1
|
Norris EG, Pan XS, Hocking DC. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist. J Biol Chem 2023; 299:102922. [PMID: 36669646 PMCID: PMC9846890 DOI: 10.1016/j.jbc.2023.102922] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. Here, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared with RGD-containing, integrin-binding fragments of fibronectin. We determined that S1-RBD supported adhesion of fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells, while RBD-coated microparticles attached to epithelial monolayers in a cation-dependent manner. Cell adhesion to S1-RBD was RGD dependent and inhibited by blocking antibodies against αv and β3 but not α5 or β1 integrins. Similarly, we observed direct binding of S1-RBD to recombinant human αvβ3 and αvβ6 integrins, but not α5β1 integrins, using surface plasmon resonance. S1-RBD adhesion initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin; triggered Akt activation; and supported cell proliferation. Thus, the RGD sequence of S1-RBD can function as an αv-selective integrin agonist. This study provides evidence that cell surface αv-containing integrins can respond functionally to spike protein and raises the possibility that S1-mediated dysregulation of extracellular matrix dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
2
|
Norris EG, Pan XS, Hocking DC. Receptor binding domain of SARS-CoV-2 is a functional αv-integrin agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.11.487882. [PMID: 35441172 PMCID: PMC9016641 DOI: 10.1101/2022.04.11.487882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar respiratory coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2 (ACE2)-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. In the present study, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared to RGD-containing, integrin-binding fragments of fibronectin. S1-RBD supported adhesion of both fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells. Cell adhesion to S1-RBD was cation- and RGD-dependent, and was inhibited by blocking antibodies against α v and β 3 , but not α 5 or β 1 , integrins. Similarly, direct binding of S1-RBD to recombinant human α v β 3 and α v β 6 integrins, but not α 5 β 1 integrins, was observed by surface plasmon resonance. Adhesion to S1-RBD initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin, Akt activation, and supported cell proliferation. Together, these data demonstrate that the RGD sequence within S1-RBD can function as an α v -selective integrin agonist. This study provides evidence that cell surface α v -containing integrins can respond functionally to spike protein and raise the possibility that S1-mediated dysregulation of ECM dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G. Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Denise C. Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
3
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Van de Louw A, Jean D, Frisdal E, Cerf C, d'Ortho MP, Baker AH, Lafuma C, Duvaldestin P, Harf A, Delclaux C. Neutrophil proteinases in hydrochloric acid- and endotoxin-induced acute lung injury: evaluation of interstitial protease activity by in situ zymography. J Transl Med 2002; 82:133-45. [PMID: 11850527 DOI: 10.1038/labinvest.3780406] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We investigated the role of polymorphonuclear neutrophil (PMN) proteinases, elastase, and gelatinase B in rat models of acute lung injury. Three groups of rats were studied 6 hours after unilateral instillation of hydrochloric acid (HCl; 0.1 N), lipopolysaccharide (LPS) (4 microg), or saline. The results demonstrated that HCl-induced lung injury, as compared with LPS-induced lung injury, was associated with an increase in permeability (wet/dry weight ratio and proteins in bronchoalveolar lavage fluid). In contrast, there was similar PMN recruitment (in bronchoalveolar lavage fluid and myeloperoxidase activity in lung homogenates) and similar proteinase exocytosis (residual alveolar PMN content of elastase and gelatinase B) in both types of lung injury. In situ zymography, evaluating interstitial protease/inhibitor balance, demonstrated a decrease in gelatinolytic activity in both HCl- and LPS-injured lungs compared with normal lung. The increase in interleukin 6 concentration in lung homogenates, which is observed after both injuries compared with saline-instilled animals, could be involved in up-regulation of tissue inhibitor of matrix metalloproteinase-1, shown by immunocytochemistry to participate in antiproteinase excess. Neither inhibition of alveolar neutrophil influx using a leukocyte elastase inhibitor (EPI-hNE-4) nor inhibition of gelatinase activities by recombinant adenovirus for the human tissue inhibitor of matrix metalloproteinase 1 gene transfer decreased lung edema in HCl-induced injury. These data suggest that PMN proteinases do not contribute to HCl-induced acute lung injury in rats.
