1
|
Moretto WI, Stahl AK, Mehta RS. Effects of acute temperature change on California moray prey manipulation and transport behavior. ZOOLOGY 2022; 154:126030. [PMID: 35905540 DOI: 10.1016/j.zool.2022.126030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022]
Abstract
California moray eels, Gymnothorax mordax, are benthic predatory residents of southern California kelp forest ecosystems. California morays around Catalina Island move vertically through the water column to feed, exposing them to a wide range of temperatures. For a predatory fish, morays have a relatively large prey handling repertoire that enable them to manipulate their prey before swallowing. Prey manipulation behaviors include shaking, spinning, knotting, and ramming prey against other objects. Morays also have observable transport mechanics where they protract and retract their pharyngeal jaws to swallow prey. We examined prey manipulation and transport behaviors at four temperature treatments that simulated the range of environmental temperatures morays encounter in the wild. We hypothesized that higher temperatures will increase the prevalence, duration, and rate of whole body prey manipulation behaviors and decrease the duration of prey transport time. Previous temperature studies focused on fishes occupying intermediate trophic levels. Therefore, understanding how acute temperature affects feeding behavior of the California moray eel, an abundant predatory fish, is especially important, as changes in environmental temperature may have disproportionate effects in their marine community. Five morays were acutely exposed to 15, 18, 21, 24 °C temperatures and their subsequent feeding behaviors were filmed and quantified. Individuals were offered the same relative prey mass (15 %) in relation to their body mass throughout the study. We compared the number of times each prey manipulation behavior occurred, the mean time morays employed each behavior, and the rate (number of times per second) each behavior was performed across different temperatures. Our data demonstrates that absolute time spent knotting varies significantly across temperature. Knotting, often used to remove pieces from larger prey, was most frequent at 21 and 24 °C. The average duration of knotting also increased with temperature. The rates of prey manipulation behaviors did not vary significantly with temperature. Finally, transport behavior did not vary across treatments. Our study shows that knotting behavior in the California moray is responsive to environmental temperatures and that morays may be able to manipulate larger prey in warmer waters. These behavioral data may have important implications for predator-prey relationships under dynamic and future ocean conditions.
Collapse
Affiliation(s)
- Wave I Moretto
- Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Allegra K Stahl
- Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
2
|
Sparks K, Couturier CS, Buskirk J, Flores A, Hoeferle A, Hoffman J, Stecyk JAW. Gene expression of hypoxia-inducible factor (HIF), HIF regulators, and putative HIF targets in ventricle and telencephalon of Trachemys scripta acclimated to 21 °C or 5 °C and exposed to normoxia, anoxia or reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111167. [PMID: 35182763 PMCID: PMC8977064 DOI: 10.1016/j.cbpa.2022.111167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
In anoxia-sensitive mammals, hypoxia inducible factor (HIF) promotes cellular survival in hypoxia, but also tumorigenesis. By comparison, anoxia-tolerant vertebrates likely need to circumvent a prolonged upregulation of HIF to survive long-term anoxia, making them attractive biomedical models for investigating HIF regulation. To lend insight into the role of HIF in anoxic Trachemys scripta ventricle and telencephalon, 21 °C- and 5 °C-acclimated turtles were exposed to normoxia, anoxia (24 h at 21 °C; 24 h or 14 d at 5 °C) or anoxia + reoxygenation and the gene expression of HIF-1α (hif1a) and HIF-2α (hif2a), two regulators of HIF, and eleven putative downstream targets of HIF quantified by qPCR. Changes in gene expression with anoxia at 21 °C differentially aligned with a circumvention of HIF activity. Whereas hif1a and hif2a expression was unaffected in ventricle and telencephalon, and BCL2 interacting protein 3 gene expression reduced by 30% in telencephalon, gene expression of vascular endothelial growth factor-A increased in ventricle (4.5-fold) and telencephalon (1.5-fold), and hexokinase 1 (2-fold) and hexokinase 2 (3-fold) gene expression increased in ventricle. At 5 °C, the pattern of gene expression in ventricle or telencephalon was unaltered with oxygenation state. However, cold acclimation in normoxia induced downregulation of HIF-1α, HIF-2α, and HIF target gene expression in telencephalon. Overall, the findings lend support to the postulation that prolonged activation of HIF is counterproductive for long-term anoxia survival. Nevertheless, quantification of the effect of anoxia and acclimation temperature on HIF binding activity and regulation at the protein level are needed to provide a strong scientific framework whereby new strategies for oxygen related pathologies can be developed.
