1
|
Fujii N, McGarr GW, Amano T, Boulay P, Nishiyasu T, Kenny GP. Does aging alter skin vascular function in humans when spatial variation is considered? Microcirculation 2021; 29:e12743. [PMID: 34874589 DOI: 10.1111/micc.12743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Reports evaluating age-related impairments in cutaneous vascular function assessed by either the venoarteriolar reflex (VAR) induced by venous congestion, or post-occlusive reactive hyperemia (PORH) activated by arterial occlusion, have yielded mixed findings. This may be due to region-specific variability that occurs when assessing local cutaneous vascular responses. We evaluated the hypothesis that aging attenuates VAR and PORH responses in forearm skin assessed across four adjacent sites, each separated by ~4 cm to account for inter-site variability. METHODS In twenty young (24 ± 4 years, 10 females) and twenty older (60 ± 7 years, 9 females) adults, VAR and PORH were achieved by a 3-min venous occlusion and 5-min arterial occlusion, each induced by inflating a pressure cuff to 45 and 240 mmHg, respectively. Cutaneous blood flow at all skin sites was measured by laser-Doppler flowmetry with the average response from all sites used for between-group comparisons. RESULTS VAR and PORH responses were similar between groups with the exception that the time required to achieve peak PORH was delayed in older adults (mean difference of 5.5 ± 4.4 s, p = 0.003, Cohen's d = 0.812). CONCLUSIONS We showed that aging had a negligible influence on VAR and PORH responses in forearm skin even when controlling for region-specific variability.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
McGarr GW, Muia CM, Saci S, Fujii N, Kenny GP. K Ca channels are major contributors to ATP-induced cutaneous vasodilation in healthy older adults. Microvasc Res 2020; 133:104096. [PMID: 33058899 DOI: 10.1016/j.mvr.2020.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To examine the contributions of calcium-activated K+ (KCa) channels and nitric oxide synthase (NOS) to adenosine triphosphate (ATP)-induced cutaneous vasodilation in healthy older adults. METHODS In eleven older adults (69 ± 2 years, 5 females), cutaneous vascular conductance, normalized to maximum vasodilation (%CVCmax) was assessed at four dorsal forearm skin sites that were continuously perfused with either 1) lactated Ringer solution (Control), 2) 50 mM tetraethylammonium (TEA, KCa channel blocker), 3) 10 mM Nω-nitro-L-arginine (L-NNA, NOS inhibitor), or 4) combined 50 mM TEA +10 mM L-NNA, via microdialysis. Local skin temperature was fixed at 33 °C at all sites with local heaters throughout the protocol while the cutaneous vasodilator response was assessed during coadministration of ATP (0.03, 0.3, 3, 30, 300 mM; 20 min per dose), followed by 50 mM sodium nitroprusside and local skin heating to 43 °C to achieve maximum vasodilation (20-30 min). RESULTS Blockade of KCa channels blunted %CVCmax relative to Control from 0.3 to 300 mM ATP (All P < 0.05). A similar response was observed for the combined KCa channel blockade and NOS inhibition site from 3 to 300 mM ATP (All P < 0.05). Conversely, NOS inhibition alone did not influence %CVCmax across all ATP doses (All P > 0.05). CONCLUSION In healthy older adults, KCa channels play an important role in modulating ATP-induced cutaneous vasodilation, while the NOS contribution to this response is negligible.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline M Muia
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Samah Saci
