1
|
Dhillon SK, Lear CA, Davidson JO, Magawa S, Gunn AJ, Bennet L. The neural and cardiovascular effects of exposure of gram-positive bacterial inflammation in preterm fetal sheep. J Cereb Blood Flow Metab 2024; 44:955-969. [PMID: 37824725 PMCID: PMC11318397 DOI: 10.1177/0271678x231197380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 10/14/2023]
Abstract
Perinatal infection or inflammation are associated with adverse neurodevelopmental effects and cardiovascular impairments in preterm infants. Most preclinical studies have examined the effects of gram-negative bacterial inflammation on the developing brain, although gram-positive bacterial infections are a major contributor to adverse outcomes. Killed Su-strain group 3 A streptococcus pyogenes (Picibanil, OK-432) is being used for pleurodesis in fetal hydrothorax/chylothorax. We therefore examined the neural and cardiovascular effects of clinically relevant intra-plural infusions of Picibanil. Chronically instrumented preterm (0.7 gestation) fetal sheep received an intra-pleural injection of low-dose (0.1 mg, n = 8) or high-dose (1 mg, n = 8) Picibanil or saline-vehicle (n = 8). Fetal brains were collected for histology one-week after injection. Picibanil exposure was associated with sustained diffuse white matter inflammation and loss of immature and mature oligodendrocytes and subcortical neurons, and associated loss of EEG power. These neural effects were not dose-dependent. Picibanil was also associated with acute changes in heart rate and attenuation of the maturational increase in mean arterial pressure. Even a single exposure to a low-dose gram-positive bacterial-mediated inflammation during the antenatal period is associated with prolonged changes in vascular and neural function.
Collapse
Affiliation(s)
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Giraud A, Stephens CM, Boylan GB, Walsh BH. The impact of perinatal inflammation on the electroencephalogram in preterm infants: a systematic review. Pediatr Res 2022; 92:32-39. [PMID: 35365760 PMCID: PMC9411055 DOI: 10.1038/s41390-022-02038-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND To summarise the association between perinatal inflammation (PI) exposure and electroencephalography (EEG) features in preterm infants. METHODS This systematic review included clinical studies of preterm infants born <37 weeks of gestational age (GA), who had both a PI exposure and an EEG assessment performed during the neonatal period. Studies were identified from Medline and Embase databases on the 15th of September 2021. PI was defined by histological chorioamnionitis, clinical chorioamnionitis, or early-onset neonatal infection (EONI). The risk of bias in included studies was assessed using the Joanna Briggs Institute (JBI) appraisal tool. A narrative approach was used to synthesise results. This review followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 statement. RESULTS Two cross-sectional studies enrolling 130 preterm children born <32 weeks of GA assessed with one-channel amplitude-integrated EEG (aEEG) during the first four days of life were included. A PI exposure was described in 39 (30%) infants and was associated with a decrease in amplitude and a reduced incidence of sleep-wake cycling patterns. CONCLUSION These results should be interpreted with caution because of the small number of included studies and their heterogeneity. Further clinical studies evaluating the association of PI with EEG findings are needed. IMPACT A method to assess developmental trajectories following perinatal inflammation is required. Insufficient data exist to determine EEG features associated with perinatal inflammation. Further clinical studies evaluating this association are needed.
Collapse
Affiliation(s)
- Antoine Giraud
- grid.7872.a0000000123318773INFANT Research Centre, University College Cork, Cork, Ireland ,grid.6279.a0000 0001 2158 1682INSERM, U1059 SAINBIOSE, Université Jean Monnet, Saint-Étienne, France
| | - Carol M. Stephens
- grid.7872.a0000000123318773INFANT Research Centre, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Geraldine B. Boylan
- grid.7872.a0000000123318773INFANT Research Centre, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Brian H. Walsh
- grid.7872.a0000000123318773INFANT Research Centre, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Paediatrics and Child Health, University College Cork, Cork, Ireland ,grid.411916.a0000 0004 0617 6269Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| |
Collapse
|
3
|
Sabir H, Bonifacio SL, Gunn AJ, Thoresen M, Chalak LF. Unanswered questions regarding therapeutic hypothermia for neonates with neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101257. [PMID: 34144931 DOI: 10.1016/j.siny.2021.101257] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Therapeutic hypothermia (TH) is now well established to improve intact survival after neonatal encephalopathy (NE). However, many questions could not be addressed by the randomized controlled trials. Should late preterm newborns with NE be cooled? Is cooling beneficial for mild NE? Is the current therapeutic time window optimal, or could it be shortened or prolonged? Will either milder or deeper hypothermia be effective? Does infection/inflammation exposure in the perinatal period in combination with NE offer potentially beneficial preconditioning or might it obviate hypothermic neuroprotection? In the present review, we dissect the evidence, for whom, when and how can TH best be delivered, and highlight areas that need further research.