Collapse
Affiliation(s)
- Kenneth Sparks
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Christine S Couturier
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jacob Buskirk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Alicia Flores
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Aurora Hoeferle
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jessica Hoffman
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States.
| |
Collapse
|
3
|
Garner M, Barber RG, Cussins J, Hall D, Reisinger J, Stecyk JA. Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? II. In vivo and in vitro assessment of the prevalence of cardiac arrhythmia and atrioventricular block. Curr Res Physiol 2022; 5:292-301. [PMID: 35856059 PMCID: PMC9287599 DOI: 10.1016/j.crphys.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Previous studies have reported evidence of atrio-ventricular (AV) block in the oxygen-limited Trachemys scripta heart. However, if cardiac arrhythmia occurs in live turtles during prolonged anoxia exposure remains unknown. Here, we compare the effects of prolonged anoxic submergence and subsequent reoxygenation on cardiac electrical activity through in vivo electrocardiogram (ECG) recordings of 21 °C- and 5 °C-acclimated turtles to assess the prevalence of cardiac arrhythmia. Additionally, to elucidate the influence of extracellular conditions on the prominence of cardiac arrhythmia, we exposed spontaneously contracting T. scripta right atrium and electrically coupled ventricle strip preparations to extracellular conditions that sequentially and additively approximated the shift from the normoxic to anoxic extracellular condition of warm- and cold-acclimated turtles. Cardiac arrhythmia was prominent in 21 °C anoxic turtles. Arrhythmia was qualitatively evidenced by groupings of contractions in pairs and trios and quantified by an increased coefficient of variation of the RR interval. Similarly, exposure to combined anoxia, acidosis, and hyperkalemia induced arrhythmia in vitro that was not counteracted by hypercalcemia or combined hypercalcemia and heightened adrenergic stimulation. By comparison, cold acclimation primed the turtle heart to be resilient to cardiac arrhythmia. Although cardiac irregularities were present intermittently, no change in the variation of the RR interval occurred in vivo with prolonged anoxia exposure at 5 °C. Moreover, the in vitro studies at 5 °C highlighted the importance of adrenergic stimulation in counteracting AV block. Finally, at both acclimation temperatures, cardiac arrhythmia and irregularities ceased upon reoxygenation, indicating that the T. scripta heart recovers from anoxia-induced disruptions to cardiac excitation. Cardiac arrhythmia was prominent in 21 °C anoxic turtles. Cold acclimation primes the turtle heart to be resilient to the cardiac arrhythmia induced by prolonged anoxic submergence. Adrenergic stimulation counteracts atrioventricular block at 5 °C. The turtle heart recovers from anoxia-induced disruptions to cardiac electrical activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan A.W. Stecyk
- Corresponding author. Stecyk Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA.
| |
Collapse
|
4
|
Shiels HA, White E, Couturier CS, Hall D, Royal S, Galli GL, Stecyk JA. The air-breathing Alaska blackfish (Dallia pectoralis) remodels ventricular Ca2+ cycling with chronic hypoxic submergence to maintain ventricular contractility. Curr Res Physiol 2022; 5:25-35. [PMID: 35072107 PMCID: PMC8763628 DOI: 10.1016/j.crphys.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
The Alaska blackfish (Dallia pectoralis) is a facultative air-breather endemic to northern latitudes where it remains active in winter under ice cover in cold hypoxic waters. To understand the changes in cellular Ca2+ cycling that allow the heart to function in cold hypoxic water, we acclimated Alaska blackfish to cold (5 °C) normoxia or cold hypoxia (2.1–4.2 kPa; no air access) for 5–8 weeks. We then assessed the impact of the acclimation conditions on intracellular Ca2+ transients (Δ[Ca2+]i) of isolated ventricular myocytes and contractile performance of isometrically-contracting ventricular strips. Measurements were obtained at various contractile frequencies (0.2–0.6 Hz) in normoxia, during acute exposure to hypoxia, and reoxygenation at 5 °C. The results show that hypoxia-acclimated Alaska blackfish compensate against the depressive effects of hypoxia on excitation-contraction coupling by remodelling cellular Δ[Ca2+]i to maintain ventricular contractility. When measured at 0.2 Hz in normoxia, hypoxia-acclimated ventricular myocytes had a 3.8-fold larger Δ[Ca2+]i peak amplitude with a 4.1-fold faster rate of rise, compared to normoxia-acclimated ventricular myocytes. At the tissue level, maximal developed force was 2.1-fold greater in preparations from hypoxia-acclimated animals. However, maximal attainable contraction frequencies in hypoxia were lower in hypoxia-acclimated myocytes and strips than preparations from normoxic animals. Moreover, the inability of hypoxia-acclimated ventricular myocytes and strips to contract at high frequency persisted upon reoxygenation. Overall, the findings indicate that hypoxia alters aspects of Alaska blackfish cardiac myocyte Ca2+ cycling, and that there may be consequences for heart rate elevation during hypoxia, which may impact cardiac output in vivo. The air-breathing Alaska blackfish remains active under ice cover in hypoxic waters. Maintained activity is supported by compensation of intracellular Ca2+ transients. The compensation permits greater ventricular maximal developed force. However, maximal attainable contraction frequencies are limited by hypoxia exposure.
