1
|
Zhang W, Zhang C, Zhang Y, Zhou X, Dong B, Tan H, Su H, Sun X. Multifaceted roles of mitochondria in asthma. Cell Biol Toxicol 2024; 40:85. [PMID: 39382744 PMCID: PMC11464602 DOI: 10.1007/s10565-024-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chenyu Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Yang L, Dai Q, Bao X, Li W, Liu J. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA. Cytotechnology 2024; 76:179-190. [PMID: 38495290 PMCID: PMC10940562 DOI: 10.1007/s10616-023-00607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/04/2023] [Indexed: 03/19/2024] Open
Abstract
In order to investigate miR-4763-3p and associated genes' roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiac Surgery, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong China
| | - Qian Dai
- Department of Geriatric Diseases, Changyi People’s Hospital, Changyi, 261300 Shandong China
| | - Xiaoming Bao
- Department of Cardiology, Huantai County People’s Hospital, Zibo, 256400 Shandong China
| | - Wang Li
- Department of Cardiology, Tai ’an First People’s Hospital, Tai ’an, 271000 Shandong China
| | - Jie Liu
- Department of Cardiology, The Second People’s Hospital of Changzhou, 29 Xinglong Lane, Tianning District, Changzhou, 213000 Jiangsu China
| |
Collapse
|
3
|
Dasgupta D, Mahadev Bhat S, Creighton C, Cortes C, Delmotte P, Sieck GC. Molecular mechanisms underlying TNFα-induced mitochondrial fragmentation in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2024; 326:L190-L205. [PMID: 38084427 PMCID: PMC11280718 DOI: 10.1152/ajplung.00198.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Tumor necrosis factor α (TNFα), a proinflammatory cytokine, plays a significant role in mediating the effects of acute inflammation in response to allergens, pollutants, and respiratory infections. Previously, we showed that acute exposure to TNFα induces mitochondrial fragmentation in human airway smooth muscle (hASM) cells, which is associated with increased expression of dynamin-related protein 1 (DRP1). Phosphorylation of DRP1 at serine 616 (pDRP1S616) promotes its translocation and binding to the outer mitochondrial membrane (OMM) and mediates mitochondrial fragmentation. Previously, we reported that TNFα exposure triggers protein unfolding and triggers an endoplasmic reticulum (ER) stress response involving phosphorylation of inositol-requiring enzyme 1α (pIRE1α) at serine 724 (pIRE1αS724) and subsequent splicing of X-box binding protein 1 (XBP1s) in hASM cells. We hypothesize that TNFα-mediated activation of the pIRE1αS724/XBP1s ER stress pathway in hASM cells transcriptionally activates genes that encode kinases responsible for pDRP1S616 phosphorylation. Using 3-D confocal imaging of MitoTracker green-labeled mitochondria, we found that TNFα treatment for 6 h induces mitochondrial fragmentation in hASM cells. We also confirmed that 6 h TNFα treatment activates the pIRE1α/XBP1s ER stress pathway. Using in silico analysis and ChIP assay, we showed that CDK1 and CDK5, kinases involved in the phosphorylation of pDRP1S616, are transcriptionally targeted by XBP1s. TNFα treatment increased the binding affinity of XBP1s on the promoter regions of CDK1 and CDK5, and this was associated with an increase in pDRP1S616 and mitochondria fragmentation. This study reveals a new underlying molecular mechanism for TNFα-induced mitochondrial fragmentation in hASM cells.NEW & NOTEWORTHY Airway inflammation is increasing worldwide. Proinflammatory cytokines mediate an adaptive mechanism to overcome inflammation-induced cellular stress. Previously, we reported that TNFα mediates hASM cellular responses, leading to increased force and ATP consumption associated with increased O2 consumption, and oxidative stress. This study indicates that TNFα induces ER stress, which induces mitochondrial fragmentation via pIRE1αS724/XBP1s mediated CDK1/5 upregulation and pDRP1S616 phosphorylation. Mitochondrial fragmentation may promote hASM mitochondrial biogenesis to maintain healthy mitochondrial pool.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Sanjana Mahadev Bhat
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Claire Creighton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Catherin Cortes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Tashima N, Matsumoto H, Nishi K, Terada S, Kogo M, Nomura N, Morimoto C, Sunadome H, Nagasaki T, Oguma T, Nakatsuka Y, Murase K, Kawaguchi T, Tabara Y, Chin K, Sonomura K, Matsuda F, Hirai T. Evaluation of elevated plasma fatty acids as relevant factors for adult-onset asthma: The Nagahama Study. Allergol Int 2024; 73:65-70. [PMID: 37198086 DOI: 10.1016/j.alit.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Obesity and increased body mass index (BMI) are the known risk factors for adult-onset asthma. Serum free fatty acid (FFA) and other blood lipid levels are generally elevated in patients with obesity and may be involved in the onset of asthma. However, it remains largely unknown. This study aimed to elucidate the relationship between plasma fatty acids and new-onset asthma. METHODS This community-based Nagahama Study in Japan enrolled 9804 residents. We conducted self-reporting questionnaires, lung function tests, and blood tests at baseline and 5 years later as follow-up. At the follow-up, plasma fatty acids were measured using gas chromatography-mass spectrometry. Body composition analysis was also measured at the follow-up. The associations between fatty acids and new-onset asthma were evaluated using a multifaceted approach, including targeted partial least squares discriminant analysis (PLS-DA). RESULTS In PLS-DA for new-onset asthma, palmitoleic acid was identified as the fatty acid most associated with asthma onset. In the multivariable analysis, higher levels of FFA, palmitoleic acid, or oleic acid were significantly associated with new-onset asthma, independent of other confounding factors. The high body fat percentage itself was not the relevant factor, but showed a positive interaction with plasma palmitoleic acid for new-onset asthma. When stratified by gender, the impacts of higher levels of FFA or palmitoleic acid on new-onset asthma remained significant in females, but not in males. CONCLUSIONS Elevated levels of plasma fatty acids, particularly palmitoleic acid, may be a relevant factor for new-onset asthma.
