1
|
Konkimalla A, Konishi S, Macadlo L, Kobayashi Y, Farino ZJ, Miyashita N, El Haddad L, Morowitz J, Barkauskas CE, Agarwal P, Souma T, ElMallah MK, Tata A, Tata PR. Transitional cell states sculpt tissue topology during lung regeneration. Cell Stem Cell 2023; 30:1486-1502.e9. [PMID: 37922879 PMCID: PMC10762634 DOI: 10.1016/j.stem.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization. Unexpectedly, ablation of alveolar epithelial type-1 (AT1) cells alone is sufficient to induce tissue remodeling and transitional states. Integrated scRNA-seq followed by genetic interrogation reveals RUNX1 is a key driver of fibroblast states. Importantly, the ectopic induction or accumulation of epithelial transitional states induce rapid formation of transient alveolar fibroblasts, leading to organ-wide fibrosis. Conversely, the elimination of epithelial or fibroblast transitional states or RUNX1 loss, leads to tissue simplification resembling emphysema. This work uncovered a key role for transitional states in orchestrating tissue topologies during regeneration.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Satoshi Konishi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zachary J Farino
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Naoya Miyashita
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Jeremy Morowitz
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pankaj Agarwal
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Regeneration Center, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
2
|
El Haddad L, Khan M, Soufny R, Mummy D, Driehuys B, Mansour W, Kishnani PS, ElMallah MK. Monitoring and Management of Respiratory Function in Pompe Disease: Current Perspectives. Ther Clin Risk Manag 2023; 19:713-729. [PMID: 37680303 PMCID: PMC10480292 DOI: 10.2147/tcrm.s362871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by a deficiency of acid alpha-glucosidase (GAA) - a lysosomal enzyme responsible for hydrolyzing glycogen. GAA deficiency leads to accumulation of glycogen in lysosomes, causing cellular disruption. The severity of PD is directly related to the extent of GAA deficiency - if no or minimal GAA is produced, symptoms are severe and manifest in infancy, known as infantile onset PD (IOPD). If left untreated, infants with IOPD experience muscle hypotonia and cardio-respiratory failure leading to significant morbidity and mortality in the first year of life. In contrast, late-onset PD (LOPD) patients have more GAA activity and present later in life, but also have significant respiratory function decline. Despite FDA-approved enzyme replacement therapy, respiratory insufficiency remains a major cause of morbidity and mortality, emphasizing the importance of early detection and management of respiratory complications. These complications include impaired cough and airway clearance, respiratory muscle weakness, sleep-related breathing issues, and pulmonary infections. This review aims to provide an overview of the respiratory pathology, monitoring, and management of PD patients. In addition, we discuss the impact of novel approaches and therapies on respiratory function in PD.
Collapse
Affiliation(s)
- Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Mainur Khan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Rania Soufny
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - David Mummy
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Wissam Mansour
- Division of Pulmonary and Sleep Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
El Haddad L, Lai E, Murthy PKL, Biswas DD, Soufny R, Roger AL, Tata PR, ElMallah MK. GAA deficiency disrupts distal airway cells in Pompe disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L288-L298. [PMID: 37366541 PMCID: PMC10625827 DOI: 10.1152/ajplung.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Pompe disease is an autosomal recessive glycogen storage disease caused by mutations in the gene that encodes acid alpha-glucosidase (GAA)-an enzyme responsible for hydrolyzing lysosomal glycogen. GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption. Glycogen accumulation in skeletal muscles, motor neurons, and airway smooth muscle cells is known to contribute to respiratory insufficiency in Pompe disease. However, the impact of GAA deficiency on the distal alveolar type 1 and type 2 cells (AT1 and AT2) has not been evaluated. AT1 cells rely on lysosomes for cellular homeostasis so that they can maintain a thin barrier for gas exchange, whereas AT2 cells depend on lysosome-like structures (lamellar bodies) for surfactant production. Using a mouse model of Pompe disease, the Gaa-/- mouse, we investigated the consequences of GAA deficiency on AT1 and AT2 cells using histology, pulmonary function and mechanics, and transcriptional analysis. Histological analysis revealed increased accumulation of lysosomal-associated membrane protein 1 (LAMP1) in the Gaa-/- mice lungs. Furthermore, ultrastructural examination showed extensive intracytoplasmic vacuoles enlargement and lamellar body engorgement. Respiratory dysfunction was confirmed using whole body plethysmography and forced oscillometry. Finally, transcriptomic analysis demonstrated dysregulation of surfactant proteins in AT2 cells, specifically reduced levels of surfactant protein D in the Gaa-/- mice. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the distal airway cells that disrupts surfactant homeostasis and contributes to respiratory impairments in Pompe disease.NEW & NOTEWORTHY This research highlights the impact of Pompe disease on distal airway cells. Prior to this work, respiratory insufficiency in Pompe disease was classically attributed to pathology in respiratory muscles and motor neurons. Using the Pompe mouse model, we note significant pathology in alveolar type 1 and 2 cells with reductions in surfactant protein D and disrupted surfactant homeostasis. These novel findings highlight the potential contributions of alveolar pathology to respiratory insufficiency in Pompe disease.