Collapse
|
5
|
Garner M, Stecyk JA. Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure. Curr Res Physiol 2022; 5:312-326. [PMID: 35872835 PMCID: PMC9301509 DOI: 10.1016/j.crphys.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple lines of evidence suggest that an inability of the ventricle to contract in coordination with the pacemaker during anoxia exposure may suppress cardiac pumping rate in anoxia-tolerant turtles. To determine under what extracellular conditions the ventricle could be the weak link that limits cardiac pumping, we compared, under various extracellular conditions, the intrinsic contractile properties of isometrically-contracting ventricular and atrial strips obtained from 21 °C- to 5 °C- acclimated turtles (Trachemys scripta) that had been exposed to either normoxia or anoxia (16 h at 21 °C; 12 days at 5 °C). We found that combined extracellular anoxia, acidosis, and hyperkalemia (AAK), severely disrupted ventricular, but not right or left atrial, excitability and contractibility of 5 °C anoxic turtles. However, combined hypercalcemia and heightened adrenergic stimulation counteracted the negative effects of AAK. We also report that the turtle heart is resilient to prolonged diastolic intervals, which would ensure that contractile force is maintained if arrhythmia were to occur during anoxia exposure. Finally, our findings reinforce that prior temperature and anoxia experiences are central to the intrinsic contractile response of the turtle myocardium to altered extracellular conditions. At 21 °C, prior anoxia exposure preconditioned the ventricle for anoxic and acidosis exposure. At 5 °C, prior anoxia exposure evoked heightened sensitivity of the ventricle to hyperkalemia, as well as all chambers to combined hypercalcemia and increased adrenergic stimulation. Overall, our findings show that the ventricle could limit cardiac pumping rate during prolonged anoxic submergence in cold-acclimated turtles if hypercalcemia and heightened adrenergic stimulation are insufficient to counteract the negative effects of combined extracellular anoxia, acidosis, and hyperkalemia. Turtle atria are more resilient to extracellular factors that disrupt contraction than the ventricle. Combined anoxia, acidosis, and hyperkalemia disrupted ventricular excitability and contractibility of 5 °C anoxic turtles. Heightened adrenergic stimulation counteracted the negative effects. The ventricle could limit cardiac pumping during anoxia at 5 °C if adrenergic stimulation is low.
Collapse
|
6
|
Lari E, Buck LT. Exposure to low temperature prepares the turtle brain to withstand anoxic environments during overwintering. J Exp Biol 2021; 224:272110. [PMID: 34498078 DOI: 10.1242/jeb.242793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
In most vertebrates, anoxia drastically reduces the production of the essential adenosine triphosphate (ATP) to power its many necessary functions, and, consequently, cell death occurs within minutes. However, some vertebrates, such as the painted turtle (Chrysemys picta bellii), have evolved the ability to survive months without oxygen by simultaneously decreasing ATP supply and demand, surviving the anoxic period without any apparent cellular damage. The impact of anoxia on the metabolic function of painted turtles has received a lot of attention. However, the impact of low temperature has received less attention and the interactive effect of anoxia and temperature even less. In the present study, we investigated the interactive impacts of reduced temperature and severe hypoxia on the electrophysiological properties of pyramidal neurons in painted turtle cerebral cortex. Our results show that an acute reduction in temperature from 20 to 5°C decreases membrane potential, action potential width and amplitude, and whole-cell conductance. Importantly, acute exposure to 5°C considerably slows membrane repolarization by voltage-gated K+ channels. Exposing pyramidal cells to severe hypoxia in addition to an acute temperature change slightly depolarized membrane potential but did not alter action potential amplitude or width and whole-cell conductance. These results suggest that acclimation to low temperatures, preceding severe environmental hypoxia, induces cellular responses in pyramidal neurons that facilitate survival under low oxygen concentrations. In particular, our results show that temperature acclimation invokes a change in voltage-gated K+ channel kinetics that overcomes the acute inhibition of the channel.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
7
|
Stecyk JAW, Barber RG, Cussins J, Hall D. Indirect evidence that anoxia exposure and cold acclimation alter transarcolemmal Ca 2+ flux in the cardiac pacemaker, right atrium and ventricle of the red-eared slider turtle (Trachemys scripta). Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111043. [PMID: 34332046 DOI: 10.1016/j.cbpa.2021.111043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
We indirectly assessed if altered transarcolemmal Ca2+ flux accompanies the decreased cardiac activity displayed by Trachemys scripta with anoxia exposure and cold acclimation. Turtles were first acclimated to 21 °C or 5 °C and held under normoxic (21N; 5N) or anoxic conditions (21A; 5A). We then compared the response of intrinsic heart rate (fH) and maximal developed force of spontaneously contracting right atria (Fmax,RA), and maximal developed force of isometrically-contracting ventricular strips (Fmax,V), to Ni2+ (0.1-10 mM), which respectively blocks T-type Ca2+ channels, L-type Ca2+ channels and the Na+-Ca2+-exchanger at the low, intermediate and high concentrations employed. Dose-response curves were established in simulated in vivo normoxic (Sim Norm) or simulated in vivo anoxic extracellular conditions (Sim Anx; 21A and 5A preparations). Ni2+ decreased intrinsic fH, Fmax,RA and Fmax,V of 21N tissues in a concentration-dependent manner, but the responses were blunted in 21A tissues in Sim Norm. Similarly, dose-response curves for Fmax,RA and Fmax,V of 5N tissues were right-shifted, whereas anoxia exposure at 5 °C did not further alter the responses. The influence of Sim Anx was acclimation temperature-, cardiac chamber- and contractile parameter-dependent. Combined, the findings suggest that: (1) reduced transarcolemmal Ca2+ flux in the cardiac pacemaker is a potential mechanism underlying the slowed intrinsic fH of anoxic turtles at 21 °C, but not 5 °C, (2) a downregulation of transarcolemmal Ca2+ flux may aid cardiac anoxia survival at 21 °C and prime the turtle myocardium for winter anoxia and (3) confirm that altered extracellular conditions with anoxia exposure can modify turtle cardiac transarcolemmal Ca2+ flux.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America.