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Serviente C, Berry CW, Kenney WL, Alexander LM. Healthy active older adults have enhanced K + channel-dependent endothelial vasodilatory mechanisms. Am J Physiol Regul Integr Comp Physiol 2020; 319:R19-R25. [PMID: 32401629 PMCID: PMC7468792 DOI: 10.1152/ajpregu.00049.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Microvascular endothelial dysfunction, a precursor to atherosclerotic cardiovascular disease, increases with aging. Endothelium-derived hyperpolarizing factors (EDHFs), which act through K+ channels, regulate blood flow and are important to vascular health. It is unclear how EDHFs change with healthy aging. To evaluate microvascular endothelial reliance on K+ channel-mediated dilation as a function of age in healthy humans. Microvascular function was assessed using intradermal microdialysis in healthy younger (Y; n = 7; 3 M/4 W; 26 ± 1 yr) and older adults (O; n = 12; 5 M/7 W; 64 ± 2 yr) matched for V̇o2peak (Y: 39.0 ± 3.8, O: 37.6 ± 3.1 mL·kg-1·min-1). Participants underwent graded local infusions of: the K+ channel activator Na2S (10-6 to 10-1 M), acetylcholine (ACh, 10-10 to 10-1 M), ACh + the K+ channel inhibitor tetraethylammonium (TEA; 25 or 50 mM), and ACh + the nitric oxide synthase-inhibitor l-NAME (15 mM). Red blood cell flux was measured with laser-Doppler flowmetry and used to calculate cutaneous vascular conductance (CVC; flux/mean arterial pressure) as a percentage of each site-specific maximum (%CVCmax, 43°C+28 mM sodium nitroprusside). The %CVCmax response to Na2S was higher in older adults (mean, O: 51.7 ± 3.9% vs. Y: 36.1 ± 5.3%; P = 0.03). %CVCmax was lower in the ACh+TEA vs. the ACh site starting at 10-5 M (ACh: 34.0 ± 5.7% vs. ACh+TEA: 19.4 ± 4.5%; P = 0.002) in older and at 10-4 M (ACh: 54.5 ± 9.4% vs. ACh+TEA: 31.2 ± 6.7%; P = 0.0002) in younger adults. %CVCmax was lower in the ACh+l-NAME vs. the ACh site in both groups starting at 10-4 M ACh (Y: P < 0.001; O: P = 0.02). Healthy active older adults have enhanced K+ channel-dependent endothelial vasodilatory mechanisms, suggesting increased responsiveness to EDHFs with age.
Collapse
Affiliation(s)
- Corinna Serviente
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania
| | - Craig W Berry
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
4
|
Tan CCS, Chin LKK, Low ICC. Thermoregulation in the Aging Population and Practical Strategies to Overcome a Warmer Tomorrow. Proteomics 2019; 20:e1800468. [PMID: 31652021 DOI: 10.1002/pmic.201800468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/05/2019] [Indexed: 12/11/2022]
Abstract
As global temperatures continue to rise, improving thermal tolerance in the aged population is crucial to counteract age-associated impairments in thermoregulatory function. Impairments in reflex cutaneous vasodilation and sweating response can augment the vulnerability of older adults to heat-related injuries following exposure to heat stress. Mechanisms underlying a compromised cutaneous vasodilation are suggested to include reduced sympathetic neural drive, diminished cholinergic co-transmitter contribution, and altered second messenger signaling events. On the other hand, impairments in sweating response are ascribed to reduced sweat gland cholinergic sensitivity and altered cyclooxygenase and nitric oxide signaling. Several practical mitigation strategies such as exercise, passive heating, and behavioral adaptations are proposed as means to overcome heat stress and improve thermal tolerance in the aged. Aerobic exercise training is shown to be amongst the most effective ways to enhance thermoregulatory function. However, in elderly with limited exercise capability due to chronic diseases and mobility issues, passive heating can serve as a functional alternative as it has been shown to confer similar benefits to that of exercise training. Supplementary to exercise training and passive heating, behavioral adaptations can be applied to further enhance the heat-preparedness of the aged.
