1
|
Dvornicky-Raymond ZT, Scansen BA, Pierce KV, Mama KR, Hammond HK, Johnston MS. Transvenous occlusion of patent ductus arteriosus in a domestic chicken (Gallus gallus). J Vet Cardiol 2021; 37:18-25. [PMID: 34509087 DOI: 10.1016/j.jvc.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 12/01/2022]
Abstract
A 2.5-year-old intact female Marans domestic chicken was presented for lethargy, open beak breathing, and hyporexia. Echocardiography noted left atrial and left ventricular enlargement and computed tomography angiography revealed a type III left-sided patent ductus arteriosus. Retrograde catheterization of the ductus was performed via percutaneous access of the right external jugular vein, and transvenous ductal occlusion was achieved using an 8-mm Amplatzer™ Vascular Plug 4. Transient bradycardia and hypotension occurred during right heart catheterization, which were successfully treated with atropine and epinephrine. A two-week follow-up postoperative cardiac computed tomography scan confirmed appropriate placement of the occluder within the ductus, and echocardiography demonstrated reduced left heart size. The chicken showed an improvement in clinical signs and remains apparently well six months after the intervention. This report describes the computed tomographic findings of a patent ductus arteriosus in an avian species, minimally invasive transvenous closure of this congenital anomaly with a low-profile occlusion device, and the associated challenges and considerations specific to cardiac intervention in an avian patient.
Collapse
Affiliation(s)
| | - B A Scansen
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - K V Pierce
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - K R Mama
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - H K Hammond
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - M S Johnston
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Villamor E, Moreno L, Mohammed R, Pérez-Vizcaíno F, Cogolludo A. Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition. Free Radic Biol Med 2019; 142:82-96. [PMID: 30995535 DOI: 10.1016/j.freeradbiomed.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are frequently seen as pathological agents of oxidative stress. However, ROS are not always deleterious and can also act as cell signaling molecules. Vascular oxygen sensing and signaling during fetal-to-neonatal circulatory transition is a remarkable example of the physiological regulatory actions of ROS. The fetal relative hypoxic environment induces hypoxic pulmonary vasoconstriction (HPV) and ductus arteriosus (DA) relaxation favoring the presence of high pulmonary vascular resistance and right-to-left ductal shunt. At birth, the increase in oxygen tension causes relaxation of pulmonary arteries (PAs) and normoxic DA vasoconstriction (NDAV), thus diverting blood flow to the lungs. Although the response to changes in oxygen tension is diametrically opposite, the mechanisms responsible for HPV and NDAV appear to be the result of a similar interaction between triggering and modulating factors that lead to an increase in cytosolic Ca2+ concentration and Ca2+ sensitization of the contractile apparatus. Growing evidence points to an increase in ROS (mitochondria- and/or NADPH-derived superoxide and/or H2O2), leading to inhibition of voltage-gated K+ channels, membrane depolarization, and activation of voltage-gated L-type Ca2+ channels as critical events in the signaling pathway of both HPV and NDAV. Several groups of investigators have completed this pathway adding other elements such as neutral sphingomyelinase-derived ceramide, the sarcoplasmic/endoplasmic reticulum (through ryanodine and inositol 1,4,5-trisphosphate receptors), Rho kinase-mediated Ca2+ sensitization, or transient receptor potential channels. The present review focus on the role of ROS as mediators of the homeostatic oxygen sensing system during fetal and neonatal life not only in the PAs and DA but also in systemic arteries.