| | - Riley G Barber
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Jace Cussins
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Diarmid Hall
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| |
Collapse
|
8
|
Filatova TS, Abramochkin DV, Pavlova NS, Pustovit KB, Konovalova OP, Kuzmin VS, Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: a novel translational model for cardiac electrophysiology. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110919. [DOI: 10.1016/j.cbpa.2021.110919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
|
9
|
Herndon C, Astley HC, Owerkowicz T, Fenton FH. Defibrillate You Later, Alligator: Q10 Scaling and Refractoriness Keeps Alligators from Fibrillation. Integr Org Biol 2021; 3:obaa047. [PMID: 33977229 PMCID: PMC8101277 DOI: 10.1093/iob/obaa047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Effective cardiac contraction during each heartbeat relies on the coordination of an electrical wave of excitation propagating across the heart. Dynamically induced heterogeneous wave propagation may fracture and initiate reentry-based cardiac arrhythmias, during which fast-rotating electrical waves lead to repeated self-excitation that compromises cardiac function and potentially results in sudden cardiac death. Species which function effectively over a large range of heart temperatures must balance the many interacting, temperature-sensitive biochemical processes to maintain normal wave propagation at all temperatures. To investigate how these species avoid dangerous states across temperatures, we optically mapped the electrical activity across the surfaces of alligator (Alligator mississippiensis) hearts at 23°C and 38°C over a range of physiological heart rates and compare them with that of rabbits (Oryctolagus cuniculus). We find that unlike rabbits, alligators show minimal changes in wave parameters (action potential duration and conduction velocity) which complement each other to retain similar electrophysiological wavelengths across temperatures and pacing frequencies. The cardiac electrophysiology of rabbits accommodates the high heart rates necessary to sustain an active and endothermic metabolism at the cost of increased risk of cardiac arrhythmia and critical vulnerability to temperature changes, whereas that of alligators allows for effective function over a range of heart temperatures without risk of cardiac electrical arrhythmias such as fibrillation, but is restricted to low heart rates. Synopsis La contracción cardíaca efectiva durante cada latido del corazón depende de la coordinación de una onda eléctrica de excitación que se propaga a través del corazón. Heterogéidades inducidas dinámicamente por ondas de propagación pueden resultar en fracturas de las ondas e iniciar arritmias cardíacas basadas en ondas de reingreso, durante las cuales ondas espirales eléctricas de rotación rápida producen una autoexcitación repetida que afecta la función cardíaca y pude resultar en muerte súbita cardíaca. Las especies que funcionan eficazmente en una amplia gama de temperaturas cardíacas deben equilibrar los varios procesos bioquímicos que interactúan, sensibles a la temperatura para mantener la propagación normal de ondas a todas las temperaturas. Para investigar cómo estas especies evitan los estados peligrosos a través de las temperaturas, mapeamos ópticamente la actividad eléctrica a través de las superficies de los corazones de caimanes (Alligator mississippiensis) a 23°C and 38°C sobre un rango de frecuencias fisiológicas del corazón y comparamos con el de los conejos (Oryctolagus cuniculus). Encontramos que a diferencia de los conejos, los caimanes muestran cambios mínimos en los parámetros de onda (duración potencial de acción y velocidad de conducción) que se complementan entre sí para retener longitudes de onda electrofisiológicas similares a través de los rangos de temperaturas y frecuencias de ritmo. La electrofisiología cardíaca de los conejos acomoda las altas frecuencias cardíacas necesarias para mantener un metabolismo activo y endotérmico a costa de un mayor riesgo de arritmia cardíaca y vulnerabilidad crítica a los cambios de temperatura, mientras que la de los caimanes permite un funcionamiento eficaz en una serie de temperaturas cardíacas sin riesgo de arritmias eléctricas cardíacas como la fibrilación, pero está restringida a bajas frecuencias cardíacas.