Collapse
Affiliation(s)
- Chee Chong Shawn Tan
- Department of Physiology, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore (NUS), Singapore, 117593, Singapore
| | - Li Kang Karen Chin
- Department of Physiology, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore (NUS), Singapore, 117593, Singapore
| | - Ivan Cherh Chiet Low
- Department of Physiology, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore (NUS), Singapore, 117593, Singapore
| |
Collapse
|
5
|
Evidence for TRPV4 channel induced skin vasodilatation through NOS, COX, and KCa channel mechanisms with no effect on sweat rate in humans. Eur J Pharmacol 2019; 858:172462. [DOI: 10.1016/j.ejphar.2019.172462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
6
|
McGarr GW, Fujii N, Muia CM, Nishiyasu T, Kenny GP. Separate and combined effects of K Ca and K ATP channel blockade with NOS inhibition on cutaneous vasodilation and sweating in older men during heat stress. Am J Physiol Regul Integr Comp Physiol 2019; 317:R113-R120. [PMID: 31091157 DOI: 10.1152/ajpregu.00075.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective in this study was to examine the separate and combined effects of potassium (K+) channels and nitric oxide synthase (NOS) on cutaneous vasodilation and sweating in older men during rest and exercise in the heat. In 13 habitually active men (61 ± 4 yr), cutaneous vascular conductance and local sweat rate were assessed at six dorsal forearm skin sites continuously perfused with either 1) lactated Ringer (control), 2) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, NOS inhibitor), 3) 50 mM tetraethylammonium (TEA; Ca2+-activated K+ channel blocker), 4) 5 mM glybenclamide (GLY; ATP-sensitive K+ channel blocker), 5) 50 mM TEA + 10 mM l-NAME, and 6) 5 mM GLY + 10 mM l-NAME via microdialysis. Participants rested in non-heat stress (25°C) and heat stress (35°C) conditions for ∼60 min each, followed by 50 min of moderate-intensity cycling (∼55% V̇o2peak) and 30 min of recovery in the heat. During rest and exercise in the heat, l-NAME, TEA + l-NAME, and GLY + l-NAME attenuated CVC relative to control (all P ≤ 0.05), although l-NAME was not different from TEA + l-NAME or GLY + l-NAME (all P > 0.05). TEA attenuated CVC during rest, whereas GLY attenuated CVC during exercise (both P ≤ 0.05). Additionally, whereas neither l-NAME nor TEA altered sweating throughout the protocol (all P > 0.05), combined TEA + l-NAME attenuated sweating during exercise in the heat (P ≤ 0.05). We conclude that in habitually active older men blockade of KCa and KATP channels attenuates cutaneous vasodilation during rest and exercise in the heat, respectively, and these effects are NOS dependent. Furthermore, combined NOS inhibition and KCa channel blockade attenuates sweating during exercise in the heat.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada.,Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba City , Japan
| | - Caroline M Muia
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba City , Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| |
Collapse
|
7
|
Smith CJ, Craighead DH, Alexander LM. Effects of vehicle microdialysis solutions on cutaneous vascular responses to local heating. J Appl Physiol (1985) 2017; 123:1461-1467. [PMID: 28860170 DOI: 10.1152/japplphysiol.00498.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microdialysis is a minimally invasive technique often paired with laser Doppler flowmetry to examine cutaneous microvascular function, yet presents with several challenges, including incompatibility with perfusion of highly lipophilic compounds. The present study addresses this methodological concern, with an emphasis on the independent effects of commonly used vehicle dialysis solutions to improve solubility of pharmacological agents with otherwise low aqueous solubility. Four microdialysis fibers were placed in the ventral forearm of eight subjects (4 men, 4 women; 25 ± 1 yr) with sites randomized to serve as 1) control (lactated Ringer's), 2) Sodium carbonate-bicarbonate buffer administered at physiological pH [SCB-HCl; pH 7.4, achieved via addition of hydrochloric acid (HCl)], 3) 0.02% ethanol, and 4) 2% dimethyl sulfoxide (DMSO). After baseline (34°C), vehicle solutions were administered throughout a standardized local heating protocol to 42°C. Laser Doppler flowmetry provided an index of blood flow. Cutaneous vascular conductance was calculated and normalized to maximum (%CVCmax, sodium nitroprusside and 43°C local heat). The SCB-HCl solution increased baseline %CVCmax (control: 9.7 ± 0.8; SCB-HCl: 21.5 ± 3.5%CVCmax; P = 0.03), but no effects were observed during heating or maximal vasodilation. There were no differences with perfusion of ethanol or DMSO at any stage of the protocol ( P > 0.05). These data demonstrate the potential confounding effects of some vehicle dialysis solutions on cutaneous vascular function. Notably, this study provides evidence that 2% DMSO and 0.02% ethanol are acceptable vehicles with no confounding local vascular effects to a standardized local heating protocol at the concentrations presented. NEW & NOTEWORTHY This study examined the independent effects of common vehicle solutions on cutaneous vascular responses. A basic buffer (SCB-HCl) caused baseline vasodilation; 2% DMSO and 0.02% ethanol had no effects. This highlights the need for considering potential confounding effects of solubilizing solutions when combined with low aqueous soluble pharmacological agents. Importantly, DMSO and ethanol do not appear to influence cutaneous vascular function during baseline or local heating at the concentrations studied, allowing their use without confounding effects.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Daniel H Craighead