Collapse
Affiliation(s)
- Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Marianne Thoresen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Neonatal Neuroscience, Translational Medicine, University of Bristol, Bristol, United Kingdom.
| | - Lina F Chalak
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA.
| |
Collapse
|
4
|
O''Brien B, Kesby G, Ogle R, Rieger I, Hyett JA. Treatment of Primary Fetal Hydrothorax with OK-432 (Picibanil): Outcome in 14 Fetuses and a Review of the Literature. Fetal Diagn Ther 2015; 37:259-66. [DOI: 10.1159/000363651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/10/2014] [Indexed: 11/19/2022]
Abstract
Background: Primary fetal hydrothorax (PFHT) is an uncommon condition with an estimated prevalence of 1 in 10,000/15,000 pregnancies. Therapeutic interventions include thoracocentesis, thoraco-amniotic shunting (TAS), and pleurodesis using OK-432. Methods: A review of the literature was performed to identify all cases of PFHT treated with TAS and OK-432. All cases of PFHT referred to the Fetal Maternal Unit at Royal Prince Alfred Hospital between 2002 and 2012 were retrospectively reviewed. In the cohort of fetuses treated with OK-432, the main perinatal outcomes evaluated were termination of pregnancy, live birth, neonatal death, and fetal death in utero. Secondary outcomes included gestational age (GA) at diagnosis, GA at treatment, GA at resolution, birth weight, and GA at birth. The development of the children was screened using the Ages and Stages Questionnaires, Version 3 (ASQ-3, 2009). Results: Primary hydrothorax was diagnosed in 31 fetuses, of which 14 had treatment with OK-432. One pregnancy terminated after treatment with OK-432. Survival was 85% (11/13): 100% in fetuses treated with OK-432 without hydrops, and 78% in those treated with hydrops. This compares well to the cases of TAS in the literature with an average survival of 63%: 85% in fetuses without hydrops and 55% with hydrops. The mean GA at birth was 36+4 weeks and mean birth weight 3,007 g. Eight of the 9 children screened with ASQ-3 scored well within the normal range. Conclusion: OK-432 appears to be a valid treatment option in fetuses with PFHT, particularly in those diagnosed at early GAs.
Collapse
|
5
|
Lear CA, Davidson JO, Booth LC, Wassink G, Galinsky R, Drury PP, Fraser M, Bennet L, Gunn AJ. Biphasic changes in fetal heart rate variability in preterm fetal sheep developing hypotension after acute on chronic lipopolysaccharide exposure. Am J Physiol Regul Integr Comp Physiol 2014; 307:R387-95. [PMID: 24944248 DOI: 10.1152/ajpregu.00110.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perinatal exposure to infection is highly associated with adverse outcomes. Experimentally, acute, severe exposure to gram-negative bacterial lipopolysaccharide (LPS) is associated with increased fetal heart rate variability (FHRV). It is unknown whether FHRV is affected by subclinical infection with or without acute exacerbations. We therefore tested the hypothesis that FHRV would be associated with hypotension after acute on chronic exposure to LPS. Chronically instrumented fetal sheep at 0.7 gestation were exposed to a continuous low-dose LPS infusion (n = 12, 100 ng/kg over 24 h, followed by 250 ng·kg(-1)·24 h(-1) for a further 96 h) or the same volume of saline (n = 10). Boluses of either 1 μg LPS or saline were given at 48, 72, and 96 h. Low-dose infusion was not associated with hemodynamic or FHRV changes. The first LPS bolus was associated with tachycardia and suppression of nuchal electromyographic activity in all fetuses. Seven of twelve fetuses developed hypotension (a fall in mean arterial blood pressure ≥5 mmHg). FHRV was transiently increased only at the onset of hypotension, in association with increased cytokine induction and electroencephalogram suppression. FHRV then fell before the nadir of hypotension, with transient suppression of short-term FHRV. After the second LPS bolus, the hypotension group showed a biphasic pattern of a transient increase in FHRV followed by more prolonged suppression. These findings suggest that infection-related hypotension in the preterm fetus mediates the transient increase in FHRV and that repeated exposure to LPS leads to progressive loss of FHRV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mhoyra Fraser
- Department of Physiology, and The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
6
|
Strunk T, Inder T, Wang X, Burgner D, Mallard C, Levy O. Infection-induced inflammation and cerebral injury in preterm infants. THE LANCET. INFECTIOUS DISEASES 2014; 14:751-762. [PMID: 24877996 DOI: 10.1016/s1473-3099(14)70710-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preterm birth and infectious diseases are the most common causes of neonatal and early childhood deaths worldwide. The rates of preterm birth have increased over recent decades and account for 11% of all births worldwide. Preterm infants are at significant risk of severe infection in early life and throughout childhood. Bacteraemia, inflammation, or both during the neonatal period in preterm infants is associated with adverse outcomes, including death, chronic lung disease, and neurodevelopmental impairment. Recent studies suggest that bacteraemia could trigger cerebral injury even without penetration of viable bacteria into the CNS. Here we review available evidence that supports the concept of a strong association between bacteraemia, inflammation, and cerebral injury in preterm infants, with an emphasis on the underlying biological mechanisms, clinical correlates, and translational opportunities.