Collapse
Affiliation(s)
- Noriyuki Tashima
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan.
| | - Kenta Nishi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mariko Kogo
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Natsuko Nomura
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chie Morimoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Nagasaki
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshinari Nakatsuka
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kimihiko Murase
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Kazuo Chin
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Sleep Medicine, Department of Sleep Medicine and Respiratory Care, Nihon University of Medicine, Tokyo, Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced expanded ciliated cells contribute to bronchial wall thickening. Virus Res 2023; 327:199060. [PMID: 36746339 PMCID: PMC10007709 DOI: 10.1016/j.virusres.2023.199060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. Using highly differentiated pseudostratified airway epithelium generated from primary human bronchial epithelial cells, we revealed RSV-infects primarily ciliated cells. The infected ciliated cells expanded substantially without compromising epithelial membrane integrity and ciliary functions and contributed to the increased height of the airway epithelium. Furthermore, we identified multiple factors, e.g., cytoskeletal (ARP2/3-complex-driven actin polymerization), immunological (IP10/CXCL10), and viral (NS2), contributing to RSV-induced uneven epithelium height increase in vitro. Thus, RSV-infected expanded cells contribute to a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening in the airway, and is termed cytoskeletal inflammation.
Collapse
Affiliation(s)
- Sattya N Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Jaspreet Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Ken Ryan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bryon Grove
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bony D Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Shirley Yang
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Sydney Dallman
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Lauren Hollingsworth
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Kristina L Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States.
| |
Collapse
|
6
|
Dasgupta D, Mahadev Bhat S, Price AL, Delmotte P, Sieck GC. Molecular Mechanisms Underlying TNFα-Induced Mitochondrial Biogenesis in Human Airway Smooth Muscle. Int J Mol Sci 2023; 24:5788. [PMID: 36982859 PMCID: PMC10055892 DOI: 10.3390/ijms24065788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Proinflammatory cytokines such as TNFα mediate airway inflammation. Previously, we showed that TNFα increases mitochondrial biogenesis in human ASM (hASM) cells, which is associated with increased PGC1α expression. We hypothesized that TNFα induces CREB and ATF1 phosphorylation (pCREBS133 and pATF1S63), which transcriptionally co-activate PGC1α expression. Primary hASM cells were dissociated from bronchiolar tissue obtained from patients undergoing lung resection, cultured (one-three passages), and then differentiated by serum deprivation (48 h). hASM cells from the same patient were divided into two groups: TNFα (20 ng/mL) treated for 6 h and untreated controls. Mitochondria were labeled using MitoTracker green and imaged using 3D confocal microscopy to determine mitochondrial volume density. Mitochondrial biogenesis was assessed based on relative mitochondrial DNA (mtDNA) copy number determined by quantitative real-time PCR (qPCR). Gene and/or protein expression of pCREBS133, pATF1S63, PCG1α, and downstream signaling molecules (NRFs, TFAM) that regulate transcription and replication of the mitochondrial genome, were determined by qPCR and/or Western blot. TNFα increased mitochondrial volume density and mitochondrial biogenesis in hASM cells, which was associated with an increase in pCREBS133, pATF1S63 and PCG1α expression, with downstream transcriptional activation of NRF1, NRF2, and TFAM. We conclude that TNFα increases mitochondrial volume density in hASM cells via a pCREBS133/pATF1S63/PCG1α-mediated pathway.
Collapse
Affiliation(s)
| | | | | | | | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Shah NM, Kaltsakas G. Respiratory complications of obesity: from early changes to respiratory failure. Breathe (Sheff) 2023. [DOI: 10.1183/20734735.0263-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Obesity is a significant and increasingly common cause of respiratory compromise. It causes a decrease in static and dynamic pulmonary volumes. The expiratory reserve volume is one of the first to be affected. Obesity is associated with reduced airflow, increased airway hyperresponsiveness, and an increased risk of developing pulmonary hypertension, pulmonary embolism, respiratory tract infections, obstructive sleep apnoea and obesity hypoventilation syndrome. The physiological changes caused by obesity will eventually lead to hypoxic or hypercapnic respiratory failure. The pathophysiology of these changes includes a physical load of adipose tissue on the respiratory system and a systemic inflammatory state. Weight loss has clear, well-defined benefits in improving respiratory and airway physiology in obese individuals.