Collapse
Affiliation(s)
- Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | - Elias Lai
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | | | - Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | - Rania Soufny
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | - Angela L Roger
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | | | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| |
Collapse
|
4
|
El Saie A, Fu C, Grimm SL, Robertson MJ, Hoffman K, Putluri V, Ambati CSR, Putluri N, Shivanna B, Coarfa C, Pammi M. Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia. Pediatr Res 2022; 92:1580-1589. [PMID: 35338351 PMCID: PMC9509498 DOI: 10.1038/s41390-022-02002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide (LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence. METHODS C57BL6/J mice were exposed to 21% (normoxia) or 70% (hyperoxia) oxygen during postnatal days (PND) 1-14. Pups were injected with LPS (6 mg/kg) or equal PBS volume, intraperitoneally on PND 3, 5, and 7. At PND14, the lungs were collected for microbiome and metabolomic analyses (n = 5/group). RESULTS Microbiome alpha and beta diversity were similar between groups. Metabolic changes included hyperoxia 31 up/18 down, LPS 7 up/4 down, exposure interaction 8. Hyperoxia increased Intestinimonas abundance, whereas LPS decreased Clostridiales, Dorea, and Intestinimonas; exposure interaction affected Blautia. Differential co-expression analysis on multi-omics data identified exposure-altered modules. Hyperoxia metabolomics response was integrated with a published matching transcriptome, identifying four induced genes (ALDOA, GAA, NEU1, RENBP), which positively correlated with BPD severity in a published human newborn cohort. CONCLUSIONS We report hyperoxia and LPS lung microbiome and metabolome signatures in a clinically relevant BPD model. We identified four genes correlating with BPD status in preterm infants that are promising targets for therapy and prevention. IMPACT Using multi-omics, we identified and correlated key biomarkers of hyperoxia and LPS on murine lung micro-landscape and examined their potential clinical implication, which shows strong clinical relevance for future research. Using a double-hit model of clinical relevance to bronchopulmonary dysplasia, we are the first to report integrated metabolomic/microbiome landscape changes and identify novel disease biomarker candidates.
Collapse
Affiliation(s)
- Ahmed El Saie
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Chenlian Fu
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kristi Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Advanced Technology Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Mohan Pammi
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Xi H, Li X, Ma L, Yin X, Yang P, Zhang L. Infantile Pompe disease with intrauterine onset: a case report and literature review. Ital J Pediatr 2022; 48:187. [PMID: 36411466 PMCID: PMC9677902 DOI: 10.1186/s13052-022-01379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pompe disease is a rare autosomal recessive disease. Acid alpha-glucosidase (GAA) deficiency leads to glycogen storage in lysosomes, causing skeletal, cardiac, and smooth muscle lesions. Pompe disease is progressive, and its severity depends on the age of onset. Classic infantile Pompe disease, the most severe form, is characterized by an age of onset before 12 months. Pompe disease with intrauterine onset has rarely been reported. CASE PRESENTATION The proband was born at a gestational age of 40 weeks and 3 days and admitted to our hospital because of intrauterine cardiac hypertrophy, shortness of breath, and cyanosis until 13 min postnatally. Physical examination at admission revealed poor responsiveness, pale skin, shortness of breath, reduced limb muscle tone, and bilateral pedal edema. The heart sounds were weak, and no heart murmur was heard. Echocardiography showed left (9 mm) and right (5 mm) ventricular hypertrophies. The patient was subjected to non-invasive ventilator-assisted respiration, fluid restriction, diuresis, and metoprolol treatment. Infantile Pompe disease was diagnosed on day 16 with a GAA enzymatic activity of 0.31 µmol/L/h and with the full-penetrance genetic test showing the homozygous gene mutation c.1844G>T(p.Gly615Val). Enzyme replacement therapy was refused by the patient's parents, and the patient died at seven months of age from cardiopulmonary failure. CONCLUSION Infants with intrauterine-onset Pompe disease usually have early manifestations of heart disease. Prompt GAA enzymatic activity determination and molecular genetic testing are helpful in aiding the parents' decision and planning the treatment.
