1
|
Yokosawa T, Miyagawa S, Suzuki W, Nada Y, Hirata Y, Noguchi T, Matsuzawa A. The E3 Ubiquitin Protein Ligase LINCR Amplifies the TLR-Mediated Signals through Direct Degradation of MKP1. Cells 2024; 13:687. [PMID: 38667302 PMCID: PMC11048823 DOI: 10.3390/cells13080687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Zhou SQ, Feng P, Ye ML, Huang SY, He SW, Zhu XH, Chen J, Zhang Q, Li YQ. The E3 ligase NEURL3 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma by promoting vimentin degradation. J Exp Clin Cancer Res 2024; 43:14. [PMID: 38191501 PMCID: PMC10775674 DOI: 10.1186/s13046-024-02945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Shi-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ping Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, People's Republic of China.
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
3
|
Qi F, Zhang X, Wang L, Ren C, Zhao X, Luo J, Lu D. E3 ubiquitin ligase NEURL3 promotes innate antiviral response through catalyzing K63-linked ubiquitination of IRF7. FASEB J 2022; 36:e22409. [PMID: 35792897 DOI: 10.1096/fj.202200316r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
Interferon regulatory factor 7 (IRF7), as the interferon-stimulated gene, maximally drives type I interferon (IFN) production. However, the mechanisms by which the biological function of IRF7 is regulated remain elusive. In this study, we found that IRF7 selectively interacted with the neuralized E3 ubiquitin-protein ligase 3 (NEURL3). In concomitant with IRF7 induction, NEURL3 is upregulated by NF-κB signaling in the late phase of viral infection. Moreover, NEURL3 augmented the host antiviral immune response through ubiquitinating IRF7. A mechanistic study revealed that NEURL3 triggered K63-linked poly-ubiquitination on IRF7 lysine 375, which in turn epigenetically enhanced the transcription of interferon-stimulated genes (ISGs) through disruption of the association of IRF7 with Histone Deacetylase 1 (HDAC1), consequently augmenting host antiviral immune response. Accordingly, Neurl3-/- mice produced less type I IFNs and exhibited increased susceptibility to viral infection. Taken together, our findings identify NEURL3 as an E3 ubiquitin ligase of IRF7 and shed new light on the positive regulation of IRF7 in host antiviral immune signaling.
Collapse
Affiliation(s)
- Fang Qi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, P.R. China
| | - Xin Zhang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, P.R. China
| | - Likun Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, P.R. China
| | - Caixia Ren
- Department of Human Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, P.R. China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, Beijing, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, P.R. China
| |
Collapse
|
4
|
Neuralized E3 Ubiquitin Protein Ligase 3 Is an Inducible Antiviral Effector That Inhibits Hepatitis C Virus Assembly by Targeting Viral E1 Glycoprotein. J Virol 2018; 92:JVI.01123-18. [PMID: 30111563 DOI: 10.1128/jvi.01123-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV can be sensed by host innate immunity to induce expression of interferons (IFNs) and a number of antiviral effectors. In this study, we found HCV infection induced the expression of neuralized E3 ubiquitin protein ligase 3 (NEURL3), a putative E3 ligase, in a manner that requires the involvement of innate immune sensing but is independent of the IFN action. Furthermore, we showed that NEURL3 inhibited HCV infection while it had little effect on other RNA viruses, including Zika virus (ZIKV), dengue virus (DENV), and vesicular stomatitis virus (VSV). Mechanistic studies demonstrated that NEURL3 inhibited HCV assembly by directly binding HCV envelope glycoprotein E1 to interfere with the E1/E2 heterodimerization, an important prerequisite for virion morphogenesis. Finally, we showed that knockout of NEURL3 significantly enhanced HCV infection. In summary, we identified NEURL3 as a novel inducible antiviral host factor that suppresses HCV assembly. Our results not only shed new insight into how host innate immunity acts against HCV but also revealed a new important biological function for NEURL3.IMPORTANCE The exact biological function of NEURL3, a putative E3 ligase, remains largely unknown. In this study, we found that NEURL3 could be upregulated upon HCV infection in a manner dependent on pattern recognition receptor-mediated innate immune response. NEURL3 inhibits HCV assembly by directly binding viral E1 envelope glycoprotein to disrupt its interaction with E2, an action that requires its Neuralized homology repeat (NHR) domain but not the RING domain. Furthermore, we found that NEURL3 has a pangenotypic anti-HCV activity and interacts with E1 of genotypes 2a, 1b, 3a, and 6a but does not inhibit other closely related RNA viruses, such as ZIKV, DENV, and VSV. To our knowledge, our study is the first report to demonstrate that NEURL3 functions as an antiviral host factor. Our results not only shed new insight into how host innate immunity acts against HCV, but also revealed a new important biological function for NEURL3.