Collapse
|
8
|
Wang CJ, Noble PB, Elliot JG, Choi YS, James AL, Wang KCW. Distribution, composition, and activity of airway-associated adipose tissue in the porcine lung. Am J Physiol Lung Cell Mol Physiol 2023; 324:L179-L189. [PMID: 36445102 DOI: 10.1152/ajplung.00288.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Patients with comorbid asthma-obesity experience greater disease severity and are less responsive to therapy. We have previously reported adipose tissue within the airway wall that positively correlated with body mass index. Accumulation of biologically active adipose tissue may result in the local release of adipokines and disrupt large and small airway function depending on its anatomical distribution. This study therefore characterized airway-associated adipose tissue distribution, lipid composition, and adipokine activity in a porcine model. Airway segments were systematically dissected from different locations of the bronchial tree in inflation-fixed lungs. Cryosections were stained with hematoxylin and eosin (H&E) for airway morphology, oil red O to distinguish adipose tissue, and Nile blue A for lipid subtype delineation. Excised airway-associated adipose tissue was cultured for 72 h to quantify adipokine release using immunoassays. Results showed that airway-associated adipose tissue extended throughout the bronchial tree and occupied an area proportionally similar to airway smooth muscle within the wall area. Lipid composition consisted of pure neutral lipids (61.7 ± 3.5%), a mixture of neutral and acidic lipids (36.3 ± 3.4%), or pure acidic lipids (2.0 ± 0.8%). Following tissue culture, there was rapid release of IFN-γ, IL-1β, and TNF-α at 12 h. Maximum IL-4 and IL-10 release was at 24 and 48 h, and peak leptin release occurred between 48 and 72 h. These data extend previous findings and demonstrate that airway-associated adipose tissue is prevalent and biologically active within the bronchial tree, providing a local source of adipokines that may be a contributing factor in airway disease.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced Expanded Ciliated Cells Contribute to Bronchial Wall Thickening.. [DOI: 10.1101/2022.10.31.514471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractViral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis), reducing airflow through the bronchioles. This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. RSV infection in the airway epithelium of healthy adult bronchial cells reveals RSV-infects primarily ciliated cells. RSV infection expands the cell cytoskeleton substantially without compromising epithelial membrane integrity and ciliary functions. The RSV-induced actin cytoskeleton expansion increases ununiformly epithelial height, and cytoskeletal (actin polymerization), immunological (INF-L1, TNF-α, IP10/CXCL10), and viral (NS2) factors are probably responsible. Interestingly, RSV-infected cell cytoskeleton’s expansion resembles a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening, and is termed cytoskeletal inflammation.Author SummaryRSV infects everyone. Although RSV-induced fatal pathophysiology (e.g., bronchiolitis) is more common in infants than adults, this bronchiolitis (or bronchial wall thickening) is common in the lower respiratory tract due to RSV infection in all ages. To determine the molecular mechanism of RSV-induced bronchial wall thickening, we infectedin vitroadult airway epithelium with RSV. We found that RSV-infection induced a substantial actin-cytoskeleton expansion, consequently increased the height of the epithelium. We identified actin polymerization, secretion of proinflammatory cytokines and chemokines, and viral proteins contribute to the RSV-induced cytoskeletal expansion. Our results suggest that RSV-induces a novel noncanonical epithelial host response termed cytoskeletal inflammation, which may contribute to bronchial wall thickening.
Collapse
|
10
|
Ekpruke CD, Silveyra P. Airway remodeling in asthma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1189. [PMID: 36544664 PMCID: PMC9761175 DOI: 10.21037/atm-22-5059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
11
|
Larson KF, Malik A, Brozovich FV. Aging and Heart Failure with Preserved Ejection Fraction. Compr Physiol 2022; 12:3813-3822. [PMID: 35950652 DOI: 10.1002/cphy.c210035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heart failure is a clinical syndrome characterized by the inability of the cardiovascular system to provide adequate cardiac output at normal filling pressures. This results in a clinical syndrome characterized by dyspnea, edema, and decreased exertional tolerance. Heart failure with preserved ejection fraction (HFpEF) is an increasingly common disease, and the incidence of HFpEF increases with age. There are a variety of factors which contribute to the development of HFpEF, including the presence of hypertension, diabetes, obesity, and other pro-inflammatory states. These comorbid conditions result in changes at the biochemical and cell signaling level which ultimately lead to a disease with a great deal of phenotypic heterogeneity. In general, the physiologic dysfunction of HFpEF is characterized by vascular stiffness, increased cardiac filling pressures, pulmonary hypertension, and impaired volume management. The normal and abnormal processes associated with aging serve as an accelerant in this process, resulting in the hypothesis that HFpEF represents a form of presbycardia. In this article, we aim to review the processes importance of aging in the development of HFpEF by examining the disease and its causes from the biochemical to physiologic level. © 2022 American Physiological Society. Compr Physiol 12: 1-10, 2022.