Collapse
Affiliation(s)
- Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands.
| | - Laura Moreno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Riazzudin Mohammed
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
3
|
Akaike T, Shinjo S, Ohmori E, Kajimura I, Goda N, Minamisawa S. Transcriptional profiles in the chicken ductus arteriosus during hatching. PLoS One 2019; 14:e0214139. [PMID: 30897181 PMCID: PMC6428269 DOI: 10.1371/journal.pone.0214139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
The ductus arteriosus, an essential embryonic blood vessel between the pulmonary artery and the descending aorta, constricts after birth or hatching and eventually closes to terminate embryonic circulation. Chicken embryos have two long ductus arteriosi, which anatomically differ from mammal ductus arteriosus. Each long ductus arteriosus is divided into two parts: the pulmonary artery-sided and descending aorta-sided ductus arteriosi. Although the pulmonary artery-sided and descending aorta-sided ductus arteriosi have distinct functional characteristics, such as oxygen responsiveness, the difference in their transcriptional profiles has not been investigated. We performed a DNA microarray analysis (GSE 120116 at NCBI GEO) with pooled tissues from the chicken pulmonary artery-sided ductus arteriosus, descending aorta-sided ductus arteriosus, and aorta at the internal pipping stage. Although several known ductus arteriosus-dominant genes such as tfap2b were highly expressed in the pulmonary artery-sided ductus arteriosus, we newly found genes that were dominantly expressed in the chicken pulmonary artery-sided ductus arteriosus. Interestingly, cluster analysis showed that the expression pattern of the pulmonary artery-sided ductus arteriosus was closer to that of the descending aorta-sided ductus arteriosus than that of the aorta, whereas the morphology of the descending aorta-sided ductus arteriosus was closer to that of the aorta than that of the pulmonary artery-sided ductus arteriosus. Subsequent pathway analysis with DAVID bioinformatics resources revealed that the pulmonary artery-sided ductus arteriosus showed enhanced expression of the genes involved in melanogenesis and tyrosine metabolism compared with the descending aorta-sided ductus arteriosus, suggesting that tyrosinase and the related genes play an important role in the proper differentiation of neural crest-derived cells during vascular remodeling in the ductus arteriosus. In conclusion, the transcription profiles of the chicken ductus arteriosus provide new insights for investigating the mechanism of ductus arteriosus closure.
Collapse
Affiliation(s)
- Toru Akaike
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoko Shinjo
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Eriko Ohmori
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Ichige Kajimura
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
4
|
Abstract
The ductus arteriosus is typically viewed as a mammalian fetal blood vessel providing a right-to-left shunt of right ventricular outflow away from the lungs and to the systemic circuit, that must close at birth. This review provides a wider comparative examination of the ductus arteriosus in lungfish, reptiles, birds, and mammals. The ductus arteriosus evolved with the lung in the ancestors of the lungfish as a connection between the pulmonary arteries and dorsal aorta. During embryonic development, reptiles, birds, and mammals all possess either one or two paired ductus arteriosi that provide a fetal shunt of blood away from the lungs. Differences in the fetal circulatory arrangement are seen between these groups and this influences the importance of the ductus arteriosus as an embryonic shunt. The ductus arteriosus from lungfish and tetrapod vertebrates is an oxygen sensitive blood vessel, with shared conserved pathways involved in oxygen sensing. By expanding studies into more comparative models such as lungfish or developing birds a better understanding of the physiology of the ductus arteriosus can be developed.
Collapse
Affiliation(s)
- Edward M Dzialowski
- Developmental Integrative Biology Research Group, Department of Biological Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203.