Collapse
|
5
|
Londhe VA, Tomi T, Nguyen TT, Lopez B, Smith JB. Overexpression of LINCR in the developing mouse lung epithelium inhibits distal differentiation and induces cystic changes. Dev Dyn 2015; 244:827-38. [DOI: 10.1002/dvdy.24286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/31/2015] [Accepted: 04/09/2015] [Indexed: 01/02/2023] Open
Affiliation(s)
- Vedang A. Londhe
- Neonatal Research Center; Department of Pediatrics; Division of Neonatology and Developmental Biology; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Tomoko Tomi
- Neonatal Research Center; Department of Pediatrics; Division of Neonatology and Developmental Biology; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Tam T. Nguyen
- Neonatal Research Center; Department of Pediatrics; Division of Neonatology and Developmental Biology; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Benjamin Lopez
- Neonatal Research Center; Department of Pediatrics; Division of Neonatology and Developmental Biology; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Jeffrey B. Smith
- Neonatal Research Center; Department of Pediatrics; Division of Neonatology and Developmental Biology; David Geffen School of Medicine at UCLA; Los Angeles California
| |
Collapse
|
6
|
Identification of OASL d, a splice variant of human OASL, with antiviral activity. Int J Biochem Cell Biol 2012; 44:1133-8. [PMID: 22531715 DOI: 10.1016/j.biocel.2012.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/16/2012] [Accepted: 04/04/2012] [Indexed: 11/21/2022]
Abstract
The 2',5'-oligoadenylate synthetases (OASs) are IFN-induced antiviral proteins and are upregulated by infection of viral and some bacterial pathogens. There are at least 2 transcripts of approximately 1.8 and 2.0 kb in interferon-beta treated samples that are recognized by a probe for human OASL in Northern blot assay. By RT-PCR amplification we have isolated a previously undescribed splice variant of human OASL, named OASL d. The new variant was derived from deletion of exons 4 and 5 and encodes a protein of 384 aa residues that shares the N-terminal 219 aa residues with OASL a. Sequence analysis indicates that OASL d also contains the entire ubiquitin-like domain identified in human OASL a. OASL d was strongly induced by IFNγ in THP-1 monocytic cells and in A549 epithelial cells by interferon-beta as detected by immunoblotting assay. Ectopic expression of OASL a or OASL d, but not OASL b that shares the N-terminus with OASL a and d, partially inhibited EV71 and VSV infection. No effect against HSV-2 infection was observed. Therefore, OASL d is a novel isoform of human OASL that possesses antiviral activity against RNA viruses.
Collapse
|
7
|
Deletion of peroxiredoxin 6 potentiates lipopolysaccharide-induced acute lung injury in mice*. Crit Care Med 2011; 39:756-64. [DOI: 10.1097/ccm.0b013e318206befd] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Olszewski MA, Gray J, Vestal DJ. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J Interferon Cytokine Res 2007; 26:328-52. [PMID: 16689661 DOI: 10.1089/jir.2006.26.328] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The guanylate-binding proteins (GBPs) were among the first interferon (IFN)-stimulated genes (ISGs) discovered, but until recently, little was known about their functions and even less about the composition of the gene family. Analysis of the promoter of human GBP-1 contributed significantly toward the understanding of Jak-Stat signaling and the delineation of the IFN-gamma activation site (GAS) and IFN-stimulated response element (ISRE) promoter elements. In this study, we have examined the genomic arrangement and composition of the GBPs in both mouse and humans. There are seven GBP paralogs in humans and at least one pseudogene, all of which are located in a cluster of genes on chromosome 1. Five of the six MuGBPs and a GBP pseudogene are clustered in a syntenic region on chromosome 3. The sixth MuGBP, MuGBP-4, and three GBP pseudogenes are located on chromosome 5. As might be expected, the GBPs share similar genomic organizations of introns and exons. Five of the MuGBPs had previously been shown to be coordinately induced by IFNs, and as expected, all of the MuGBPs have GAS and ISRE elements in their promoters. Interestingly, not all of the HuGBPs have GAS and ISRE elements, suggesting that not all GBPs are IFN responsive in humans.