Collapse
Affiliation(s)
- Kathryn F Larson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Awais Malik
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank V Brozovich
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Wang H, Hou Y, Ma X, Cui L, Bao Y, Xie Y, Li S, Meng X, Li J, Bai G. Multi-omics analysis reveals the mechanisms of action and therapeutic regimens of traditional Chinese medicine, Bufei Jianpi granules: Implication for COPD drug discovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153963. [PMID: 35121390 DOI: 10.1016/j.phymed.2022.153963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a serious public health challenge in the world. According to the treatment instructions by Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2020, bronchiectasis combine with inhaled corticosteroids and long-acting anti-muscarinic agents were recommended as the main prescription. However, this symptomatic treatment still has ineluctable limits because it ignored the most pathogenesis mechanism of COPD. As an alternative traditional Chinese medicine (TCM) for COPD, Bufei Jianpi granules (BJG) can reduce the frequency and duration of acute exacerbation in COPD patients and improve their quality of life. The evidence demonstrated BJG acts as therapeutics that retarding the airway remodeling process, eliminating phlegm, thrombolysis and improving mitochondrial function. However, the detailed molecular mechanism is still urgently revealed. PURPUSE In this study, we aim to find out the active pharmacodynamic ingredients and reveal the treatment mechanism of active pharmacodynamic ingredients. METHODS Based on the pharmacodynamic evaluation and chemomic profiling of BJG in COPD rats, an integrated multi-omics analysis was performed, including molecular networking, metabonomics, proteomics and bioinformatics. Moreover, focus on the active compounds, we verified the molecular core mechanism by molecular biology methods. RESULTS Pachymic acid, shionone, peiminine and astragaloside A was verified as therapeutic agents for improving the condition of COPD by acting on the EGFR, ERK1, PAI-1 and p53 target, respectively. CONCLUSION In this study, our findings indicated that some compounds in BJG alleviates the pathological process of COPD, which is related to regulating lung function, mucus production, pulmonary embolism and energy metabolism and this will be a benefit complementary to GOLD guidelines.
Collapse
Affiliation(s)
- Hechen Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Linlin Cui
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Xie
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Suyun Li
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R., China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Jiansheng Li
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R., China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| |
Collapse
|
13
|
Zhang YL, Zhang RG, Chen FY, Qiu ZE, Chen L, Huang ZX, Huang J, Zhu YX, Zhao L, Zhou WL. Cellular Mechanism Underlying the Facilitation of Contractile Response Induced by Tumor Necrosis Factor-α in Mouse Tracheal Smooth Muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:104-111. [PMID: 34756873 DOI: 10.1016/j.ajpath.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca2+ signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α. The results showed that TNF-α triggered facilitation of mouse tracheal smooth muscle contraction in an epithelium-independent manner. The TNF-α-induced hypercontractility could be suppressed by the protein kinase C inhibitor GF109203X, the tyrosine kinase inhibitor genistein, the Src inhibitor PP2, or the L-type voltage-dependent Ca2+ channel blocker nifedipine. After TNF-α incubation, the α1C L-type Ca2+ channel (CaV1.2) was up-regulated in primary cultured mouse tracheal smooth muscle cells. Pronounced phosphotyrosine levels also were observed in mouse tracheas. In conclusion, this study showed that TNF-α enhanced airway smooth muscle contraction via protein kinase C-Src-CaV1.2 pathways, which provides novel insights into the pathologic role of proinflammatory cytokines in mediating airway hyperresponsiveness.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui-Gang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Feng-Ying Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pathology, The Maternal and Child Health Care Hospital of HuaDu District (Huzhong Hospital), Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Han YS, Delmotte P, Sieck GC. Effects of TNFα on Dynamic Cytosolic Ca 2 + and Force Responses to Muscarinic Stimulation in Airway Smooth Muscle. Front Physiol 2021; 12:730333. [PMID: 34393833 PMCID: PMC8363307 DOI: 10.3389/fphys.2021.730333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported that in airway smooth muscle (ASM), the cytosolic Ca2+ ([Ca2+]cyt) and force response induced by acetyl choline (ACh) are increased by exposure