| |
Collapse
|
5
|
Mohammed R, Salinas CE, Giussani DA, Blanco CE, Cogolludo AL, Villamor E. Acute hypoxia-reoxygenation and vascular oxygen sensing in the chicken embryo. Physiol Rep 2017; 5:5/22/e13501. [PMID: 29146864 PMCID: PMC5704079 DOI: 10.14814/phy2.13501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 02/03/2023] Open
Abstract
Fetal/perinatal hypoxia is one of the most common causes of perinatal morbidity and mortality and is frequently accompannied by vascular dysfunction. However, the mechanisms involved have not been fully delineated. We hypothesized that exposure to acute hypoxia‐reoxygenation induces alterations in vascular O2 sensing/signaling as well as in endothelial function in the chicken embryo pulmonary artery (PA), mesenteric artery (MA), femoral artery (FA), and ductus arteriosus (DA). Noninternally pipped 19‐day embryos were exposed to 10% O2 for 30 min followed by reoxygenation with 21% O2 or 80% O2. Another group was constantly maintained at 21% O2 or at 21% O2 for 30 min and then exposed to 80% O2. Following treatment, responses of isolated blood vessels to hypoxia as well as endothelium‐dependent (acetylcholine) and ‐independent (sodium nitroprusside and forskolin) relaxation were investigated in a wire myograph. Hypoxia increased venous blood lactate from 2.03 ± 0.18 to 15.98 ± 0.73 mmol/L (P < 0.001) and reduced hatchability to 0%. However, ex vivo hypoxic contraction of PA and MA, hypoxic relaxation of FA, and normoxic contraction of DA were not significantly different in any of the experimental groups. Relaxations induced by acetylcholine, sodium nitroprusside, and forskolin in PA, MA, FA, and DA rings were also similar in the four groups. In conclusion, exposure to acute hypoxia‐reoxygenation did not affect vascular oxygen sensing or reactivity in the chicken embryo. This suggests that direct effects of acute hypoxia‐reoxygenation on vascular function does not play a role in the pathophysiology of hypoxic cardiovascular injury in the perinatal period.
Collapse
Affiliation(s)
- Riazuddin Mohammed
- Department of Pediatrics, Maastricht University Medical Center (MUMC+) School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands
| | - Carlos E Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Dino A Giussani
- Department of Physiology Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Carlos E Blanco
- Department of Neonatology, National Maternity Hospital, Dublin, Ireland
| | - Angel L Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES) Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+) School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands
| |
Collapse
|
6
|
Brinks L, Moonen RMJ, Moral-Sanz J, Barreira B, Kessels L, Perez-Vizcaino F, Cogolludo A, Villamor E. Hypoxia-induced contraction of chicken embryo mesenteric arteries: mechanisms and developmental changes. Am J Physiol Regul Integr Comp Physiol 2016; 311:R858-R869. [DOI: 10.1152/ajpregu.00461.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 08/10/2016] [Indexed: 11/22/2022]
Abstract
The fetal cardiovascular responses to acute hypoxia include a redistribution of the cardiac output toward the heart and the brain at the expense of other organs, such as the intestine. We hypothesized that hypoxia exerts a direct effect on the mesenteric artery (MA) that may contribute to this response. Using wire myography, we investigated the response to hypoxia (Po2 ~2.5 kPa for 20 min) of isolated MAs from 15- to 21-day chicken embryos (E15, E19, E21), and 1- to 45-day-old chickens (P1, P3, P14, P45). Agonist-induced pretone or an intact endothelium were not required to obtain a consistent and reproducible response to hypoxia, which showed a pattern of initial rapid phasic contraction followed by a sustained tonic contraction. Phasic contraction was reduced by elimination of extracellular Ca2+ or by presence of the neurotoxin tetrodotoxin, the α1-adrenoceptor antagonist prazosin, or inhibitors of L-type voltage-gated Ca2+ channels (nifedipine), mitochondrial electron transport chain (rotenone and antimycin A), and NADPH oxidase (VAS2870). The Rho-kinase inhibitor Y27632 impaired both phasic and tonic contraction and, when combined with elimination of extracellular Ca2+, hypoxia-induced contraction was virtually abolished. Hypoxic MA contraction was absent at E15 but present from E19 and increased toward the first days posthatching. It then decreased during the first weeks of life and P45 MAs were unable to sustain hypoxia-induced contraction over time. In conclusion, the results of the present study demonstrate that hypoxic vasoconstriction is an intrinsic feature of chicken MA vascular smooth muscle cells during late embryogenesis and the perinatal period.