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
8
|
Fujii N, McNeely BD, Nishiyasu T, Kenny GP. Prostacyclin does not affect sweating but induces skin vasodilatation to a greater extent in older versus younger women: roles of NO and K Ca channels. Exp Physiol 2017; 102:578-586. [PMID: 28271565 DOI: 10.1113/ep086297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? It remains unknown whether ageing modulates prostacyclin-induced cutaneous vasodilatation in women. What is the main finding and its importance? Prostacyclin induced cutaneous vasodilatation, albeit the magnitude of increase at lower concentrations of prostacyclin was greater in older relative to young women. This response was associated with greater contributions of nitric oxide synthase and calcium-activated potassium channels. Our results suggest that administration of prostacyclin might be an effective therapy to reverse microvascular hypoperfusion, especially in older women. We previously reported that prostacyclin induces cutaneous vasodilatation but not sweating in younger and older men. Furthermore, we demonstrated that nitric oxide synthase and calcium-activated potassium (KCa ) channels contribute to the prostacyclin-induced cutaneous vasodilatation in younger men, although these contributions are diminished in older men. Given that the effects of ageing might differ between men and women, the above results cannot simply be applied to women. In this study, cutaneous vascular conductance and sweat rate were evaluated in younger (mean ± SD, 22 ± 3 years old) and older (55 ± 7 years old) women (10 per group) at four intradermal forearm skin sites treated as follows: (i) lactated Ringer solution without any drug (control); (ii) 10 mm NG -nitro-l-arginine (l-NNA), a non-specific nitric oxide synthase inhibitor; (iii) 50 mm tetraethylammonium (TEA), a non-specific KCa channel blocker; or (iv) 10 mm l-NNA plus 50 mm TEA. All four sites were co-administered with prostacyclin in an incremental manner (0.04, 0.4, 4, 40 and 400 μm, each for 25 min). Surprisingly, increases in cutaneous vascular conductance in response to 0.04-4 μm prostacyclin were greater in older relative to younger women (all P ≤ 0.05), and these age-related differences were diminished when both l-NNA and TEA were administered simultaneously (all P > 0.05). No effect on sweat rate was observed in either group (all concentrations, P > 0.05). We show that although prostacyclin does not mediate sweating, it induces cutaneous vasodilatation, and this response elicited by lower concentrations of prostacyclin is greater in older relative to younger women. This greater cutaneous vasodilatation in older women is likely to be attributable to nitric oxide synthase- and KCa channel-dependent mechanisms.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Louie JC, Fujii N, Meade RD, McNeely BD, Kenny GP. The roles of K Ca, K ATP, and K V channels in regulating cutaneous vasodilation and sweating during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2017; 312:R821-R827. [PMID: 28254750 DOI: 10.1152/ajpregu.00507.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
Abstract
We recently showed the varying roles of Ca2+-activated (KCa), ATP-sensitive (KATP), and voltage-gated (KV) K+ channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K+ channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1) lactated Ringer solution (control); 2) 50 mM tetraethylammonium (nonspecific KCa channel blocker); 3) 5 mM glybenclamide (selective KATP channel blocker); or 4) 10 mM 4-aminopyridine (nonspecific KV channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. KCa channel inhibition resulted in greater CVC versus control at end exercise (P = 0.04) and 10 and 20 min into recovery (both P < 0.01). KATP channel blockade attenuated CVC compared with control during baseline (P = 0.04), exercise (all P ≤ 0.04), and 10 min into recovery (P = 0.02). No differences in CVC were observed with KV channel inhibition during baseline (P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of KV channel inhibition augmenting sweating during baseline (P = 0.04), responses were similar to control with all K+ channel blockers during each time period (all P ≥ 0.07). We demonstrated that KCa and KATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat.
