1
|
Yuan M, Wan W, Xing W, Pu C, Wu X, Liao Z, Zhu X, Hu X, Li Z, Zhao Q, Zhao H, Xu X. Decoding the Immune Response and Its Biomarker B2M for High Altitude Pulmonary Edema in Rat: Implications for Diagnosis and Prognosis. J Inflamm Res 2024; 17:7195-7217. [PMID: 39411751 PMCID: PMC11476754 DOI: 10.2147/jir.s477633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose We aimed to investigate whether peripheral blood biomarkers B2M related to immune response can serve as indicators of HAPE pathophysiological characteristics or disease progression. Patients and Methods Bioinformatics technology was used to explore the peripheral blood pathophysiological mechanisms and immune hub genes related to the occurrence of HAPE. The hub gene was verified through animal experiments, and its function and correlation between its expression level and the diagnosis, treatment effect and prognosis of HAPE were explored. Results The GSVA results showed that the occurrence of HAPE was related to the down-regulation of immune response pathways by RUNX3 and STING. WGCNA results showed that the peripheral blood immune gene module related to the development of HAPE was related to the decrease of immune function and the increase of immune checkpoint molecule PD-L1 gene expression, and the expression of immune checkpoint genes LILRB2 and SIGLEC15 increased. Cytoscape software, RT-qPCR and WB confirmed that the hub gene B2M is a specific peripheral blood biomarker of HAPE. ROC, DCA, RT-qPCR, HE and Masson results showed that the expression of peripheral blood B2M has the ability to indicate the diagnosis, treatment effect and prognosis of HAPE. The decreased expression of B2M protein in peripheral blood leukocytes may be a marker of HAPE. Single-gene GSEA confirmed that the reduced expression of B2M in peripheral blood may be involved in the down-regulation of the antigen presentation pathway mediated by MHC class I molecules, was positively correlated with the down-regulation of the TNF signaling pathway, and was negatively correlated with the expression of LILRB2 and SIGLEC15. Conclusion The occurrence of HAPE may be related to decreased immune function and immune tolerance. Peripheral blood B2M may be involved in the related pathways, its expression level can prompt the diagnosis, treatment and prognosis of HAPE.
Collapse
Affiliation(s)
- Mu Yuan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Weijun Wan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Chengxiu Pu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaofeng Wu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhikang Liao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiyan Zhu
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xueting Hu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qing Zhao
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Hui Zhao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
2
|
Severyn NT, Esparza P, Gao H, Mickler EA, Albrecht ME, Fisher AJ, Yakubov B, Cook TG, Slaven JE, Walts AD, Tepper RS, Lahm T. Effect of estrogen receptor α on cardiopulmonary adaptation to chronic developmental hypoxia in a rat model. Am J Physiol Lung Cell Mol Physiol 2024; 326:L786-L795. [PMID: 38713613 PMCID: PMC11380959 DOI: 10.1152/ajplung.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 05/09/2024] Open
Abstract
Humans living at high-altitude (HA) have adapted to this environment by increasing pulmonary vascular and alveolar growth. RNA sequencing data from a novel murine model that mimics this phenotypical response to HA suggested estrogen signaling via estrogen receptor alpha (ERα) may be involved in this adaptation. We hypothesized ERα was a key mediator in the cardiopulmonary adaptation to chronic hypoxia and sought to delineate the mechanistic role ERα contributes to this process by exposing novel loss-of-function ERα mutant (ERαMut) rats to simulated HA. ERα mutant or wild-type (wt) rats were exposed to normoxia or hypoxia starting at conception and continued postnatally until 6 wk of age. Both wt and ERαMut animals born and raised in hypoxia exhibited lower body mass and higher hematocrits, total alveolar volumes (Va), diffusion capacities of carbon monoxide (DLCO), pulmonary arteriole (PA) wall thickness, and Fulton indices than normoxia animals. Right ventricle adaptation was maintained in the setting of hypoxia. Although no major physiologic differences were seen between wt and ERαMut animals at either exposure, ERαMut animals exhibited smaller mean linear intercepts (MLI) and increased PA total and lumen areas. Hypoxia exposure or ERα loss-of-function did not affect lung mRNA abundance of vascular endothelial growth factor, angiopoietin 2, or apelin. Sexual dimorphisms were noted in PA wall thickness and PA lumen area in ERαMut rats. In summary, in room air-exposed rats and rats with peri- and postnatal hypoxia exposure, ERα loss-of-function was associated with decreased alveolar size (primarily driven by hypoxic animals) and increased PA remodeling.NEW & NOTEWORTHY By exposing novel loss-of-function estrogen receptor alpha (Erα) mutant rats to a novel model of human high-altitude exposure, we demonstrate that ERα has subtle but inconsistent effects on endpoints relevant to cardiopulmonary adaptation to chronic hypoxia. Given that we observed some histologic, sex, and genotype differences, further research into cell-specific effects of ERα during hypoxia-induced cardiopulmonary adaptation is warranted.
Collapse
Affiliation(s)
- Nicholas T Severyn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Kentucky School of Medicine, Lexington, Kentucky, United States
| | - Patricia Esparza
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Huanling Gao
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Elizabeth A Mickler
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Marjorie E Albrecht
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Amanda J Fisher
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Bahktiyor Yakubov
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Todd G Cook
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - James E Slaven
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Avram D Walts
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Robert S Tepper
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Tim Lahm
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, United States
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, United States
| |
Collapse
|
3
|
Brown RD, Hunter KS, Li M, Frid MG, Harral J, Krafsur GM, Holt TN, Williams J, Zhang H, Riddle SR, Edwards MG, Kumar S, Hu CJ, Graham BB, Walker LA, Garry FB, Buttrick PM, Lahm T, Kheyfets VO, Hansen KC, Stenmark KR. Functional and molecular determinants of right ventricular response to severe pulmonary hypertension in a large animal model. Am J Physiol Heart Circ Physiol 2023; 324:H804-H820. [PMID: 36961489 PMCID: PMC10190846 DOI: 10.1152/ajpheart.00614.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.