Collapse
Affiliation(s)
- Leonie Brinks
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Rob M. J. Moonen
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands; and
| | - Javier Moral-Sanz
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lilian Kessels
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| |
Collapse
|
7
|
Moreno L, Moral-Sanz J, Morales-Cano D, Barreira B, Moreno E, Ferrarini A, Pandolfi R, Ruperez FJ, Cortijo J, Sanchez-Luna M, Villamor E, Perez-Vizcaino F, Cogolludo A. Ceramide mediates acute oxygen sensing in vascular tissues. Antioxid Redox Signal 2014; 20:1-14. [PMID: 23725018 PMCID: PMC3880904 DOI: 10.1089/ars.2012.4752] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS A variety of vessels, such as resistance pulmonary arteries (PA) and fetoplacental arteries and the ductus arteriosus (DA) are specialized in sensing and responding to changes in oxygen tension. Despite opposite stimuli, normoxic DA contraction and hypoxic fetoplacental and PA vasoconstriction share some mechanistic features. Activation of neutral sphingomyelinase (nSMase) and subsequent ceramide production has been involved in hypoxic pulmonary vasoconstriction (HPV). Herein we aimed to study the possible role of nSMase-derived ceramide as a common factor in the acute oxygen-sensing function of specialized vascular tissues. RESULTS The nSMase inhibitor GW4869 and an anticeramide antibody reduced the hypoxic vasoconstriction in chicken PA and chorioallantoic arteries (CA) and the normoxic contraction of chicken DA. Incubation with interference RNA targeted to SMPD3 also inhibited HPV. Moreover, ceramide and reactive oxygen species production were increased by hypoxia in PA and by normoxia in DA. Either bacterial sphingomyelinase or ceramide mimicked the contractile responses of hypoxia in PA and CA and those of normoxia in the DA. Furthermore, ceramide inhibited voltage-gated potassium currents present in smooth muscle cells from PA and DA. Finally, the role of nSMase in acute oxygen sensing was also observed in human PA and DA. INNOVATION These data provide evidence for the proposal that nSMase-derived ceramide is a critical player in acute oxygen-sensing in specialized vascular tissues. CONCLUSION Our results indicate that an increase in ceramide generation is involved in the vasoconstrictor responses induced by two opposite stimuli, such as hypoxia (in PA and CA) and normoxia (in DA).
Collapse
Affiliation(s)
- Laura Moreno
- 1 Department of Pharmacology, School of Medicine, Universidad Complutense Madrid , Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stoller JZ, Demauro SB, Dagle JM, Reese J. Current Perspectives on Pathobiology of the Ductus Arteriosus. ACTA ACUST UNITED AC 2012; 8. [PMID: 23519783 DOI: 10.4172/2155-9880.s8-001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ductus arteriosus (DA) shunts blood away from the lungs during fetal life, but at birth this shunt is no longer needed and the vessel rapidly constricts. Postnatal persistence of the DA, patent ductus arteriosus (PDA), is predominantly a detrimental condition for preterm infants but is simultaneously a condition required to maintain systemic blood flow for infants born with certain severe congenital heart defects. Although PDA in preterm infants is associated with significant morbidities, there is controversy regarding whether PDA is truly causative. Despite advances in our understanding of the pathobiology of PDA, the optimal treatment strategy for PDA in preterm infants is unclear. Here we review recent studies that have continued to elucidate the fundamental mechanisms of DA development and pathogenesis.