Collapse
Affiliation(s)
- Maureen A Olszewski
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | |
Collapse
|
9
|
Da J, Chen L, Hedenstierna G. Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Crit Care Med 2007; 35:26-32. [PMID: 17095945 DOI: 10.1097/01.ccm.0000250319.91575.bb] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Nitric oxide inhibits the expression of many genes involved in inflammatory diseases. Glucocorticoids inhibit similar transcription factors. We hypothesized that there may be an interaction between nitric oxide and glucocorticoids, with the potential to enhance the anti-inflammatory effect when administered simultaneously. DESIGN Prospective, randomized, controlled study. SETTING Animal research laboratory. SUBJECTS A total of 45 anesthetized and mechanically ventilated pigs. INTERVENTIONS Lung and systemic injury was induced by intravenous infusion of endotoxin (lipopolysaccharide) for 6 hrs. After 2.5 hrs, one group received 3.5 mg/kg hydrocortisone, another group inhaled nitric oxide (30 ppm), and still another group received both steroid and nitric oxide. Control groups of healthy and endotoxin-exposed piglets were also studied. MEASUREMENTS AND MAIN RESULTS Central hemodynamics and gas exchange were measured. Detection of the glucocorticoid receptor and inflammatory markers in lung, liver, and kidney tissue were made by immunohistochemistry, and morphology was studied with light microscopy. Endotoxin infusion markedly reduced glucocorticoid receptor expression in lung, liver, and kidney and up-regulated activator protein-1 and the inflammatory markers nuclear factor-kappaB and tumor necrosis factor-alpha. When administered separately, steroids and nitric oxide had modest effect on the inflammatory response. However, nitric oxide up-regulated the glucocorticoid receptor expression. Simultaneous administration of steroids and nitric oxide attenuated the inflammatory response and almost preserved or restored normal histology of both lung and systemic organs. When the glucocorticoid receptor was blocked by a receptor antagonist (mifepristone, 600 mg) and inhaled nitric oxide was subsequently administered, no increase in the expression of the glucocorticoid receptor was seen. CONCLUSION We suggest that up-regulation of glucocorticoid receptor expression by nitric oxide made steroid therapy more effective.
Collapse
Affiliation(s)
- Jiping Da
- Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala University, Sweden
| | | | | |
Collapse
|
10
|
Commisso C, Boulianne GL. The NHR1 domain of Neuralized binds Delta and mediates Delta trafficking and Notch signaling. Mol Biol Cell 2006; 18:1-13. [PMID: 17065551 PMCID: PMC1751308 DOI: 10.1091/mbc.e06-08-0753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Notch signaling, which is crucial to metazoan development, requires endocytosis of Notch ligands, such as Delta and Serrate. Neuralized is a plasma membrane-associated ubiquitin ligase that is required for neural development and Delta internalization. Neuralized is comprised of three domains that include a C-terminal RING domain and two neuralized homology repeat (NHR) domains. All three domains are conserved between organisms, suggesting that these regions of Neuralized are functionally important. Although the Neuralized RING domain has been shown to be required for Delta ubiquitination, the function of the NHR domains remains elusive. Here we show that neuralized, a well-characterized neurogenic allele, exhibits a mutation in a conserved residue of the NHR1 domain that results in mislocalization of Neuralized and defects in Delta binding and internalization. Furthermore, we describe a novel isoform of Neuralized and show that it is recruited to the plasma membrane by Delta and that this is mediated by the NHR1 domain. Finally, we show that the NHR1 domain of Neuralized is both necessary and sufficient to bind Delta. Altogether, our data demonstrate that NHR domains can function in facilitating protein-protein interactions and in the case of Neuralized, mediate binding to its ubiquitination target, Delta.
Collapse
Affiliation(s)
- Cosimo Commisso
- The Hospital for Sick Children, Program in Developmental Biology and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Gabrielle L. Boulianne
- The Hospital for Sick Children, Program in Developmental Biology and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
11
|
Perelygin AA, Zharkikh AA, Scherbik SV, Brinton MA. The Mammalian 2′-5′ Oligoadenylate Synthetase Gene Family: Evidence for Concerted Evolution of Paralogous Oas1 Genes in Rodentia and Artiodactyla. J Mol Evol 2006; 63:562-76. [PMID: 17024523 DOI: 10.1007/s00239-006-0073-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/12/2006] [Indexed: 12/01/2022]
Abstract
Multiple 2'-5' oligoadenylate (2-5A) synthetases are important components of innate immunity in mammals. Gene families encoding these proteins have previously been studied mainly in humans and mice. To reconstruct the evolution of this gene family in mammals, a search for additional 2-5A synthetase genes was performed in rat, cattle, pig, and dog. Twelve 2'-5' oligoadenylate synthetase (Oas) genes were identified in the rat genome, including eight Oas1 genes, two Oas1 pseudogenes, single copies of Oas2 and Oas3, and two Oas-like genes, Oasl1 and Oasl2. Four OAS genes were detected in the pig genome and five OAS genes were found in both the cattle and dog genomes. An OAS3 gene was not found in either the cattle or the pig genome. While two tandemly duplicated OAS-like (OASL) genes were identified in the dog genome, only a single OASL orthologue was found in both the cattle and the pig genomes. The bovine and porcine OASL genes contain premature stop codons and encode truncated proteins, which lack the typical C-terminal double ubiquitin domains. The cDNA sequences of the rat, cattle, pig, and dog OAS genes were amplified, sequenced and compared with each other and with those in the human, mouse, horse, and chicken genomes. Evidence of concerted evolution of paralogous 2'-5' oligoadenylate synthetase 1 genes was obtained in rodents (Rodentia) and even-toed ungulates (Artiodactyla). Calculations using the nonparametric Kolmogorov-Smirnov test suggested that the homogenization of paralogous OAS1 sequences was due to gene conversion rather than stabilizing selection.