Collapse
Affiliation(s)
- R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Kendall S Hunter
- Department of Bioengineering, University of Coloradoo Denver, Denver, Colorado, United States
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Julie Harral
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Greta M Krafsur
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Timothy N Holt
- Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Jason Williams
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, United States
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Suzette R Riddle
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | | | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Brian B Graham
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California, United States
| | - Lori A Walker
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Franklyn B Garry
- Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Peter M Buttrick
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, University of Colorado Denver, Denver, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Vitaly O Kheyfets
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
- Department of Biomedical Informatics, University of Colorado Denver, Denver, Colorado, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, United States
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| |
Collapse
|
4
|
Sjodin BMF, Russello MA. Comparative genomics reveals putative evidence for high-elevation adaptation in the American pika ( Ochotona princeps). G3 GENES|GENOMES|GENETICS 2022; 12:6695220. [PMID: 36087005 PMCID: PMC9635661 DOI: 10.1093/g3journal/jkac241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
High-elevation environments have lower atmospheric oxygen content, reduced temperatures, and higher levels of UV radiation than found at lower elevations. As such, species living at high elevations must overcome these challenges to survive, grow, and reproduce. American pikas (Ochotona princeps) are alpine lagomorphs that are habitat specialists typically found at elevations >2,000 m. Previous research has shown putative evidence for high-elevation adaptation; however, investigations to date have been limited to a fraction of the genome. Here, we took a comparative genomics approach to identify putative regions under selection using a chromosomal reference genome assembly for the American pika relative to 8 other mammalian species targeted based on phylogenetic relatedness and (dis)similarity in ecology. We first identified orthologous gene groups across species and then extracted groups containing only American pika genes as well as unclustered pika genes to inform functional enrichment analyses; among these, we found 141 enriched terms with many related to hypoxia, metabolism, mitochondrial function/development, and DNA repair. We identified 15 significantly expanded gene families within the American pika across all orthologous gene groups that displayed functionally enriched terms associated with hypoxia adaptation. We further detected 196 positively selected genes, 41 of which have been associated with putative adaptation to hypoxia, cold tolerance, and response to UV following a literature review. In particular, OXNAD1, NRDC, and those genes critical in DNA repair represent important targets for future research to examine their functional implications in the American pika, especially as they may relate to adaptation to rapidly changing environments.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| |
Collapse
|
5
|
Pooja, Sharma V, Sharma M, Varshney R, Kumar B, Sethy NK. Association Between 17β-Estradiol Receptors and Nitric Oxide Signaling Augments High-Altitude Adaptation of Ladakhi Highlanders. High Alt Med Biol 2021; 22:174-183. [PMID: 33602001 DOI: 10.1089/ham.2020.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pooja, Vandana Sharma, Manish Sharma, Rajeev Varshney, Bhuvnesh Kumar, and Niroj Kumar Sethy. Association between 17β-estradiol receptors and nitric oxide signaling augments high-altitude adaptation of Ladakhi highlanders. High Alt Med Biol. 22: 174-183, 2021. Background: Genomic studies have identified positive natural selection of plasma membrane estrogen receptor signaling pathway for Himalayan highlanders. We sought to investigate significance of this pathway for high-altitude adaptation by studying Ladakhi highlanders. Materials and Methods: We recruited 25 healthy Ladakhi males (age range: 19-37, height: 164 ± 6 cm, and weight 59 ± 4 kg) at Leh (altitude 3,520 m) and age matched sea level volunteers at Delhi (altitude 215 m), India. We evaluated circulatory levels of 17β-estradiol (E2) and testosterone (T) and levels of E2 biosynthesis pathway proteins. In addition, we analyzed mRNA levels of E2 pathway genes and their association with nitric oxide (NO) availability. Results: We observed higher circulatory E2 and lower testosterone (T) in Ladakhi highlanders compared to lowlanders. Studying E2 pathway genes, we identified higher transcript levels of E2 receptors ESR1 (2.02-fold) and ESR2 (3.87-fold) in Ladakhi highlanders. Higher NOS3 mRNA, plasma level of endothelial NO synthase (eNOS), p-eNOS Ser1177, NOx (nitrate and nitrite), and cGMP were observed for Ladakhi highlanders. In addition, we observed a positive correlation between E2 with plasma NOx (r = 0.52, p = 0.002) and cGMP (r = 0.72, p = 0.007) for Ladakhi highlanders. Conclusion: Our results demonstrate higher circulatory E2 and lower T levels in Ladakhi highlanders. Higher levels of E2 and its receptors (ESR1 and ESR2) are positively associated with observed higher levels of eNOS signaling pathway metabolites. These results highlight the functional importance of E2 and its receptors for Himalayan pattern of high-altitude adaptation.
Collapse
Affiliation(s)
- Pooja
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Bhuvnesh Kumar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| |
Collapse
|
6
|
Lahm T. Taking it to heart: dissecting cardiopulmonary interactions in diseases of the lung and the cardiovascular system. Am J Physiol Lung Cell Mol Physiol 2020; 319:L547-L549. [PMID: 32783622 PMCID: PMC7518052 DOI: 10.1152/ajplung.00373.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|