Collapse
Affiliation(s)
- Jason Z Stoller
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
9
|
van der Sterren S, Kleikers P, Zimmermann LJI, Villamor E. Vasoactivity of the gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1186-98. [PMID: 21813869 DOI: 10.1152/ajpregu.00729.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Besides nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H(2)S) is a third gaseous messenger that may play a role in controlling vascular tone and has been proposed to serve as an O(2) sensor. However, whether H(2)S is vasoactive in the ductus arteriosus (DA) has not yet been studied. We investigated, using wire myography, the mechanical responses induced by Na(2)S (1 μM-1 mM), which forms H(2)S and HS(-) in solution, and by authentic CO (0.1 μM-0.1 mM) in DA rings from 19-day chicken embryos. Na(2)S elicited a 100% relaxation (pD(2) 4.02) of 21% O(2)-contracted and a 50.3% relaxation of 62.5 mM KCl-contracted DA rings. Na(2)S-induced relaxation was not affected by presence of the NO synthase inhibitor l-NAME, the soluble guanylate cyclase (sGC) inhibitor ODQ, or the K(+) channel inhibitors tetraethylammonium (TEA; nonselective), 4-aminopyridine (4-AP, K(V)), glibenclamide (K(ATP)), iberiotoxin (BK(Ca)), TRAM-34 (IK(Ca)), and apamin (SK(Ca)). CO also relaxed O(2)-contracted (60.8% relaxation) and KCl-contracted (18.6% relaxation) DA rings. CO-induced relaxation was impaired by ODQ, TEA, and 4-AP (but not by L-NAME, glibenclamide, iberiotoxin, TRAM-34 or apamin), suggesting the involvement of sGC and K(V) channel stimulation. The presence of inhibitors of H(2)S or CO synthesis as well as the H(2)S precursor L-cysteine or the CO precursor hemin did not significantly affect the response of the DA to changes in O(2) tension. Endothelium-dependent and -independent relaxations were also unaffected. In conclusion, our results indicate that the gasotransmitters H(2)S and CO are vasoactive in the chicken DA but they do not suggest an important role for endogenous H(2)S or CO in the control of chicken ductal reactivity.
Collapse
Affiliation(s)
- Saskia van der Sterren
- Department of Pediatrics, Maastricht University Medical Centre, School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | | | | |
Collapse
|
10
|
van der Sterren S, Villamor E. Contractile effects of 15-E2t-isoprostane and 15-F2t-isoprostane on chicken embryo ductus arteriosus. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:436-44. [PMID: 21565280 DOI: 10.1016/j.cbpa.2011.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/24/2011] [Accepted: 04/26/2011] [Indexed: 01/15/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin (PG)-like compounds produced nonenzymatically by free radical-catalyzed peroxidation of arachidonate. Cyclooxygenase-derived PGs play a major role in ductus arteriosus (DA) homeostasis but the putative role of IsoPs has not been studied so far. We investigated, using wire myography, the vasoactive effects of 15-E(2t)-IsoP and 15-F(2t)-IsoP in the chicken embryo DA, pulmonary artery (PA) and femoral artery (FA). 15-E(2t)-IsoP and 15-F(2t)-IsoP contracted DA, PA, and FA rings in a concentration-dependent manner. 15-E(2t)-IsoP was equally efficacious (mean±SE E(max)=1.25±0.06 mN/mm) as and more potent (-log of molar concentration producing 50% of E(max)=pEC(50)=7.00±0.04) than the thromboxane-prostanoid (TP) receptor agonist U46619 (E(max)=1.49±0.11 mN/mm; pEC(50)=6.48±0.05) in contracting chicken DA (pulmonary side). 15-F(2t)-IsoP was less potent (pEC(50)=5.74±0.11) and less efficacious (E(max)=0.96±0.11) than U46619. Concentration-dependent contractions to 15-E(2t)-IsoP and U46619 in DA rings were competitively inhibited by the TP receptor antagonist SQ29548 (0.1 μM to 10 μM) with no decrease in the E(max) values. SQ29548 also inhibited concentration-dependent contraction to 15-F(2t)-IsoP but this inhibition was associated with a decrease in E(max). Pre-incubation of DA rings with 15-F(2t)-IsoP inhibited responses to U46619 and, in vessels contracted with U46619 (1 μM), 15-F(2t)-IsoP (>1 μM) evoked a relaxant response. Enzyme immunoassay did not show a measurable release of 15-F(2t)-IsoP by DA rings. In conclusion, 15-E(2t)-IsoP is a potent and efficacious constrictor of chicken DA, acting through TP receptors. In contrast, 15-F(2t)-IsoP is probably acting as a partial agonist at TP receptors. We speculate that IsoPs play a role in the control of chicken DA tone and could participate in its closure.