Collapse
Affiliation(s)
- Tobias Strunk
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia; Neonatal Clinical Care Unit, King Edward Memorial Hospital, Perth, WA, Australia.
| | - Terrie Inder
- Department of Pediatrics, Neurology and Radiology, Washington University, St Louis, USA
| | - Xiaoyang Wang
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Shangjie, Henan, China
| | - David Burgner
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Barrett RD, Bennet L, Blood AB, Wassink G, Gunn AJ. Asphyxia and therapeutic hypothermia modulate plasma nitrite concentrations and carotid vascular resistance in preterm fetal sheep. Reprod Sci 2014; 21:1483-91. [PMID: 24740991 DOI: 10.1177/1933719114530187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we tested the hypothesis that cerebral hypoperfusion after asphyxia and induced hypothermia is associated with reduced circulating nitrite levels as an index of nitric oxide synthase (NOS) activity. The preterm fetal sheep at 0.7 gestation (103-104 days, term = 147 days) received 25-minute umbilical cord occlusion, followed by mild whole-body cooling from 30 minutes to 72 hours after occlusion. Occlusion and induced hypothermia were independently associated with reduced carotid vascular conductance (CaVC) from 2 to 72 hours, and with transiently suppressed plasma nitrite levels at 6 hours. There was a significant within-subjects correlation (r(2) = 0.33, P = .002) between CaVC and plasma nitrite values in the first 24 hours after occlusion but not after sham occlusion. These findings suggest that in preterm fetal sheep, changes in NOS activity are an important mediator of changes in carotid vascular tone in the early recovery phase after asphyxia and may help mediate some of the vascular effects of induced hypothermia.
Collapse
Affiliation(s)
- Robert D Barrett
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Arlin B Blood
- Department of Pediatrics and Center for Perinatal Biology, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Bennet L, Van Den Heuij L, M Dean J, Drury P, Wassink G, Jan Gunn A. Neural plasticity and the Kennard principle: does it work for the preterm brain? Clin Exp Pharmacol Physiol 2013; 40:774-84. [DOI: 10.1111/1440-1681.12135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lotte Van Den Heuij
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Justin M Dean
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Paul Drury
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Alistair Jan Gunn
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| |
Collapse
|
9
|
Bennet L, Booth LC, Drury PP, Quaedackers JSL, Gunn AJ. Preterm neonatal cardiovascular instability: Does understanding the fetus help evaluate the newborn? Clin Exp Pharmacol Physiol 2012; 39:965-72. [DOI: 10.1111/j.1440-1681.2012.05744.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Lindsea C Booth
- Neurobiology Division; Florey Neuroscience Institutes; University of Melbourne; Melbourne; Victoria; Australia
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Josine SL Quaedackers
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| |
Collapse
|
10
|
Kim JE, Lee C, Park KI, Park MS, Namgung R, Park IK. Successful pleurodesis with OK-432 in preterm infants with persistent pleural effusion. KOREAN JOURNAL OF PEDIATRICS 2012; 55:177-80. [PMID: 22670153 PMCID: PMC3362732 DOI: 10.3345/kjp.2012.55.5.177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/28/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022]
Abstract
OK-432 (picibanil) is an inactivated preparation of Streptococcus pyogenes that causes pleurodesis by inducing a strong inflammatory response. Intrapleural instillation of OK-432 has recently been used to successfully treat neonatal and fetal chylothorax. Here we report a trial of intrapleural instillation of OK-432 in two preterm infants who were born with hydrops fetalis and massive bilateral pleural effusion. Both cases showed persistent pleural effusion, refractory to conservative treatment, up to postnatal days 26 and 46, respectively. An average of 80 to 140 mL of pleural fluid was drained daily. In case 1, the infant was treated with OK-432 during the fetal period at gestation 28 weeks and 4 days of gestation, but showed recurrence of pleural effusion and progressed into hydrops. Within two to three days after OK-432 injection, the amount of pleural fluid drainage was dramatically decreased and there was no reaccumulation. We did not observe any side effects related to OK-432 injection. We suggest that OK-432 should be considered as a therapeutic option in infants who have persistent pleural effusion for more than four weeks, with the expectation of the early removal of the chest tube and a good outcome.