Collapse
Affiliation(s)
- Andrey A Perelygin
- Biology Department, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA.
| | | | | | | |
Collapse
|
12
|
Hu Y, Nguyen TT, Bui KC, Demello DE, Smith JB. A novel inflammation-induced ubiquitin E3 ligase in alveolar type II cells. Biochem Biophys Res Commun 2005; 333:253-63. [PMID: 15936721 DOI: 10.1016/j.bbrc.2005.05.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022]
Abstract
LINCR was identified as a glucocorticoid-attenuated response gene induced in the lung during endotoxemia. The LINCR protein has structural similarities to Drosophila Neuralized, which regulates the developmentally important Notch signaling pathway. Endotoxemia-induced LINCR expression in vivo was localized by in situ hybridization to alveolar epithelial type II cells, and shown to be induced by LPS and inflammatory cytokines in the T7 alveolar epithelial type II cell line. RING domain-dependent ubiquitin E3 ligase activity of LINCR was demonstrated using full-length FLAG-LINCR or a deletion mutant lacking the RING domain expressed in 293T cells, and using a GST-LINCR RING fusion protein expressed in Escherichia coli. LINCR preferentially interacted with the ubiquitin-conjugating enzyme UbcH6 and preferentially generated polyubiquitin chains linked via non-canonical lysine residues. We conclude that LINCR is a novel inflammation-induced ubiquitin E3 ligase expressed in alveolar epithelial type II cells, and discuss its potential role in the lung response to inflammation.
Collapse
Affiliation(s)
- Yan Hu
- Department of Pediatrics, Mattel Children's Hospital at UCLA and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
13
|
Wright MM, Powell CS, Jackson RM. Effects of intratracheal tumor necrosis factor-alpha plasmid vector on lipopolysaccharide lethality and lung injury in mice. Exp Lung Res 2005; 30:653-71. [PMID: 15700545 DOI: 10.1080/01902140490517791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacterial lipopolysaccharide (LPS) causes acute lung injury (ALI) and contributes to inflammation in the acute respiratory distress syndrome (ARDS) and sepsis, making mechanisms of resistance to LPS critically important in clinical settings. The authors postulated that intratracheal administration of a plasmid (pcDNA3. 0-rTNFalpha) encoding rat tumor necrosis factor-alpha (TNF-alpha) would increase resistance of mice to LPS-induced ALI or mortality. They investigated the time course and dose-response for development of LPS-induced ALI in C57/BL6 mice and sought possible protective effects of 100 microg pcDNA3.0-rTNFalpha intratracheally 1, 2, or 3 weeks before LPS challenge. Lung myeloperoxidase (MPO) activity and alveolar lavage fluid (BALF) cell counts increased significantly 48 hours after intraperitoneal (IP) LPS challenges. After pcDNA3.0-rTNFalpha pretreatment, mice challenged with LPS had lower lung/body weight ratios than mice treated with pcDNA3.0; however, other indices of lung injury did not differ. Survival of mice challenged with lethal IP LPS 2 weeks after intratracheal pcDNA3.0-rTNFalpha vector improved significantly, compared to mice pretreated with the control vector, pcDNA3.0. However, pcDNA3.0-pretreated mice tolerated LPS challenge less well than saline-pretreated controls. LPS causes neutrophilic lung injury and mortality, but pcDNA3.0-TNFalpha does not prevent ALI due to LPS. Intratracheal pcDNA3.0-rTNFalpha pretreatment significantly improves survival of mice after LPS challenge, compared to those pretreated with pcDNA3.0.
Collapse
Affiliation(s)
- Marcienne M Wright
- C Birmingham DVAMC, and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|