Collapse
Affiliation(s)
- Saskia van der Sterren
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | | |
Collapse
|
11
|
Schuurman MJ, Villamor E. Endothelium-dependent contraction induced by acetylcholine in the chicken ductus arteriosus involves cyclooxygenase-1 activation and TP receptor stimulation. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:28-34. [DOI: 10.1016/j.cbpa.2010.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 02/07/2023]
|
12
|
Rocha G, Ribeiro O, Guimarães H. Fluid and electrolyte balance during the first week of life and risk of bronchopulmonary dysplasia in the preterm neonate. Clinics (Sao Paulo) 2010; 65:663-74. [PMID: 20668623 PMCID: PMC2910854 DOI: 10.1590/s1807-59322010000700004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Early fluid and electrolyte imbalances may be associated with an increased risk of bronchopulmonary dysplasia. OBJECTIVE We sought to establish an association between fluid and electrolyte balance in the first week of life and the risk of bronchopulmonary dysplasia. METHODS Clinical charts of 205 neonates <32 weeks gestational age and/or <1,250 g birth weight (admitted to our NICU between 1997 and 2008) were analyzed. Clinical features, fluid and electrolyte balance were analyzed for the first 7 days of life using multivariate models of generalized estimation equations. A p value <0.05 was considered significant in all of the hypothesis tests. RESULTS The prevalence of bronchopulmonary dysplasia was 22%. Lower gestational age and birth weight, male gender, less frequent use of antenatal steroids, respiratory distress syndrome, use of surfactant, patent ductus arteriosus, duration of invasive ventilation and NICU stay were significantly associated with bronchopulmonary dysplasia. The variation in serum values of potassium, phosphorus and creatinine during the first week of life also revealed an association with bronchopulmonary dysplasia. Higher mean plasma calcium values were associated with spontaneous closure of the patent ductus arteriosus. The use of indomethacin to induce patent ductus arteriosus closure was significantly higher in bronchopulmonary dysplasia patients. CONCLUSIONS Differences in renal function and tubular handling of potassium and phosphorus are present during the first week of life among preterm neonates who will develop bronchopulmonary dysplasia. The higher rate of patent ductus arteriosus and indomethacin use may influence these differences. Serum levels of calcium also appear to play a role in spontaneous ductus arteriosus closure.
Collapse
Affiliation(s)
- Gustavo Rocha
- Department of Pediatrics, Hospital de São João, Porto University, Portugal.
| | | | | |
Collapse
|
13
|
Role of Rho-kinase in mediating contraction of chicken embryo femoral arteries. J Comp Physiol B 2010; 180:427-35. [PMID: 19936759 PMCID: PMC2820664 DOI: 10.1007/s00360-009-0420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/09/2009] [Accepted: 11/03/2009] [Indexed: 01/05/2023]
Abstract
Rho-kinase-dependent Ca2+ sensitization is an essential process for contraction of mammalian vascular smooth muscle but the information about its effects in non-mammalian vessels is scarce. We aimed to investigate, using the Rho-kinase inhibitor hydroxyfasudil, the potential role of the Rho-kinase pathway of Ca2+ sensitization in depolarization- and agonist-mediated contraction of chicken embryo (at day 19 of the 21 days of incubation) femoral arteries. Contraction elicited by KCl (125 mM) comprised two phases (phasic and tonic contraction), both of which were abolished in the absence of extracellular Ca2+. Hydroxyfasudil (10 microM) left the initial phasic component nearly intact but abolished the tonic component. Hydroxyfasudil also induced a marked impairment of the contractions elicited by phenylephrine (PE), the thromboxane A2 mimetic U46619, and endothelin-1. In contrast, inhibition of protein kinase C (PKC) by chelerythrine did not affect KCl- or PE-induced contractions, indicating lack of participation of PKC-mediated Ca2+ sensitization. Incubation under chronic hypoxia (15% O2 from day 0) impaired embryonic growth but did not significantly affect hydroxyfasudil-mediated relaxation. In summary, our findings are indicative of a role for Rho-kinase activity in depolarization- and agonist-induced force generation in chicken embryo femoral arteries.