Collapse
Affiliation(s)
- Conner Herndon
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Henry C Astley
- Department of Biology, Biomimicry Research & Innovation Center, University of Akron, Akron, OH, USA
| | - Tomasz Owerkowicz
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Stecyk JAW, Couturier CS, Abramochkin DV, Hall D, Arrant-Howell A, Kubly KL, Lockmann S, Logue K, Trueblood L, Swalling C, Pinard J, Vogt A. Cardiophysiological responses of the air-breathing Alaska blackfish to cold acclimation and chronic hypoxic submergence at 5°C. J Exp Biol 2020; 223:jeb225730. [PMID: 33020178 PMCID: PMC7687868 DOI: 10.1242/jeb.225730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
The Alaska blackfish (Dallia pectoralis) remains active at cold temperatures when experiencing aquatic hypoxia without air access. To discern the cardiophysiological adjustments that permit this behaviour, we quantified the effect of acclimation from 15°C to 5°C in normoxia (15N and 5N fish), as well as chronic hypoxic submergence (6-8 weeks; ∼6.3-8.4 kPa; no air access) at 5°C (5H fish), on in vivo and spontaneous heart rate (fH), electrocardiogram, ventricular action potential (AP) shape and duration (APD), the background inward rectifier (IK1) and rapid delayed rectifier (IKr) K+ currents and ventricular gene expression of proteins involved in excitation-contraction coupling. In vivo fH was ∼50% slower in 5N than in 15N fish, but 5H fish did not display hypoxic bradycardia. Atypically, cold acclimation in normoxia did not induce shortening of APD or alter resting membrane potential. Rather, QT interval and APD were ∼2.6-fold longer in 5N than in 15N fish because outward IK1 and IKr were not upregulated in 5N fish. By contrast, chronic hypoxic submergence elicited a shortening of QT interval and APD, driven by an upregulation of IKr The altered electrophysiology of 5H fish was accompanied by increased gene expression of kcnh6 (3.5-fold; Kv11.2 of IKr), kcnj12 (7.4-fold; Kir2.2 of IK1) and kcnj14 (2.9-fold; Kir2.4 of IK1). 5H fish also exhibited a unique gene expression pattern that suggests modification of ventricular Ca2+ cycling. Overall, the findings reveal that Alaska blackfish exposed to chronic hypoxic submergence prioritize the continuation of cardiac performance to support an active lifestyle over reducing cardiac ATP demand.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Christine S Couturier
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, 1-12 Leninskiye Gory, 119991 Moscow, Russia
- Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology of Kоmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya Str., 167982 Syktyvkar, Komi Republic, Russia
| | - Diarmid Hall
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Asia Arrant-Howell
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Kerry L Kubly
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Shyanne Lockmann
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Kyle Logue
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Lenett Trueblood
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Connor Swalling
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Jessica Pinard
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Angela Vogt
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| |
Collapse
|
11
|
Cox GK, Gillis TE. Surviving anoxia: the maintenance of energy production and tissue integrity during anoxia and reoxygenation. J Exp Biol 2020; 223:223/13/jeb207613. [DOI: 10.1242/jeb.207613] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT
The development of anoxia within tissues represents a significant challenge to most animals because of the decreased capacity for aerobic ATP production, the associated loss of essential cellular functions and the potential for detrimental tissue oxidation upon reoxygenation. Despite these challenges, there are many animals from multiple phyla that routinely experience anoxia and can fully recover. In this Review, we integrate knowledge gained from studies of anoxia-tolerant species across many animal taxa. We primarily focus on strategies used to reduce energy requirements, minimize the consequences of anaerobic ATP production and reduce the adverse effects of reactive oxygen species, which are responsible for tissue damage with reoxygenation. We aim to identify common strategies, as well as novel solutions, to the challenges of anoxia exposure. This Review chronologically examines the challenges faced by animals as they enter anoxia, as they attempt to maintain physiological function during prolonged anoxic exposure and, finally, as they emerge from anoxia. The capacity of animals to survive anoxia is also considered in relation to the increasing prevalence of anoxic zones within marine and freshwater environments, and the need to understand what limits survival.
Collapse
Affiliation(s)
- Georgina K. Cox
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Todd E. Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
12
|
The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:16-29. [DOI: 10.1016/j.pbiomolbio.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
|
13
|
Kolomeyets NL, Roshchevskaya IM. The electrical resistivity of a segment of the tail, lungs, liver, and intercostal muscles of the grass snake during in vivo cooling. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Wilson CM, Roa JN, Cox GK, Tresguerres M, Farrell AP. Introducing a novel mechanism to control heart rate in the ancestral Pacific hagfish. ACTA ACUST UNITED AC 2016; 219:3227-3236. [PMID: 27510962 DOI: 10.1242/jeb.138198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
Although neural modulation of heart rate is well established among chordate animals, the Pacific hagfish (Eptatretus stoutii) lacks any cardiac innervation, yet it can increase its heart rate from the steady, depressed heart rate seen in prolonged anoxia to almost double its normal normoxic heart rate, an almost fourfold overall change during the 1-h recovery from anoxia. The present study sought mechanistic explanations for these regulatory changes in heart rate. We provide evidence for a bicarbonate-activated, soluble adenylyl cyclase (sAC)-dependent mechanism to control heart rate, a mechanism never previously implicated in chordate cardiac control.