Collapse
Affiliation(s)
- Hongmin Xi
- grid.412521.10000 0004 1769 1119Neonatology Department, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Shinan district, Qingdao, 266003 Shandong China
| | - Xianghong Li
- grid.412521.10000 0004 1769 1119Neonatology Department, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Shinan district, Qingdao, 266003 Shandong China
| | - Lili Ma
- grid.412521.10000 0004 1769 1119Neonatology Department, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Shinan district, Qingdao, 266003 Shandong China
| | - Xiangyun Yin
- grid.412521.10000 0004 1769 1119Neonatology Department, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Shinan district, Qingdao, 266003 Shandong China
| | - Ping Yang
- grid.412521.10000 0004 1769 1119Neonatology Department, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Shinan district, Qingdao, 266003 Shandong China
| | - Lulu Zhang
- grid.412521.10000 0004 1769 1119Neonatology Department, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Shinan district, Qingdao, 266003 Shandong China
| |
Collapse
|
6
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
7
|
Wang TH, Soong WJ, Niu DM, Chu YL, Chen LZ, Huang LY, Yang CF. Airway abnormalities and pulmonary complications in long-term treated late-onset Pompe disease: Diagnostic and interventional by flexible bronchoscopy. Pediatr Pulmonol 2022; 57:185-192. [PMID: 34647686 DOI: 10.1002/ppul.25725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022]
Abstract
This study evaluates the whole airway abnormalities of long-term treated late-onset Pompe disease (LOPD) patients, with interventions using the flexible bronchoscope (FB). As a retrospective study, we follow up with our five LOPD patients treated with Myozyme from 2012 to 2021 regularly, but with a focus on the whole airway abnormalities of these patients visualized through FB. The long-term clinical outcomes and relevant airway symptoms were assessed. Pulmonary function test and polysomnography were performed to evaluate the degree of respiratory compromise. All patients in the study had varying degrees of airway collapsibility, pulmonary complications, sleep apnea syndrome, and facial anomalies. Pulmonary function could preserve after Myozyme treatment, but potential deterioration thereafter. This is the first study that focuses on airway abnormalities and pulmonary complications in long-term treated LOPD patients using FB. Despite years of Myozyme treatment, we still observed airway abnormalities in these patients. In our series, the pulmonary complications seem more obvious than those observed in patients with infantile-onset Pompe disease, which might be related to the late diagnosis and treatment. We might recommend that FB could provide dynamic evaluation and interventions of airway abnormalities simultaneously. Early diagnosis of respiratory dysfunction is a critical prognostic factor of the long-term outcome of treated LOPD patients.
Collapse
Affiliation(s)
- Ting-Hao Wang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Jue Soong
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Pediatric Pulmonology, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Li-Zhen Chen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Yi Huang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei City Hospital-Heping Fuyou Branch, Taipei, Taiwan
| | - Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Lu P, ElMallah MK, Liu Z, Wu C, Chen J, Lifshitz LM, ZhuGe R. Genetic deletion of the Tas2r143/Tas2r135/Tas2r126 cluster reveals that TAS2Rs may not mediate bitter tastant-induced bronchodilation. J Cell Physiol 2021; 236:6407-6423. [PMID: 33559206 PMCID: PMC8223514 DOI: 10.1002/jcp.30315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Bitter taste receptors (TAS2Rs) and their signaling elements are detected throughout the body, and bitter tastants induce a wide variety of biological responses in tissues and organs outside the mouth. However, the roles of TAS2Rs in these responses remain to be tested and established genetically. Here, we employed the CRISPR/Cas9 gene-editing technique to delete three bitter taste receptors-Tas2r143/Tas2r135/Tas2r126 (i.e., Tas2r triple knockout [TKO]) in mice. The fidelity and effectiveness of the Tas2r deletions were validated genetically at DNA and messenger RNA levels and functionally based on the tasting of TAS2R135 and TAS2R126 agonists. Bitter tastants are known to relax airways completely. However, TAS2R135 or TAS2R126 agonists either failed to induce relaxation of pre-contracted airways in wild-type mice and Tas2r TKO mice or relaxed them dose-dependently, but to the same extent in both types of mice. These results indicate that TAS2Rs are not required for bitter tastant-induced bronchodilation. The Tas2r TKO mice also provide a valuable model to resolve whether TAS2Rs mediate bitter tastant-induced responses in many other extraoral tissues.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mai K ElMallah