Collapse
|
14
|
Flinsenberg TWH, van der Sterren S, van Cleef ANH, Schuurman MJ, Agren P, Villamor E. Effects of sex and estrogen on chicken ductus arteriosus reactivity. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1217-24. [PMID: 20164203 DOI: 10.1152/ajpregu.00839.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex hormones have an important influence on cardiovascular physiology and pathophysiology and sex differences in vascular reactivity have been widely demonstrated. In the present study we hypothesized 1) the presence of sexual dimorphism in chicken ductus arteriosus (DA) responsiveness to contractile and relaxant stimuli and 2) that estrogens are vasoactive in the chicken DA. In vitro contractions (assessed with a wire myograph) induced by normoxia, KCl, 4-aminopyridine, norepinephrine, phenylephrine, U46619, or endothelin-1, as well as relaxations induced by ACh, sodium nitroprusside, BAY 41-2272, PGE(2), isoproterenol, forskolin,Y-27632, and hydroxyfasudil were not significantly different between males and females. The estrogen 17beta-estradiol elicited concentration-dependent relaxation of KCl-, phenylephrine-, and oxygen-induced active tone in male and female chicken DA. The stereoisomer 17alpha-estradiol showed lesser relaxant effects, and the selective estrogen receptor (ER) agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (ERalpha) and 2,3-bis(4-hydroxyphenyl)-propionitrile (ERbeta) did not show any effect. There were no sex differences in the responses to estrogen. Endothelium removal or the presence of the soluble guanylate cyclase inhibitor ODQ, the K(+) channel blockers tetraethylammonium, glibenclamide, and charybdotoxin, or the ER antagonist fulvestrant did not modify 17beta-estradiol-induced relaxation. CaCl(2) (30 muM-10 mM) induced concentration-dependent contraction in DA rings depolarized by 62.5 mM KCl or stimulated with 21% O(2) in Ca(2+)-free medium. Preincubation with 17beta-estradiol or the L-type Ca(2+) channel blocker nifedipine produced an inhibition of CaCl(2)-induced contractions. In conclusion, there are no sex-related differences in chicken DA reactivity. The estrogen 17beta-estradiol induces an endothelium-independent relaxation of chicken DA that is not mediated by ER activation. This relaxant effect is, at least partially, due to inhibition of Ca(2+) entry from extracellular space.