Collapse
|
5
|
Rotundo RF, Curtis TM, Shah MD, Gao B, Mastrangelo A, LaFlamme SE, Saba TM. TNF-alpha disruption of lung endothelial integrity: reduced integrin mediated adhesion to fibronectin. Am J Physiol Lung Cell Mol Physiol 2002; 282:L316-29. [PMID: 11792637 DOI: 10.1152/ajplung.00145.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) causes an increase in transendothelial protein permeability of confluent monolayers of calf pulmonary artery endothelial (CPAE) cells, and the addition of plasma fibronectin (pFn) to the culture medium can attenuate this increase in permeability. We determined if reduced integrin function had a role in decreased endothelial cell adhesion to immobilized Fn after exposure of the endothelial monolayers to TNF-alpha. TNF-alpha also causes a reorganization of the subendothelial Fn rich matrix and a significant loss in RGD-dependent adhesion of TNF-alpha treated CPAE cells to pFn coated surfaces. However, flow cytometry revealed no decrease in alpha(5)beta(1) or total beta(1) integrin expression on the surface of the CPAE cells after TNF-alpha. Reduced CPAE adhesion to immobilized Fn was, in part, due to a loss of beta(1)-integrin function since the beta(1)-integrin blocking antibody mAb 13 significantly (P < 0.05) prevented the adhesion of normal control CPAE cells but did not further reduce the adhesion of TNF-alpha-treated cells. In addition, antibodies which activate beta(1) integrins restored (P < 0.05) adhesion of TNF-alpha-treated cells to immobilized pFn but did not alter the adhesion of control cells. Despite reduced ability to adhere to immobilized Fn, TNF-alpha-treated CPAE monolayers demonstrated increased binding and incorporation of fluid-phase pFn into the subendothelial extracellular matrix (ECM) as measured by the analysis of the deoxycholate (DOC) detergent insoluble pool of (125)I-Fn in the cell layer. In contrast to the RGD-mediated adhesion of CPAE cells to matrix Fn, the increased binding of soluble pFn after TNF-alpha was not inhibited by RGD peptides or mAb 13. Thus reduced integrin-dependent adhesion of the CPAE cells to matrix Fn as well as disruption of the Fn matrix may contribute to the increased protein permeability of previously confluent endothelial monolayer after TNF-alpha. In addition, increased ability for the monolayer to incorporate fluid-phase Fn into the ECM after TNF-alpha via a non-beta(1)- integrin dependent mechanism may be a compensatory response to stabilize the Fn matrix and the endothelial barrier.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, Surface/analysis
- Capillary Permeability/drug effects
- Capillary Permeability/physiology
- Cattle
- Cell Adhesion/drug effects
- Cell Adhesion/physiology
- Cells, Cultured
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Epitopes/analysis
- Extracellular Matrix/metabolism
- Fibronectins/metabolism
- Flow Cytometry
- Iodine Radioisotopes
- Manganese/pharmacology
- Microscopy, Interference
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Pulmonary Artery/cytology
- Receptors, Fibronectin/analysis
- Receptors, Fibronectin/immunology
- Receptors, Fibronectin/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Robert F Rotundo
- Department of Physiology and Cell Biology, Neil Hellman Medical Research Building, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Lacherade JC, Van De Louw A, Planus E, Escudier E, D'Ortho MP, Lafuma C, Harf A, Delclaux C. Evaluation of basement membrane degradation during TNF-alpha-induced increase in epithelial permeability. Am J Physiol Lung Cell Mol Physiol 2001; 281:L134-43. [PMID: 11404256 DOI: 10.1152/ajplung.2001.281.1.l134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated whether tumor necrosis factor (TNF)-alpha induces an increase in permeability of an alveolar epithelial monolayer via gelatinase secretion and basement membrane degradation. Gelatinase secretion and epithelial permeability to radiolabeled albumin under unstimulated and TNF-alpha-stimulated conditions of an A549 human epithelial cell line were evaluated in vitro. TNF-alpha induced both upregulation of a 92-kDa gelatinolytic activity (pro form in cell supernatant and activated form in extracellular matrix) and an increase in the epithelial permeability coefficient compared with the unstimulated condition (control: 1.34 +/- 0.04 x 10(-6) cm/s; 1 microg/ml TNF-alpha: 1.47 +/- 0.05 x 10(-6) cm/s, P < 0.05). The permeability increase in the TNF-alpha-stimulated condition involved both paracellular permeability, with gap formation visualized by actin cytoskeleton staining, and basement membrane permeability, with an increase in the basement membrane permeability coefficient (determined after cell removal; control: 2.58 +/- 0.07 x 10(-6) cm/s; 1 microg/ml TNF-alpha: 2.82 +/- 0.02.10(-6) x cm/s, P < 0.05). Because addition of gelatinase inhibitors [tissue inhibitor of metalloproteinase (TIMP)-1 or BB-3103] to cell supernatants failed to inhibit the permeability increase, the gelatinase-inhibitor balance in the cellular microenvironment was further evaluated by cell culture on a radiolabeled collagen matrix. In the unstimulated condition, spontaneous collagenolytic activity inhibited by addition to the matrix of 1 microg/ml TIMP-1 or 10(-6) M BB-3103 was found. TNF-alpha failed to increase this collagenolytic activity because it was associated with dose-dependent upregulation of TIMP-1 secretion by alveolar epithelial cells. In conclusion, induction by TNF-alpha of upregulation of both the 92-kDa gelatinase and its inhibitor TIMP-1 results in maintenance of the gelatinase-inhibitor balance, indicating that basement membrane degradation does not mediate the TNF-alpha-induced increase in alveolar epithelial monolayer permeability.