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zeyu Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
McCall AL, Dhindsa JS, Bailey AM, Pucci LA, Strickland LM, ElMallah MK. Glycogen accumulation in smooth muscle of a Pompe disease mouse model. J Smooth Muscle Res 2021; 57:8-18. [PMID: 33883348 PMCID: PMC8053439 DOI: 10.1540/jsmr.57.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pompe disease is a lysosomal storage disease caused by mutations within the
GAA gene, which encodes acid α-glucosidase (GAA)—an enzyme necessary
for lysosomal glycogen degradation. A lack of GAA results in an accumulation of glycogen
in cardiac and skeletal muscle, as well as in motor neurons. The only FDA approved
treatment for Pompe disease—an enzyme replacement therapy (ERT)—increases survival of
patients, but has unmasked previously unrecognized clinical manifestations of Pompe
disease. These clinical signs and symptoms include tracheo-bronchomalacia, vascular
aneurysms, and gastro-intestinal discomfort. Together, these previously unrecognized
pathologies indicate that GAA-deficiency impacts smooth muscle in addition to skeletal and
cardiac muscle. Thus, we sought to characterize smooth muscle pathology in the airway,
vascular, gastrointestinal, and genitourinary in the Gaa−/−
mouse model. Increased levels of glycogen were present in smooth muscle cells of the
aorta, trachea, esophagus, stomach, and bladder of Gaa−/−
mice, compared to wild type mice. In addition, there was an increased
abundance of both lysosome membrane protein (LAMP1) and autophagosome membrane protein
(LC3) indicating vacuolar accumulation in several tissues. Taken together, we show that
GAA deficiency results in subsequent pathology in smooth muscle cells, which may lead to
life-threatening complications if not properly treated.
Collapse
Affiliation(s)
- Angela L McCall
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Justin S Dhindsa
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aidan M Bailey
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Logan A Pucci
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Laura M Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Meena NK, Raben N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020; 10:E1339. [PMID: 32962155 PMCID: PMC7564159 DOI: 10.3390/biom10091339] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pompe disease, also known as glycogen storage disease type II, is caused by the lack or deficiency of a single enzyme, lysosomal acid alpha-glucosidase, leading to severe cardiac and skeletal muscle myopathy due to progressive accumulation of glycogen. The discovery that acid alpha-glucosidase resides in the lysosome gave rise to the concept of lysosomal storage diseases, and Pompe disease became the first among many monogenic diseases caused by loss of lysosomal enzyme activities. The only disease-specific treatment available for Pompe disease patients is enzyme replacement therapy (ERT) which aims to halt the natural course of the illness. Both the success and limitations of ERT provided novel insights in the pathophysiology of the disease and motivated the scientific community to develop the next generation of therapies that have already progressed to the clinic.
Collapse
Affiliation(s)
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
11
|
Keeler AM, Zieger M, Semple C, Pucci L, Veinbachs A, Brown RH, Mueller C, ElMallah MK. Intralingual and Intrapleural AAV Gene Therapy Prolongs Survival in a SOD1 ALS Mouse Model. Mol Ther Methods Clin Dev 2020; 17:246-257. [PMID: 31970202 PMCID: PMC6962641 DOI: 10.1016/j.omtm.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results in death from respiratory failure. No cure exists for this devastating disease, but therapy that directly targets the respiratory system has the potential to prolong survival and improve quality of life in some cases of ALS. The objective of this study was to enhance breathing and prolong survival by suppressing superoxide dismutase 1 (SOD1) expression in respiratory motor neurons using adeno-associated virus (AAV) expressing an artificial microRNA targeting the SOD1 gene. AAV-miRSOD1 was injected in the tongue and intrapleural space of SOD1G93A mice, and repetitive respiratory and behavioral measurements were performed until the end stage. Robust silencing of SOD1 was observed in the diaphragm and tongue as well as systemically. Silencing of SOD1 prolonged survival by approximately 50 days, and it delayed weight loss and limb weakness in treated animals compared to untreated controls. Histologically, there was preservation of the neuromuscular junctions in the diaphragm as well as the number of axons in the phrenic and hypoglossal nerves. Although SOD1 suppression improved breathing and prolonged survival, it did not ameliorate the restrictive lung phenotype. Suppression of SOD1 expression in motor neurons that underlie respiratory function prolongs survival and enhances breathing until the end stage in SOD1G93A ALS mice.