to the pro-inflammatory cytokine tumor necrosis factor α (TNFα). The increase in ASM force induced by TNFα was not associated with an increase in regulatory myosin light chain (rMLC20) phosphorylation but was associated with an increase in contractile protein (actin and myosin) concentration and an enhancement of Ca2+ dependent actin polymerization. The sensitivity of ASM force generation to elevated [Ca2+]cyt (Ca2+ sensitivity) is dynamic involving both the shorter-term canonical calmodulin-myosin light chain kinase (MLCK) signaling cascade that regulates rMLC20 phosphorylation and cross-bridge recruitment as well as the longer-term regulation of actin polymerization that regulates contractile unit recruitment and actin tethering to the cortical cytoskeleton. In this study, we simultaneously measured [Ca2+]cyt and force responses to ACh and explored the impact of 24-h TNFα on the dynamic relationship between [Ca2+]cyt and force responses. The temporal delay between the onset of [Ca2+]cyt and force responses was not affected by TNFα. Similarly, the rates of rise of [Ca2+]cyt and force responses were not affected by TNFα. The absence of an impact of TNFα on the short delay relationships between [Ca2+]cyt and force was consistent with the absence of an effect of [Ca2+]cyt and force on rMLC20 phosphorylation. However, the integral of the phase-loop plot of [Ca2+]cyt and force increased with TNFα, consistent with an impact on actin polymerization and, contractile unit recruitment and actin tethering to the cortical cytoskeleton.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Han YS, Delmotte PF, Arteaga GM, Sieck GC. Dynamic cytosolic Ca 2+ and force responses to muscarinic stimulation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 321:L91-L101. [PMID: 33908264 DOI: 10.1152/ajplung.00596.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During agonist stimulation of airway smooth muscle (ASM), agonists such as ACh induce a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt), which leads to a contractile response [excitation-contraction (E-C) coupling]. Previously, the sensitivity of the contractile response of ASM to elevated [Ca2+]cyt (Ca2+ sensitivity) was assessed as the ratio of maximum force to maximum [Ca2+]cyt. However, this static assessment of Ca2+ sensitivity overlooks the dynamic nature of E-C coupling in ASM. In this study, we simultaneously measured [Ca2+]cyt and isometric force responses to three concentrations of ACh (1, 2.6, and 10 μM). Both maximum [Ca2+]cyt and maximum force responses were ACh concentration dependent, but force increased disproportionately, thereby increasing static Ca2+ sensitivity. The dynamic properties of E-C coupling were assessed in several ways. The temporal delay between the onset of ACh-induced [Ca2+]cyt and onset force responses was not affected by ACh concentration. The rates of rise of the ACh-induced [Ca2+]cyt and force responses increased with increasing ACh concentration. The integral of the phase-loop plot of [Ca2+]cyt and force from onset to steady state also increased with increasing ACh concentration, whereas the rate of relaxation remained unchanged. Although these results suggest an ACh concentration-dependent increase in the rate of cross-bridge recruitment and in the rate of rise of [Ca2+]cyt, the extent of regulatory myosin light-chain (rMLC20) phosphorylation was not dependent on ACh concentration. We conclude that the dynamic properties of [Ca2+]cyt and force responses in ASM are dependent on ACh concentration but reflect more than changes in the extent of rMLC20 phosphorylation.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe F Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Grace M Arteaga
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Gebski EB, Anaspure O, Panettieri RA, Koziol-White CJ. Airway smooth muscle and airway hyperresponsiveness in asthma - mechanisms of airway smooth muscle dysfunction. Minerva Med 2021; 113:4-16. [PMID: 33496164 DOI: 10.23736/s0026-4806.21.07283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eric B Gebski
- Drexel College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | - Omkar Anaspure
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA -
| |
Collapse
|
17
|
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L137-L151. [PMID: 33146568 PMCID: PMC7847063 DOI: 10.1152/ajplung.00305.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Inflammation-Induced Protein Unfolding in Airway Smooth Muscle Triggers a Homeostatic Response in Mitochondria. Int J Mol Sci 2020; 22:ijms22010363. [PMID: 33396378 PMCID: PMC7795579 DOI: 10.3390/ijms22010363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O2 consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (mtUPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca2+ influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O2 consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.