Collapse
Affiliation(s)
- Thijs W H Flinsenberg
- Department of Pediatrics, Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, P. Debyelaan 25, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Zoer B, Cogolludo AL, Perez-Vizcaino F, De Mey JGR, Blanco CE, Villamor E. Hypoxia sensing in the fetal chicken femoral artery is mediated by the mitochondrial electron transport chain. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1026-34. [PMID: 20089711 DOI: 10.1152/ajpregu.00500.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular hypoxia sensing is transduced into vasoconstriction in the pulmonary circulation, whereas systemic arteries dilate. Mitochondrial electron transport chain (mETC), reactive O(2) species (ROS), and K(+) channels have been implicated in the sensing/signaling mechanisms of hypoxic relaxation in mammalian systemic arteries. We aimed to investigate their putative roles in hypoxia-induced relaxation in fetal chicken (19 days of incubation) femoral arteries mounted in a wire myograph. Acute hypoxia (Po(2) approximately 2.5 kPa) relaxed the contraction induced by norepinephrine (1 microM). Hypoxia-induced relaxation was abolished or significantly reduced by the mETC inhibitors rotenone (complex I), myxothiazol and antimycin A (complex III), and NaN(3) (complex IV). The complex II inhibitor 3-nitroproprionic acid enhanced the hypoxic relaxation. In contrast, the relaxations mediated by acetylcholine, sodium nitroprusside, or forskolin were not affected by the mETC blockers. Hypoxia induced a slight increase in ROS production (as measured by 2,7-dichlorofluorescein-fluorescence), but hypoxia-induced relaxation was not affected by scavenging of superoxide (polyethylene glycol-superoxide dismutase) or H(2)O(2) (polyethylene glycol-catalase) or by NADPH-oxidase inhibition (apocynin). Also, the K(+) channel inhibitors tetraethylammonium (nonselective), diphenyl phosphine oxide-1 (voltage-gated K(+) channel 1.5), glibenclamide (ATP-sensitive K(+) channel), iberiotoxin (large-conductance Ca(2+)-activated K(+) channel), and BaCl(2) (inward-rectifying K(+) channel), as well as ouabain (Na(+)-K(+)-ATPase inhibitor) did not affect hypoxia-induced relaxation. The relaxation was enhanced in the presence of the voltage-gated K(+) channel blocker 4-aminopyridine. In conclusion, our experiments suggest that the mETC plays a critical role in O(2) sensing in fetal chicken femoral arteries. In contrast, hypoxia-induced relaxation appears not to be mediated by ROS or K(+) channels.
Collapse
Affiliation(s)
- Bea Zoer
- University Hospital Maastricht, P. Debyelaan 25, AZ Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Cogolludo AL, Moral-Sanz J, van der Sterren S, Frazziano G, van Cleef ANH, Menéndez C, Zoer B, Moreno E, Roman A, Pérez-Vizcaino F, Villamor E. Maturation of O2 sensing and signaling in the chicken ductus arteriosus. Am J Physiol Lung Cell Mol Physiol 2009; 297:L619-30. [PMID: 19617310 DOI: 10.1152/ajplung.00092.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increase in O(2) tension after birth is a major factor stimulating ductus arteriosus (DA) constriction and closure. Here we studied the role of the mitochondrial electron transport chain (ETC) as sensor, H(2)O(2) as mediator, and voltage-gated potassium (K(V)) channels and Rho kinase as effectors of O(2)-induced contraction in the chicken DA during fetal development. Switching from 0% to 21% O(2) contracted the pulmonary side of the mature DA (mature pDA) but had no effect in immature pDA and relaxed the aortic side of the mature DA (mature aDA). This contraction of the pDA was attenuated by inhibitors of the mitochondrial ETC and by the H(2)O(2) scavenger polyethylene glycol (PEG)-catalase. Moreover, O(2) increased reactive oxygen species (ROS) production, measured with the fluorescent probes dihydroethidium and 2',7'-dichlorofluorescein, only in mature pDA. The H(2)O(2) analog t-butyl-hydroperoxide mimicked the responses to O(2) in the three vessels. In contrast to immature pDA cells, mature pDA cells exhibited high-amplitude O(2)-sensitive potassium currents. The K(V) channel blocker 4-aminopyridine prevented the current inhibition elicited by O(2). The L-type Ca(2+) (Ca(L)) channel blocker nifedipine and the Rho kinase inhibitors Y-27632 and hydroxyfasudil induced a similar relaxation when mature pDA were stimulated with O(2) or H(2)O(2). Moreover, the sensitivity to these drugs increased with maturation. Our results indicate the presence of a common mechanism for O(2) sensing/signaling in mammalian and nonmammalian DA and favor the idea that, rather than a single mechanism, a parallel maturation of the sensor and effectors is critical for O(2) sensitivity appearance during development.
Collapse
Affiliation(s)
- Angel L Cogolludo
- Dept. of Pharmacology, School of Medicine, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|