Collapse
Affiliation(s)
- Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and.,Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
10
|
Stanhewicz AE, Greaney JL, Alexander LM, Kenney WL. Blunted increases in skin sympathetic nerve activity are related to attenuated reflex vasodilation in aged human skin. J Appl Physiol (1985) 2016; 121:1354-1362. [PMID: 27789772 DOI: 10.1152/japplphysiol.00730.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022] Open
Abstract
Reflex cutaneous vasodilation in response to passive heating is attenuated in human aging. This diminished response is mediated, in part, by age-associated reductions in endothelial function; however, the contribution of altered skin sympathetic nervous system activity (SSNA) is unknown. We hypothesized that 1) healthy older adults would demonstrate blunted SSNA responses to increased core temperature compared with young adults and 2) the decreased SSNA response would be associated with attenuated cutaneous vasodilation. Reflex vasodilation was elicited in 13 young [23 ± 1 (SE) yr] and 13 older (67 ± 2 yr) adults using a water-perfused suit to elevate esophageal temperature by 1.0°C. SSNA (peroneal microneurography) and red cell flux (laser Doppler flowmetry) in the innervated dermatome (the dorsum of foot) were continuously measured. SSNA was normalized to, and expressed as, a percentage of baseline. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and expressed as a percentage of maximal CVC (local heating, 43°C). Reflex vasodilation was attenuated in older adults (P < 0.001). During heating, SSNA increased in both groups (P < 0.05); however, the response was significantly blunted in older adults (P = 0.01). The increase in SSNA during heating was linearly related to cutaneous vasodilation in both young (R2 = 0.87 ± 0.02, P < 0.01) and older (R2 = 0.76 ± 0.05, P < 0.01) adults; however, slope of the linear regression between ΔSSNA and ΔCVC was reduced in older compared with young (older: 0.05 ± 0.01 vs. young: 0.08 ± 0.01; P < 0.05). These data demonstrate that age-related impairments in reflex cutaneous vasodilation are mediated, in part, by blunted efferent SSNA during hyperthermia.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Jody L Greaney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
11
|
Fujii N, Louie JC, McNeely BD, Zhang SY, Tran MA, Kenny GP. K+ channel mechanisms underlying cholinergic cutaneous vasodilation and sweating in young humans: roles of KCa, KATP, and KV channels? Am J Physiol Regul Integr Comp Physiol 2016; 311:R600-6. [PMID: 27440718 DOI: 10.1152/ajpregu.00249.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022]
Abstract
Acetylcholine released from cholinergic nerves is involved in heat loss responses of cutaneous vasodilation and sweating. K(+) channels are thought to play a role in regulating cholinergic cutaneous vasodilation and sweating, though which K(+) channels are involved in their regulation remains unclear. We evaluated the hypotheses that 1) Ca(2+)-activated K(+) (KCa), ATP-sensitive K(+) (KATP), and voltage-gated K(+) (KV) channels all contribute to cholinergic cutaneous vasodilation; and 2) KV channels, but not KCa and KATP channels, contribute to cholinergic sweating. In 13 young adults (24 ± 5 years), cutaneous vascular conductance (CVC) and sweat rate were evaluated at intradermal microdialysis sites that were continuously perfused with: 1) lactated Ringer (Control), 2) 50 mM tetraethylammonium (KCa channel blocker), 3) 5 mM glybenclamide (KATP channel blocker), and 4) 10 mM 4-aminopyridine (KV channel blocker). At all sites, cholinergic cutaneous vasodilation and sweating were induced by coadministration of methacholine (0.0125, 0.25, 5, 100, and 2,000 mM, each for 25 min). The methacholine-induced increase in CVC was lower with the KCa channel blocker relative to Control at 0.0125 (1 ± 1 vs. 9 ± 6%max) and 5 (2 ± 5 vs. 17 ± 14%max) mM methacholine, whereas it was lower in the presence of KATP (69 ± 7%max) and KV (57 ± 14%max) channel blocker compared with Control (79 ± 6%max) at 100 mM methacholine. Furthermore, methacholine-induced sweating was lower at the KV channel blocker site (0.42 ± 0.17 mg·min(-1)·cm(-2)) compared with Control (0.58 ± 0.15 mg·min(-1)·cm(-2)) at 2,000 mM methacholine. In conclusion, we show that KCa, KATP, and KV channels play a role in cholinergic cutaneous vasodilation, whereas only KV channels contribute to cholinergic sweating in normothermic resting humans.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Sarah Yan Zhang
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - My-An Tran
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|