Collapse
|
19
|
Delmotte P, Han Y, Sieck GC. Cytoskeletal remodeling slows cross-bridge cycling and ATP hydrolysis rates in airway smooth muscle. Physiol Rep 2020; 8:e14561. [PMID: 32812390 PMCID: PMC7435030 DOI: 10.14814/phy2.14561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
During isometric activation of airway smooth muscle (ASM), cross-bridge cycling and ATP hydrolysis rates decline across time even though isometric force is sustained. Thus, tension cost (i.e., ATP hydrolysis rate per unit of force during activation) decreases with time. The "latch-state" hypothesis attributes the dynamic change in cross-bridge cycling and ATP hydrolysis rates to changes in phosphorylation of the regulatory myosin light chain (rMLC20 ). However, we previously showed that in ASM, the extent of rMLC20 phosphorylation remains unchanged during sustained isometric force. As an alternative, we hypothesized that cytoskeletal remodeling within ASM cells results in increased internal loading of contractile proteins that slows cross-bridge cycling and ATP hydrolysis rates. To test this hypothesis, we simultaneously measured isometric force and ATP hydrolysis rate in permeabilized porcine ASM strips activated by Ca2+ (pCa 4.0). The extent of rMLC20 phosphorylation remained unchanged during isometric activation, even though ATP hydrolysis rate (tension cost) declined with time. The effect of cytoskeletal remodeling was assessed by inhibiting actin polymerization using Cytochalasin D (Cyto-D). In Cyto-D treated ASM, isometric force was reduced while ATP hydrolysis rate increased compared to untreated ASM strips. These results indicate that external transmission of force, cross-bridge cycling and ATP hydrolysis rates are affected by internal loading of contractile proteins.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Young‐soo Han
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
20
|
Álvarez-Santos MD, Álvarez-González M, Estrada-Soto S, Bazán-Perkins B. Regulation of Myosin Light-Chain Phosphatase Activity to Generate Airway Smooth Muscle Hypercontractility. Front Physiol 2020; 11:701. [PMID: 32676037 PMCID: PMC7333668 DOI: 10.3389/fphys.2020.00701] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle is a central structure involved in the regulation of airway tone. In addition, it plays an important role in the development of some pathologies generated by alterations in contraction, such as hypercontractility and the airway hyperresponsiveness observed in asthma. The molecular processes associated with smooth muscle contraction are centered around myosin light chain (MLC) phosphorylation, which is controlled by a balance in the activity of myosin light-chain kinase (MLCK) and myosin light-chain phosphatase (MLCP). MLCK activation depends on increasing concentrations of intracellular Ca2+, while MLCP activation is independent of Ca2+. MLCP contains a phosphatase subunit (PP1c) that is regulated through myosin phosphatase target subunit 1 (MYPT1) and other subunits, such as glycogen-associated regulatory subunit and myosin-binding subunit 85 kDa. Interestingly, MLCP inhibition may contribute to exacerbation of smooth muscle contraction by increasing MLC phosphorylation to induce hypercontractility. Many pathways inhibiting MLCP activity in airway smooth muscle have been proposed and are focused on inhibition of PP1c, inhibitory phosphorylation of MYPT1 and dissociation of the PP1c-MYPT1 complex.
Collapse
Affiliation(s)
- Mayra D Álvarez-Santos
- Biology Area, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol Álvarez-González
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Blanca Bazán-Perkins
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
21
|
Delmotte P, Sieck GC. Endoplasmic Reticulum Stress and Mitochondrial Function in Airway Smooth Muscle. Front Cell Dev Biol 2020; 7:374. [PMID: 32010691 PMCID: PMC6974519 DOI: 10.3389/fcell.2019.00374] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway diseases such as asthma affect more than 300 million people world-wide. Inflammation triggers pathophysiology via such as tumor necrosis factor α (TNFα) and interleukins (e.g., IL-13). Hypercontraction of airway smooth muscle (ASM) and ASM cell proliferation are major contributors to the exaggerated airway narrowing that occurs during agonist stimulation. An emergent theme in this context is the role of inflammation-induced endoplasmic reticulum (ER) stress and altered mitochondrial function including an increase in the formation of reactive oxygen species (ROS). This may establish a vicious cycle as excess ROS generation leads to further ER stress. Yet, it is unclear whether inflammation-induced ROS is the major mechanism leading to ER stress or the consequence of ER stress. In various diseases, inflammation leads to an increase in mitochondrial fission (fragmentation), associated with reduced levels of mitochondrial fusion proteins, such as mitofusin 2 (Mfn2). Mitochondrial fragmentation may be a homeostatic response since it is generally coupled with mitochondrial biogenesis and mitochondrial volume density thereby reducing demand on individual mitochondrion. ER stress is triggered by the accumulation of unfolded proteins, which induces a homeostatic response to alter protein balance via effects on protein synthesis and degradation. In addition, the ER stress response promotes protein folding via increased expression of molecular chaperone proteins. Reduced Mfn2 and altered mitochondrial dynamics may not only be downstream to ER stress but also upstream such that a reduction in Mfn2 triggers further ER stress. In this review, we summarize the current understanding of the link between inflammation-induced ER stress and mitochondrial function and the role played in the pathophysiology of inflammatory airway diseases.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
22
|
Yap J, Chen X, Delmotte P, Sieck GC. TNFα selectively activates the IRE1α/XBP1 endoplasmic reticulum stress pathway in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L483-L493. [PMID: 31940218 DOI: 10.1152/ajplung.00212.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Proinflammatory cytokines such as TNFα mediate the inflammatory response. In various diseases, inflammation leads to endoplasmic reticulum (ER) stress, the accumulation of unfolded proteins, which triggers homeostatic responses to restore normal cellular function. We hypothesized that TNFα triggers ER stress through an increase in reactive oxygen species generation in human airway smooth muscle (hASM) with a downstream effect on mitofusin 2 (Mfn2). In hASM cells isolated from lung specimens incidental to patient surgery, dose- and time-dependent effects of TNFα exposure were assessed. Exposure of hASM to tunicamycin was used as a positive control. Tempol (500 μM) was used as superoxide scavenger. Activation of three ER stress pathways were evaluated by Western blotting: 1) autophosphorylation of inositol-requiring enzyme1 (IRE1α) leading to splicing of X-box binding protein 1 (XBP1); 2) autophosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leading to phosphorylation of eukaryotic initiation factor 2α; and 3) translocation and cleavage of activating transcription factor 6 (ATF6). We found that exposure of hASM cells to tunicamycin activated all three ER stress pathways. In contrast, TNFα selectively activated the IRE1α/XBP1 pathway in a dose- and time-dependent fashion. Our results indicate that TNFα does not activate the PERK and ATF6 pathways. Exposure of hASM cells to TNFα also decreased Mfn2 protein expression. Concurrent exposure to TNFα and tempol reversed the effect of TNFα on IRE1α phosphorylation and Mfn2 protein expression. Selective activation of the IRE1α/XBP1 pathway in hASM cells after exposure to TNFα may reflect a unique homeostatic role of this pathway in the inflammatory response of hASM cells.