Collapse
Affiliation(s)
- Allison M. Keeler
- Division of Pulmonary Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marina Zieger
- Division of Pulmonary Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Carson Semple
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Logan Pucci
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Alessandra Veinbachs
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert H. Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Christian Mueller
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
12
|
Fusco AF, McCall AL, Dhindsa JS, Zheng L, Bailey A, Kahn AF, ElMallah MK. The Respiratory Phenotype of Pompe Disease Mouse Models. Int J Mol Sci 2020; 21:ijms21062256. [PMID: 32214050 PMCID: PMC7139647 DOI: 10.3390/ijms21062256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.
Collapse
|
13
|
ElMallah MK, Desai AK, Nading EB, DeArmey S, Kravitz RM, Kishnani PS. Pulmonary outcome measures in long-term survivors of infantile Pompe disease on enzyme replacement therapy: A case series. Pediatr Pulmonol 2020; 55:674-681. [PMID: 31899940 PMCID: PMC7053514 DOI: 10.1002/ppul.24621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To report the respiratory function of school-aged children with infantile Pompe disease (IPD) who started enzyme replacement therapy (ERT) in infancy and early childhood. STUDY DESIGN This is a retrospective chart review of pulmonary function tests of: (a) patients with IPD 5 to 18 years of age, (b) who were not ventilator dependent, and (c) were able to perform upright and supine spirometry. Subjects were divided into a younger (5-9 years) and older cohort (10-18 years) for the analysis. Upright and supine forced vital capacity (FVC), maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP) were analyzed. RESULTS Fourteen patients, all cross-reactive immunologic material (CRIM)-positive, met the inclusion criteria and were included in this study. Mean upright and supine FVC were 70.3% and 64.9% predicted, respectively, in the 5- to 9-year-old cohort; and 61.5% and 52.5% predicted, respectively, in the 10- to 18-year-old group. Individual patient trends showed stability in FVC overtime in six of the 14 patients. MIPs and MEPs were consistent with inspiratory and expiratory muscle weakness in the younger and older age group but did not decline with age. CONCLUSION Data from this cohort of CRIM-positive patients with IPD showed that ERT is able to maintain respiratory function in a subgroup of patients whereas others had a steady decline. There was a statistically significant decline in FVC from the upright to a supine position in both the younger and older age groups of CRIM-positive ERT-treated patients. Before ERT, patients with IPD were unable to maintain independent ventilation beyond the first few years of life.
Collapse
Affiliation(s)
- Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Erica B Nading
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Stephanie DeArmey
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Richard M Kravitz
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
14
|
Jezela-Stanek A, Chorostowska-Wynimko J, Tylki-Szymańska A. Pulmonary involvement in selected lysosomal storage diseases and the impact of enzyme replacement therapy: A state-of-the art review. CLINICAL RESPIRATORY JOURNAL 2020; 14:422-429. [PMID: 31912638 DOI: 10.1111/crj.13150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/05/2020] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are multisystemic, progressive and clinically very heterogeneous. Respiratory complications are not regarded as the principal problems of LSDs, but significantly impact morbidity. In this review, we focus on pulmonary complications observed in late-onset LSDs, their milder forms that are recognised in adulthood. We also discuss the effects of enzyme replacement therapy (ERT) on the respiratory system in patients with particular LSDs. We searched the PubMed database, retrieving research papers on pulmonary complications of LSDs currently treated with ERT (the conditions are abbreviated GD3; NPDB; LOPD; MPS I, II, IVA, VI; and FD) and the effects of such treatment. Although some studies indicated that ERT was helpful in terms of reducing chest computed tomography abnormalities, infection frequency and organomegaly, the data are not conclusive, and the mechanism of action of ERT in the respiratory system remains unclear for some LSDs including late-onset Pompe disease and Gaucher disease type III. The optimal timing of treatment for pre-symptomatic or symptomatic patients, treatment duration and whether such treatment modulates inflammation (as has been suggested in patients with Fabry disease), remain to be explored.