Collapse
Affiliation(s)
- Christopher M Wilson
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Georgina K Cox
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.,Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
15
|
Keen AN, Shiels HA, Crossley DA. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R133-43. [PMID: 27101300 PMCID: PMC4967230 DOI: 10.1152/ajpregu.00510.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/07/2016] [Indexed: 01/12/2023]
Abstract
Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in the slider turtle.
Collapse
Affiliation(s)
- Adam N Keen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Holly A Shiels
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
16
|
Tikkanen E, Haverinen J, Egginton S, Hassinen M, Vornanen M. Effects of prolonged anoxia on electrical activity of the heart in Crucian carp (Carassius carassius). J Exp Biol 2016; 220:445-454. [DOI: 10.1242/jeb.145177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
The effects of sustained anoxia on cardiac electrical excitability were examined in the anoxia-tolerant Crucian carp (Carassius carassius). The electrocardiogram (ECG) and expression of excitation-contraction coupling genes were studied in fish acclimatised to normoxia in summer (+18°C) or winter (+2°C), and in winter fish after 1, 3 and 6 weeks of anoxia. Anoxia induced a sustained bradycardia from a heart rate of 10.3±0.77 to 4.1±0.29 bpm (P<0.05) after 5 weeks, and heart rate slowly recovered to control levels when oxygen was restored. Heart rate variability greatly increased under anoxia, and completely recovered under re-oxygenation. The RT interval increased from 2.8±0.34 s in normoxia to 5.8±0.44 s under anoxia (P<0.05), which reflects a doubling of the ventricular action potential (AP) duration. Acclimatisation to winter induced extensive changes in gene expression relative to summer-acclimatised fish, including depression in those coding for the sarcoplasmic reticulum calcium pump (Serca2-q2) and ATP-sensitive K+ channels (Kir6.2) (P<0.05). Genes of delayed rectifier K+ (kcnh6) and Ca2+ channels (cacna1c) were up-regulated in winter fish (P<0.05). In contrast, the additional challenge of anoxia caused only minor changes in gene expression, e.g. depressed expression of Kir2.2b K+ channel gene (kcnj12b), whereas expression of Ca2+ (cacna1a, -c and –g) and Na+ channel genes (scn4a and scn5a) were not affected. These data suggest that low temperature pre-conditions the Crucian carp heart for winter anoxia, whereas sustained anoxic bradycardia and prolongation of AP duration are directly induced by oxygen shortage without major changes in gene expression.
Collapse
Affiliation(s)
- Elisa Tikkanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Finland
| | - Jaakko Haverinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Finland
| | | | - Minna Hassinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Finland
| |
Collapse
|
17
|
Kubly KL, Stecyk JAW. Temperature-dependence of L-type Ca(2+) current in ventricular cardiomyocytes of the Alaska blackfish (Dallia pectoralis). J Comp Physiol B 2015; 185:845-58. [PMID: 26439127 DOI: 10.1007/s00360-015-0931-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 09/07/2015] [Indexed: 01/12/2023]
Abstract
To lend insight into the overwintering strategy of the Alaska blackfish (Dallia pectoralis), we acclimated fish to 15 or 5 °C and then utilized whole-cell patch clamp to characterize the effects of thermal acclimation and acute temperature change on the density and kinetics of ventricular L-type Ca(2+) current (I Ca). Peak I Ca density at 5 °C (-1.1 ± 0.1 pA pF(-1)) was 1/8th that at 15 °C (-8.8 ± 0.6 pA pF(-1)). However, alterations of the Ca(2+)- and voltage-dependent inactivation properties of L-type Ca(2+) channels partially compensated against the decrease. The time constant tau (τ) for the kinetics of inactivation of I Ca was ~4.5 times greater at 5 °C than at 15 °C, and the voltage for half-maximal inactivation was shifted from -23.3 ± 1.0 mV at 15 °C to -19.8 ± 1.2 mV at 5 °C. These modifications increase the open probability of the channel and culminate in an approximate doubling of the L-type Ca(2+) window current, which contributes to approximately 15% of the maximal Ca(2+) conductance at 5 °C. Consequently, the charge density of I Ca (Q Ca) and the total Ca(2+) transferred through the L-type Ca(2+) channels (Δ[Ca(2+)]) were not as severely reduced at 5 °C as compared to peak I Ca density. In combination, the results suggest that while the Alaska blackfish substantially down-regulates I Ca with acclimation to low temperature, there is sufficient compensation in the kinetics of the L-type Ca(2+) channel to support the level of cardiac performance required for the fish to remain active throughout the winter.