Collapse
Affiliation(s)
- John Yap
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Xujiao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Elliot JG, Donovan GM, Wang KCW, Green FHY, James AL, Noble PB. Fatty airways: implications for obstructive disease. Eur Respir J 2019; 54:13993003.00857-2019. [PMID: 31624112 DOI: 10.1183/13993003.00857-2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Abstract
Epidemiological studies report that overweight or obese asthmatic subjects have more severe disease than those of a healthy weight. We postulated that accumulation of adipose tissue within the airway wall may occur in overweight patients and contribute to airway pathology. Our aim was to determine the relationship between adipose tissue within the airway wall and body mass index (BMI) in individuals with and without asthma.Transverse airway sections were sampled in a stratified manner from post mortem lungs of control subjects (n=15) and cases of nonfatal (n=21) and fatal (n=16) asthma. The relationship between airway adipose tissue, remodelling and inflammation was assessed. The areas of the airway wall and adipose tissue were estimated by point count and expressed as area per mm of basement membrane perimeter (Pbm). The number of eosinophils and neutrophils were expressed as area densities.BMI ranged from 15 to 45 kg·m-2 and was greater in nonfatal asthma cases (p<0.05). Adipose tissue was identified in the outer wall of large airways (Pbm >6 mm), but was rarely seen in small airways (Pbm <6 mm). Adipose tissue area correlated positively with eosinophils and neutrophils in fatal asthma (Pbm >12 mm, p<0.01), and with neutrophils in control subjects (Pbm >6 mm, p=0.04).These data show that adipose tissue is present within the airway wall and is related to BMI, wall thickness and the number of inflammatory cells. Therefore, the accumulation of airway adipose tissue in overweight individuals may contribute to airway pathophysiology.
Collapse
Affiliation(s)
- John G Elliot
- West Australian Sleep Disorders Research Institute, Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia .,School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Graham M Donovan
- Dept of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | - Francis H Y Green
- Dept of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Alan L James
- West Australian Sleep Disorders Research Institute, Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
24
|
Bhallamudi S, Connell J, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially regulate intracellular calcium handling in human nonasthmatic and asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L112-L124. [PMID: 31617730 DOI: 10.1152/ajplung.00206.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asthma is defined as chronic inflammation of the airways and is characterized by airway remodeling, hyperresponsiveness, and acute bronchoconstriction of airway smooth muscle (ASM) cells. Clinical findings suggest a higher incidence and severity of asthma in adult women, indicating a concrete role of sex steroids in modulating the airway tone. Estrogen, a major female sex steroid mediates its role through estrogen receptors (ER) ERα and ERβ, which are shown to be expressed in human ASM, and their expression is upregulated in lung inflammation and asthma. Previous studies suggested rapid, nongenomic signaling of estrogen via ERs reduces intracellular calcium ([Ca2+]i), thereby promoting relaxation of ASM. However, long-term ER activation on [Ca2+]i regulation in human ASM during inflammation or in asthma is still not known. In Fura-2-loaded nonasthmatic and asthmatic human ASM cells, we found that prolonged (24 h) exposure to ERα agonist (PPT) increased [Ca2+]i response to histamine, whereas ERβ activation (WAY) led to decreased [Ca2+] compared with vehicle. This was further confirmed by ER overexpression and knockdown studies using various bronchoconstrictor agents. Interestingly, ERβ activation was more effective than 17β-estradiol in reducing [Ca2+]i responses in the presence of TNF-α or IL-13, while no observable changes were noticed with PPT in the presence of either cytokine. The [Ca2+]i-reducing effects of ERβ were mediated partially via L-type calcium channel inhibition and increased Ca2+ sequestration by sarcoplasmic reticulum. Overall, these data highlight the differential signaling of ERα and ERβ in ASM during inflammation. Specific ERβ activation reduces [Ca2+]i in the inflamed ASM cells and is likely to play a crucial role in regulating ASM contractility, thereby relaxing airways.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Jennifer Connell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
25
|