Collapse
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
15
|
Yang CF, Niu DM, Tai SK, Wang TH, Su HT, Huang LY, Soong WJ. Airway abnormalities in very early treated infantile-onset Pompe disease: A large-scale survey by flexible bronchoscopy. Am J Med Genet A 2020; 182:721-729. [PMID: 31953985 DOI: 10.1002/ajmg.a.61481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022]
Abstract
Early enzyme replacement therapy (ERT) improve long-term outcomes in patients with infantile-onset Pompe disease (IOPD). Our cohort of patients with IOPD at Taipei Veterans General Hospital (TVGH) joined Taiwan Pompe newborn screening program from 2008, testing more than one million newborns until 2018. By 2010, we had established rapid diagnostic strategies. Now, the average age of ERT initiation starts at an average age of <10 days-old, the earliest group in the world. However, they still presented some airway problems. We present a retrospective study focused on airway abnormalities in these patients along 8 years of observation. Fifteen patients with IOPD, who received very early treatment at a mean age of 8.94 ± 3.75 days, underwent flexible bronchoscopy (FB) for dynamic assessment of the whole airway. Long-term clinical outcomes and relevant symptoms of the upper airway were assessed. All patients in the study had varying degrees of severity of upper airway abnormalities and speech disorders. The three oldest children (Age 94, 93, and 88 months, respectively) had poor movement of the vocal cords with reduced abduction and adduction and had silent aspiration of saliva through the glottis during respiration. This is the largest cohort study presented to date about airway abnormalities in very early treated patients with IOPD patients by FB. Despite very early treatment, we observed upper airway abnormalities in these IOPD patients. In IOPD, upper airway abnormalities seem inevitable over time. We suggest early and continuous monitoring for all IOPD patients, even with early and regular treatment.
Collapse
Affiliation(s)
- Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shyh-Kuan Tai
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Hao Wang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ting Su
- Department of Audiology and Speech Language Pathology, Mackay Medical College, Taipei, Taiwan
| | - Ling-Yi Huang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Jue Soong
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Children's Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Zieger M, Keeler AM, Flotte TR, ElMallah MK. AAV9 gene replacement therapy for respiratory insufficiency in very-long chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2019; 42:870-877. [PMID: 30993714 PMCID: PMC6739149 DOI: 10.1002/jimd.12101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022]
Abstract
Very-long chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is an autosomal recessive disorder of fatty acid oxidation. Fatty acids are a major source of energy during catabolic stress, so the absence of VLCAD can result in a metabolic crises and respiratory insufficiency. The etiology of this respiratory insufficiency is unclear. Thus, our aims were: (1) to characterize respiratory pathophysiology in VLCADD mice (VLCAD-/- ), and (2) to determine if AAV9-mediated gene therapy improves respiratory function. For the first aim, VLCAD-/- and wild-type (WT) mice underwent an exercise/fast "stress protocol" and awake spontaneous breathing was evaluated using whole-body plethysmography (WBP) both at baseline and during a hypercapnic respiratory challenge (FiO2 : 0.21; FiCO2 : 0.07; nitrogen balance). During hypercapnia, VLCAD -/- mice had a significantly lower frequency, tidal volume, minute ventilation, and peak inspiratory and expiratory flow, all of which indicate respiratory insufficiency. Histologically, the cardiac and respiratory muscles of stressed VLCAD -/- animals had an accumulation of intramyocellular lipids. For the second aim, a single systemic injection of AAV9-VLCAD gene therapy improved this respiratory pathology by normalizing breathing frequency and enhancing peak inspiratory flow. In addition, following gene therapy, there was a moderate reduction of lipid accumulation in the respiratory muscles. Furthermore, VLCAD protein expression was robust in cardiac and respiratory muscle. This was confirmed by immuno-staining with anti-human VLCAD antibody. In summary, stress with exercise and fasting induces respiratory insufficiency in VLCAD-/- mice and a single injection with AAV9-VLCAD gene therapy ameliorates breathing.