Collapse
Affiliation(s)
- Kerry L Kubly
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Conoco Philips Integrated Science Building, Anchorage, AK, 99508, USA.
| | - Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Conoco Philips Integrated Science Building, Anchorage, AK, 99508, USA
| |
Collapse
|
18
|
Abstract
Decreased oxygen availability impairs cellular energy production and, without a coordinated and matched decrease in energy consumption, cellular and whole organism death rapidly ensues. Of particular interest are mechanisms that protect brain from low oxygen injury, as this organ is not only the most sensitive to hypoxia, but must also remain active and functional during low oxygen stress. As a result of natural selective pressures, some species have evolved molecular and physiological mechanisms to tolerate prolonged hypoxia with no apparent detriment. Among these mechanisms are a handful of responses that are essential for hypoxia tolerance, including (i) sensors that detect changes in oxygen availability and initiate protective responses; (ii) mechanisms of energy conservation; (iii) maintenance of basic brain function; and (iv) avoidance of catastrophic cell death cascades. As the study of hypoxia-tolerant brain progresses, it is becoming increasingly apparent that mitochondria play a central role in regulating all of these critical mechanisms. Furthermore, modulation of mitochondrial function to mimic endogenous neuroprotective mechanisms found in hypoxia-tolerant species confers protection against otherwise lethal hypoxic stresses in hypoxia-intolerant organs and organisms. Therefore, lessons gleaned from the investigation of endogenous mechanisms of hypoxia tolerance in hypoxia-tolerant organisms may provide insight into clinical pathologies related to low oxygen stress.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Zoology, The University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Stecyk JAW, Couturier CS, Fagernes CE, Ellefsen S, Nilsson GE. Quantification of heat shock protein mRNA expression in warm and cold anoxic turtles (Trachemys scripta) using an external RNA control for normalization. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 7:59-72. [PMID: 22129782 DOI: 10.1016/j.cbd.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 01/30/2023]
Abstract
The mRNA expression of heat-shock protein 90 (HSP90) and heat-shock cognate 70 (HSC70) was examined in cardiac chambers and telencephalon of warm- (21°C) and cold-acclimated (5°C) turtles (Trachemys scripta) exposed to normoxia, prolonged anoxia or anoxia followed by reoxygenation. Additionally, the suitability of total RNA as well as mRNA from β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and cyclophilin A (PPIA) for normalizing gene expression data was assessed, as compared to the use of an external RNA control. Measurements of HSP90 and HSC70 mRNA expression revealed that anoxia and reoxygenation have tissue- and gene-specific effects. By and large, the alterations support previous investigations on HSP protein abundance in the anoxic turtle heart and brain, as well as the hypothesized roles of HSP90 and HSC70 during stress and non-stress conditions. However, more prominent was a substantially increased HSP90 and HSC70 mRNA expression in the cardiac chambers with cold acclimation. The finding provides support for the notion that cold temperature induces a number of adaptations in tissues of anoxia-tolerant vertebrates that precondition them for winter anoxia. β-actin, GAPDH and PPIA mRNA expression and total RNA also varied with oxygenation state and acclimation temperature in a tissue- and gene-specific manner, as well as among tissue types, thus disqualifying them as suitable for real-time RT-PCR normalization. Thus, the present data highlights the advantages of normalizing real-time RT-PCR data to an external RNA control, an approach that also allows inter-tissue and potentially inter-species comparisons of target gene expression.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316, Oslo, Norway.
| | | | | | | | | |
Collapse
|
20
|
Stecyk JAW, Larsen BC, Nilsson GE. Intrinsic contractile properties of the crucian carp (Carassius carassius) heart during anoxic and acidotic stress. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1132-42. [PMID: 21795637 DOI: 10.1152/ajpregu.00372.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crucian carp (Carassius carassius) seems unique among vertebrates in its ability to maintain cardiac performance during prolonged anoxia. We investigated whether this phenomenon arises in part from a myocardium tolerant to severe acidosis or because the anoxic crucian carp heart may not experience a severe extracellular acidosis due to the fish's ability to convert lactate to ethanol. Spontaneously contracting heart preparations from cold-acclimated (6-8°C) carp were exposed (at 6.5°C) to graded or ungraded levels of acidosis under normoxic or anoxic conditions and intrinsic contractile performance was assessed. Our results clearly show that the carp heart is tolerant of acidosis as long as oxygen is available. However, heart rate and contraction kinetics of anoxic hearts were severely impaired when extracellular pH was decreased below 7.4. Nevertheless, the crucian carp heart was capable of recovering intrinsic contractile performance upon reoxygenation regardless of the severity of the anoxic + acidotic insult. Finally, we show that increased adrenergic stimulation can ameliorate, to a degree, the negative effects of severe acidosis on the intrinsic contractile properties of the anoxic crucian carp heart. Combined, these findings indicate an avoidance of severe extracellular acidosis and adrenergic stimulation are two important factors protecting the intrinsic contractile properties of the crucian carp heart during prolonged anoxia, and thus likely facilitate the ability of the anoxic crucian carp to maintain cardiac pumping.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Physiology Programme, Dept. of Molecular Biosciences, Univ. of Oslo, PO Box 1041, N-0316, Oslo, Norway.
