus, such as systemic infection, elicits disruption of the alveolo-capillary membrane and vascular fluid leak. The pulmonary endothelium is a major metabolic organ promoting adequate pulmonary and systemic vascular homeostasis, and a main target of circulating cells and humoral mediators under injury; pulmonary endothelium is therefore critically involved in the pathogenesis of ALI. In this review we will discuss mechanisms of pulmonary endothelial dysfunction and edema generation in the lung with special emphasis on the interplay between the endothelium, the immune and hemostatic systems, and highlight how these principles apply in the context of defined disorders and specific insults implicated in ALI pathogenesis.
Collapse
Affiliation(s)
| | - Anastasia Kotanidou
- “M. Simou” Laboratory, University of Athens Medical School, Athens, Greece
- 1st Department of Critical Care, Evangelismos Hospital, University of Athens Medical School, Athens, Greece
| | - John D. Catravas
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Stylianos E. Orfanos
- “M. Simou” Laboratory, University of Athens Medical School, Athens, Greece
- 2nd Department of Critical Care, Attikon Hospital, University of Athens Medical School, Athens, Greece
- Corresponding author. 2nd Department of Critical Care, Attikon Hospital, 1, Rimini St., 124 62, Haidari, Athens, Greece. Tel.: +30 210 7235521; fax: +30 210 7239127.
| |
Collapse
|
35
|
Lloyd E, Somera-Molina K, Van Eldik LJ, Watterson DM, Wainwright MS. Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 2008; 5:28. [PMID: 18590543 PMCID: PMC2483713 DOI: 10.1186/1742-2094-5-28] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/30/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) with its associated morbidity is a major area of unmet medical need that lacks effective therapies. TBI initiates a neuroinflammatory cascade characterized by activation of astrocytes and microglia, and increased production of immune mediators including proinflammatory cytokines and chemokines. This inflammatory response contributes both to the acute pathologic processes following TBI including cerebral edema, in addition to longer-term neuronal damage and cognitive impairment. However, activated glia also play a neuroprotective and reparative role in recovery from injury. Thus, potential therapeutic strategies targeting the neuroinflammatory cascade must use careful dosing considerations, such as amount of drug and timing of administration post injury, in order not to interfere with the reparative contribution of activated glia. METHODS We tested the hypothesis that attenuation of the acute increase in proinflammatory cytokines and chemokines following TBI would decrease neurologic injury and improve functional neurologic outcome. We used the small molecule experimental therapeutic, Minozac (Mzc), to suppress TBI-induced up-regulation of glial activation and proinflammatory cytokines back towards basal levels. Mzc was administered in a clinically relevant time window post-injury in a murine closed-skull, cortical impact model of TBI. Mzc effects on the acute increase in brain cytokine and chemokine levels were measured as well as the effect on neuronal injury and neurobehavioral function. RESULTS Administration of Mzc (5 mg/kg) at 3 h and 9 h post-TBI attenuates the acute increase in proinflammatory cytokine and chemokine levels, reduces astrocyte activation, and the longer term neurologic injury, and neurobehavioral deficits measured by Y maze performance over a 28-day recovery period. Mzc-treated animals also have no significant increase in brain water content (edema), a major cause of the neurologic morbidity associated with TBI. CONCLUSION These results support the hypothesis that proinflammatory cytokines contribute to a glial activation cycle that produces neuronal dysfunction or injury following TBI. The improvement in long-term functional neurologic outcome following suppression of cytokine upregulation in a clinically relevant therapeutic window indicates that selective targeting of neuroinflammation may lead to novel therapies for the major neurologic morbidities resulting from head injury, and indicates the potential of Mzc as a future therapeutic for TBI.
Collapse
Affiliation(s)
- Eric Lloyd
- Division of Critical Care, Department of Pediatrics, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, IL 60614, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Since pulmonary edema from increased endothelial permeability is the hallmark of acute lung injury, a frequently encountered entity in critical care medicine, the study of endothelial responses in this setting is crucial to the development of effective endothelial-targeted treatments. RECENT FINDINGS From the enormous amount of research in the field of endothelial pathophysiology, we have focused on work delineating endothelial alterations elicited by noxious stimuli implicated in acute lung injury. The bulk of the material covered deals with molecular and cellular aspects of the pathogenesis, reflecting current trends in the published literature. We initially discuss pathways of endothelial dysfunction in acute lung injury and then cover the mechanisms of endothelial protection. Several experimental treatments in animal models are presented, which aid in the understanding of the disease pathogenesis and provide evidence for potentially useful therapies. SUMMARY Mechanistic studies have delivered several interventions, which are effective in preventing and treating experimental acute lung injury and have thus provided objectives for translational studies. Some of these modalities may evolve into clinically useful tools in the treatment of this devastating illness.
Collapse
|