Collapse
Affiliation(s)
- Marina Zieger
- Department of Pediatrics, University of Massachusetts Medical School, Worcester MA
- The Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester MA
| | - Allison M. Keeler
- Department of Pediatrics, University of Massachusetts Medical School, Worcester MA
- The Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester MA
| | - Terence R. Flotte
- Department of Pediatrics, University of Massachusetts Medical School, Worcester MA
- The Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester MA
| | | |
Collapse
|
17
|
Macroglossia, Motor Neuron Pathology, and Airway Malacia Contribute to Respiratory Insufficiency in Pompe Disease: A Commentary on Molecular Pathways and Respiratory Involvement in Lysosomal Storage Diseases. Int J Mol Sci 2019; 20:ijms20030751. [PMID: 30754627 PMCID: PMC6387234 DOI: 10.3390/ijms20030751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
The authors of the recently published, "Molecular Pathways and Respiratory Involvement in Lysosomal Storage Diseases", provide an important review of the various mechanisms of lysosomal storage diseases (LSD) and how they culminate in similar clinical pathologies [...].
Collapse
|
18
|
Keeler AM, Zieger M, Todeasa SH, McCall AL, Gifford JC, Birsak S, Choudhury SR, Byrne BJ, Sena-Esteves M, ElMallah MK. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Hum Gene Ther 2018; 30:57-68. [PMID: 29901418 DOI: 10.1089/hum.2018.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pompe disease is an autosomal recessive glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption in muscle and the central nervous system (CNS). Adeno-associated virus (AAV) gene therapy is ideal for Pompe disease, since a single systemic injection may correct both muscle and CNS pathologies. Using the Pompe mouse (B6;129-GaaTm1Rabn/J), this study sought to explore if AAVB1, a newly engineered vector with a high affinity for muscle and CNS, reduces systemic weakness and improves survival in adult mice. Three-month-old Gaa-/- animals were injected with either AAVB1 or AAV9 vectors expressing GAA and tissues were harvested 6 months later. Both AAV vectors prolonged survival. AAVB1-treated animals had a robust weight gain compared to the AAV9-treated group. Vector genome levels, GAA enzyme activity, and histological analysis indicated that both vectors transduced the heart efficiently, leading to glycogen clearance, and transduced the diaphragm and CNS at comparable levels. AAVB1-treated mice had higher GAA activity and greater glycogen clearance in the tongue. Finally, AAVB1-treated animals showed improved respiratory function comparable to wild-type animals. In conclusion, AAVB1-GAA offers a promising therapeutic option for the treatment of muscle and CNS in Pompe disease.
Collapse
Affiliation(s)
- Allison M Keeler
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Marina Zieger
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sophia H Todeasa
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Angela L McCall
- 4 Department of Pediatrics, Duke University, Durham, North Carolina
| | - Jennifer C Gifford
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Samantha Birsak
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sourav R Choudhury
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Barry J Byrne
- 5 Department of Pediatrics, University of Florida, Gainesville, Florida.,6 Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Miguel Sena-Esteves
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Mai K ElMallah
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,4 Department of Pediatrics, Duke University, Durham, North Carolina
| |
Collapse
|
19
|
McCall AL, Salemi J, Bhanap P, Strickland LM, Elmallah MK. The impact of Pompe disease on smooth muscle: a review. J Smooth Muscle Res 2018; 54:100-118. [PMID: 30787211 PMCID: PMC6380904 DOI: 10.1540/jsmr.54.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Pompe disease (OMIM 232300) is an autosomal recessive disorder caused by mutations in the gene encoding acid α-glucosidase (GAA) (EC 3.2.1.20), the enzyme responsible for hydrolyzing lysosomal glycogen. The primary cellular pathology is lysosomal glycogen accumulation in cardiac muscle, skeletal muscle, and motor neurons, which ultimately results in cardiorespiratory failure. However, the severity of pathology and its impact on clinical outcomes are poorly described in smooth muscle. The advent of enzyme replacement therapy (ERT) in 2006 has improved clinical outcomes in infantile-onset Pompe disease patients. Although ERT increases patient life expectancy and ventilator free survival, it is not entirely curative. Persistent motor neuron pathology and weakness of respiratory muscles, including airway smooth muscles, contribute to the need for mechanical ventilation by some patients on ERT. Some patients on ERT continue to experience life-threatening pathology to vascular smooth muscle, such as aneurysms or dissections within the aorta and cerebral arteries. Better characterization of the disease impact on smooth muscle will inform treatment development and help anticipate later complications. This review summarizes the published knowledge of smooth muscle pathology associated with Pompe disease in animal models and in patients.
Collapse
Affiliation(s)
- Angela L McCall
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Jeffrey Salemi
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Preeti Bhanap
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Laura M Strickland
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Mai K Elmallah
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|