Collapse
Affiliation(s)
- J C Lacherade
- Institut National de la Santé et de la Recherche Médicale Unité 492 and Service de Physiologie, Explorations Fonctionnelles (Assistance Publique-Hôpitaux de Paris), Hôpital Henri Mondor, 94010 Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG. Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1168-78. [PMID: 11350795 DOI: 10.1152/ajplung.2001.280.6.l1168] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha is released in acute inflammatory lung syndromes linked to the extensive vascular dysfunction associated with increased permeability and endothelial cell apoptosis. TNF-alpha induced significant decreases in transcellular electrical resistance across pulmonary endothelial cell monolayers, reflecting vascular barrier dysfunction (beginning at 4 h and persisting for 48 h). TNF-alpha also triggered endothelial cell apoptosis beginning at 4 h, which was attenuated by the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone. Exploring the involvement of the actomyosin cytoskeleton in these important endothelial cell responses, we determined that TNF-alpha significantly increased myosin light chain (MLC) phosphorylation, with prominent stress fiber and paracellular gap formation, which paralleled the onset of decreases in transcellular electrical resistance and enhanced apoptosis. Reductions in MLC phosphorylation by the inhibition of either MLC kinase (ML-7, cholera toxin) or Rho kinase (Y-27632) dramatically attenuated TNF-alpha-induced stress fiber formation, indexes of apoptosis, and caspase-8 activity but not TNF-alpha-induced barrier dysfunction. These studies indicate a central role for the endothelial cell cytoskeleton in TNF-alpha-mediated apoptosis, whereas TNF-alpha-induced vascular permeability appears to evolve independently of contractile tension generation.
Collapse
Affiliation(s)
- I Petrache
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chen R, Gao B, Huang C, Olsen B, Rotundo RF, Blumenstock F, Saba TM. Transglutaminase-mediated fibronectin multimerization in lung endothelial matrix in response to TNF-alpha. Am J Physiol Lung Cell Mol Physiol 2000; 279:L161-74. [PMID: 10893215 DOI: 10.1152/ajplung.2000.279.1.l161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure of lung endothelial monolayers to tumor necrosis factor (TNF)-alpha causes a rearrangement of the fibrillar fibronectin (FN) extracellular matrix and an increase in protein permeability. Using calf pulmonary artery endothelial cell layers, we determined whether these changes were mediated by FN multimerization due to enhanced transglutaminase activity after TNF-alpha (200 U/ml) for 18 h. Western blot analysis indicated that TNF-alpha decreased the amount of monomeric FN detected under reducing conditions. Analysis of (125)I-FN incorporation into the extracellular matrix confirmed a twofold increase in high molecular mass (HMW) FN multimers stable under reducing conditions (P < 0.05). Enhanced formation of such HMW FN multimers was associated with increased cell surface transglutaminase activity (P < 0.05). Calf pulmonary artery endothelial cells pretreated with TNF-alpha also formed nonreducible HMW multimers of FN when layered on surfaces precoated with FN. Inhibitors of transglutaminase blocked the TNF-alpha-induced formation of nonreducible HMW multimers of FN but did not prevent either disruption of the FN matrix or the increase in monolayer permeability. Thus increased cell surface transglutaminase after TNF-alpha exposure initiates the enhanced formation of nonreducible HMW FN multimers but did not cause either the disruption of the FN matrix or the increase in endothelial monolayer permeability.
Collapse
Affiliation(s)
- R Chen
- Department of Physiology and Cell Biology, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | |
Collapse
|