| | | | | |
Collapse
|
21
|
Warren DE, Galli GLJ, Patrick SM, Shiels HA. The cellular force-frequency response in ventricular myocytes from the varanid lizard, Varanus exanthematicus. Am J Physiol Regul Integr Comp Physiol 2010; 298:R567-74. [PMID: 20053961 DOI: 10.1152/ajpregu.00650.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the cellular mechanisms underlying the negative force-frequency relationship (FFR) in the ventricle of the varanid lizard, Varanus exanthematicus, we measured sarcomere and cell shortening, intracellular Ca(2+) ([Ca(2+)](i)), action potentials (APs), and K(+) currents in isolated ventricular myocytes. Experiments were conducted between 0.2 and 1.0 Hz, which spans the physiological range of in vivo heart rates at 20-22 degrees C for this species. As stimulation frequency increased, diastolic length, percent change in sarcomere length, and relaxation time all decreased significantly. Shortening velocity was unaffected. These changes corresponded to a faster rate of rise of [Ca(2+)](i), a decrease in [Ca(2+)](i) transient amplitude, and a seven-fold increase in diastolic [Ca(2+)](i). The time constant for the decay of the Ca(2+) transient (tau) decreased at higher frequencies, indicating a frequency-dependent acceleration of relaxation (FDAR) but then reached a plateau at moderate frequencies and did not change above 0.5 Hz. The rate of rise of the AP was unaffected, but the AP duration (APD) decreased with increasing frequency. Peak depolarization tended to decrease, but it was only significant at 1.0 Hz. The decrease in APD was not due to frequency-dependent changes in the delayed inward rectifier (I(Kr)) or the transient outward (I(to)) current, as neither appeared to be present in varanid ventricular myocytes. Our results suggest that a negative FFR relationship in varanid lizard ventricle is caused by decreased amplitude of the Ca(2+) transient coupled with an increase in diastolic Ca(2+), which leads to incomplete relaxation between beats at high frequencies. This coincides with shortened APD at higher frequencies.
Collapse
Affiliation(s)
- Daniel E Warren
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
22
|
Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Pörtner HO. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 2009; 297:R756-68. [PMID: 19587113 DOI: 10.1152/ajpregu.00102.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between cardiac energy metabolism and the depression of myocardial performance during oxygen deprivation has remained enigmatic. Here, we combine in vivo (31)P-NMR spectroscopy and MRI to provide the first temporal profile of in vivo cardiac energetics and cardiac performance of an anoxia-tolerant vertebrate, the freshwater turtle (Trachemys scripta) during long-term anoxia exposure (approximately 3 h at 21 degrees C and 11 days at 5 degrees C). During anoxia, phosphocreatine (PCr), unbound levels of inorganic phosphate (effective P(i)(2-)), intracellular pH (pH(i)), and free energy of ATP hydrolysis (dG/dxi) exhibited asymptotic patterns of change, indicating that turtle myocardial high-energy phosphate metabolism and energetic state are reset to new, reduced steady states during long-term anoxia exposure. At 21 degrees C, anoxia caused a reduction in pH(i) from 7.40 to 7.01, a 69% decrease in PCr and a doubling of effective P(i)(2-). ATP content remained unchanged, but the free energy of ATP hydrolysis (dG/dxi) decreased from -59.6 to -52.5 kJ/mol. Even so, none of these cellular changes correlated with the anoxic depression of cardiac performance, suggesting that autonomic cardiac regulation may override putative cellular feedback mechanisms. In contrast, during anoxia at 5 degrees C, when autonomic cardiac control is severely blunted, the decrease of pH(i) from 7.66 to 7.12, 1.9-fold increase of effective P(i)(2-), and 6.4 kJ/mol decrease of dG/dxi from -53.8 to -47.4 kJ/mol were significantly correlated to the anoxic depression of cardiac performance. Our results provide the first evidence for a close, long-term coordination of functional cardiac changes with cellular energy status in a vertebrate, with a potential for autonomic control to override these immediate relationships.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Jones EA, Jong AS, Ellerby DJ. The effects of acute temperature change on swimming performance in bluegill sunfishLepomis macrochirus. J Exp Biol 2008; 211:1386-93. [DOI: 10.1242/jeb.014688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMany fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (Umax),labriform-undulatory gait transition speed (Utrans) and the relationships between fin beat frequency and speed were measured at 14,18, 22, 26 and 30°C in bluegill acclimated to 22°C. At temperatures below the acclimation temperature (Ta), Umax, Utrans and the caudal and pectoral fin beat frequencies at these speeds were reduced relative to the acclimation level. At temperatures above Ta there was no change in these variables relative to the acclimation level. Supplementation of oxygen levels at 30°C had no effect on swimming performance. The mechanical power output of the abductor superficialis, a pectoral fin abductor muscle, was measured in vitro at the same temperatures used for the swimming experiments. At and below Ta, maximal power output was produced at a cycle frequency approximately matching the in vivo pectoral fin beat frequency. At temperatures above Ta muscle power output and cycle frequency could be increased above the in vivo levels at Utrans. Our data suggest that the factors triggering the labriform–undulatory gait transition change with temperature. Muscle mechanical performance limited labriform swimming speed at Ta and below, but other mechanical or energetic factors limited labriform swimming speed at temperatures above Ta.
Collapse
Affiliation(s)
- Emily A. Jones
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| | - Arianne S. Jong
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| | - David J. Ellerby
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| |
Collapse
|