Sieck GC, Dogan M, Young‐Soo H, Osorio Valencia S, Delmotte P. Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle. Physiol Rep 2019; 7:e14220. [PMID: 31512410 PMCID: PMC6739507 DOI: 10.14814/phy2.14220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Airway diseases such as asthma are triggered by inflammation and mediated by proinflammatory cytokines such as tumor necrosis factor alpha (TNFα). Our goal was to systematically examine the potential mechanisms underlying the effect of TNFα on airway smooth muscle (ASM) contractility. Porcine ASM strips were incubated for 24 h with and without TNFα. Exposure to TNFα increased maximum ASM force in response to acetylcholine (Ach), with an increase in ACh sensitivity (hyperreactivity), as reflected by a leftward shift in the dose-response curve (EC50 ). At the EC50 , the [Ca2+ ]cyt response to ACh was similar between TNFα and control ASM, while force increased; thus, Ca2+ sensitivity appeared to increase. Exposure to TNFα increased the basal level of regulatory myosin light chain (rMLC) phosphorylation in ASM; however, the ACh-dependent increase in rMLC phosphorylation was blunted by TNFα with no difference in the extent of rMLC phosphorylation at the EC50 ACh concentration. In TNFα-treated ASM, total actin and myosin heavy chain concentrations increased. TNFα exposure also enhanced the ACh-dependent polymerization of G- to F-actin. The results of this study confirm TNFα-induced hyperreactivity to ACh in porcine ASM. We conclude that the TNFα-induced increase in ASM force, cannot be attributed to an enhanced [Ca2+ ]cyt response or to an increase in rMLC phosphorylation. Instead, TNFα increases Ca2+ sensitivity of ASM force generation due to increased contractile protein content (greater number of contractile units) and enhanced cytoskeletal remodeling (actin polymerization) resulting in increased tethering of contractile elements to the cortical cytoskeleton and force translation to the extracellular matrix.
Collapse
Affiliation(s)
- Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Murat Dogan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Han Young‐Soo
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Sara Osorio Valencia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| |
Collapse
|
26
|
Luo L, Wang L, Paré PD, Seow CY, Chitano P. The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction. Am J Physiol Lung Cell Mol Physiol 2019; 317:L235-L246. [PMID: 31116578 PMCID: PMC6734385 DOI: 10.1152/ajplung.00051.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/18/2019] [Accepted: 05/12/2019] [Indexed: 02/04/2023] Open
Abstract
The cyclic interaction between myosin crossbridges and actin filaments underlies smooth muscle contraction. Phosphorylation of the 20-kDa myosin light chain (MLC20) is a crucial step in activating the crossbridge cycle. Our current understanding of smooth muscle contraction is based on observed correlations among MLC20 phosphorylation, maximal shortening velocity (Vmax), and isometric force over the time course of contraction. However, during contraction there are changes in the extent of phosphorylation of many additional proteins as well as changes in activation of enzymes associated with the signaling pathways. As a consequence, the mechanical manifestation of muscle contraction is likely to change with time. To simplify the study of these relationships, we measured the mechanical properties of airway smooth muscle at different levels of MLC20 phosphorylation at a fixed time during contraction. A simple correlation emerged when time-dependent variables were fixed. MLC20 phosphorylation was found to be directly and linearly correlated with the active stress, stiffness, and power of the muscle; the observed weak dependence of Vmax on MLC20 phosphorylation could be explained by the presence of an internal load in the muscle preparation. These results can be entirely explained by the Huxley crossbridge model. We conclude that when the influence of time-dependent events during contraction is held constant, the basic crossbridge mechanism in smooth muscle is the same as that in striated muscle.
Collapse
Affiliation(s)
- Ling Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Chongqing University Cancer Hospital and Chongqing Cancer Institute, Chongqing, China
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Wang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter D Paré
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pasquale Chitano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 2018; 24:56-62. [PMID: 29076828 DOI: 10.1097/mcp.0000000000000441] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The term 'airway remodeling' reflects changes in the type, quantity, and nature of airway wall components and their organization. The purpose of this review is to look at recent publications on airway remodeling in asthma. RECENT FINDINGS Animal models and in-vitro studies have confirmed the involvement of airway epithelium, airway smooth muscle (ASM), and extracellular matrix components in asthma-related airway remodeling. They report influences on proliferation of ASM cells, and how their orientation or morphology, in addition to the heterogeneity of ASM mass at different levels of airways could influence their effects. Clinical benefits have been observed following reduction of ASM following bronchial thermoplasty. Asthmatic epithelial cell transcriptome alterations were found to involve metabolism and epigenetics, beyond epithelial mesenchymal trophic unit driven by injury and repair in chronic inflammation. New ways to explore airway remodeling such as imaging or endoscopic techniques have been evaluated. Finally, new data support the role of eosinophils and mast cells in remodeling and show the influence of new asthma drugs on this process. SUMMARY As recently stated by an American Thoracic Society task force, we need more research on airway remodeling, its determinants and clinical relevance, and on the effects of asthma drugs on its various components.
Collapse
|