Collapse
Affiliation(s)
- Jeong Eun Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Genome-wide gene expression analysis implicates the immune response and lymphangiogenesis in the pathogenesis of fetal chylothorax. PLoS One 2012; 7:e34901. [PMID: 22529953 PMCID: PMC3329545 DOI: 10.1371/journal.pone.0034901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/06/2012] [Indexed: 11/22/2022] Open
Abstract
Fetal chylothorax (FC) is a rare condition characterized by lymphocyte-rich pleural effusion. Although its pathogenesis remains elusive, it may involve inflammation, since there are increased concentrations of proinflammatory mediators in pleural fluids. Only a few hereditary lymphedema-associated gene loci, e.g. VEGFR3, ITGA9 and PTPN11, were detected in human fetuses with this condition; these cases had a poorer prognosis, due to defective lymphangiogenesis. In the present study, genome-wide gene expression analysis was conducted, comparing pleural and ascitic fluids in three hydropic fetuses, one with and two without the ITGA9 mutation. One fetus (the index case), from a dizygotic pregnancy (the cotwin was unaffected), received antenatal OK-432 pleurodesis and survived beyond the neonatal stage, despite having the ITGA9 mutation. Genes and pathways involved in the immune response were universally up-regulated in fetal pleural fluids compared to those in ascitic fluids. Furthermore, genes involved in the lymphangiogenesis pathway were down-regulated in fetal pleural fluids (compared to ascitic fluid), but following OK-432 pleurodesis, they were up-regulated. Expression of ITGA9 was concordant with overall trends of lymphangiogenesis. In conclusion, we inferred that both the immune response and lymphangiogenesis were implicated in the pathogenesis of fetal chylothorax. Furthermore, genome-wide gene expression microarray analysis may facilitate personalized medicine by selecting the most appropriate treatment, according to the specific circumstances of the patient, for this rare, but heterogeneous disease.
Collapse
|
12
|
Keogh MJ, Drury PP, Bennet L, Davidson JO, Mathai S, Gunn ER, Booth LC, Gunn AJ. Limited predictive value of early changes in EEG spectral power for neural injury after asphyxia in preterm fetal sheep. Pediatr Res 2012; 71:345-53. [PMID: 22391634 DOI: 10.1038/pr.2011.80] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION This study examined whether spectral analysis of the electroencephalogram (EEG) can discriminate between mild and severe hypoxic-ischemic injury in the immature brain. RESULTS Total EEG power was profoundly suppressed after umbilical cord occlusion and recovered to baseline by 5 h after 15-min of occlusion, in contrast with transient recovery in the 25-min (P < 0.05). Power spectra were not different between groups in the first 3 h; α and β power were significantly higher in the 15-min group from 4 h, and Δ and θ power from 5 h (P < 0.05). The 25-min group showed severe neuronal loss in hippocampal regions and basal ganglia at 3 days, in contrast with no/minimal injury in the 15-min group. DISCUSSION EEG power after asphyxia did not discriminate between mild and severe injury in the first 3 h in preterm fetal sheep. Severe subcortical neural injury was associated with persistent loss of high-frequency activity. METHODS Chronically instrumented fetal sheep at 0.7 gestation (101-104 days; term is 147 days) received either 15-min (n = 13) or 25-min (n = 13) of complete umbilical cord occlusion. The Δ (0-3.9 Hz), θ (4-7.9 Hz), α (8-12.9 Hz), and β (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken at 3 days for histopathology.
Collapse
Affiliation(s)
- Michael J Keogh
- Fetal Physiology and Neuroscience Group, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lo T, Lau W, Lam Y, Tang M, Leung T, Leung W. Successful Treatment of Severe Fetal Chylothorax Resistant to Repeated Pleuroamniotic Shunting by OK-432 Pleurodesis. Fetal Diagn Ther 2012; 31:260-3. [DOI: 10.1159/000336125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/23/2011] [Indexed: 12/26/2022]
|
14
|
Yang YS, Ma GC, Shih JC, Chen CP, Chou CH, Yeh KT, Kuo SJ, Chen TH, Hwu WL, Lee TH, Chen M. Experimental treatment of bilateral fetal chylothorax using in-utero pleurodesis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2012; 39:56-62. [PMID: 21584887 DOI: 10.1002/uog.9048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2011] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To assess the use and efficacy of in-utero pleurodesis for experimental treatment of bilateral fetal chylothorax. METHODS This was a study of 78 fetuses with bilateral pleural effusion referred to three tertiary referral centers in Taiwan between 2005 and 2009. Fetuses were karyotyped following amniocentesis and the lymphocyte ratio in the pleural effusion was determined following thoracocentesis. Forty-nine (62.8%) fetuses had a normal karyotype and were recognized to have fetal chylothorax; of these, 45 underwent intrapleural injection of 0.1KE OK-432 per side per treatment. We evaluated clinical (hydrops vs. no hydrops) and genetic (mutations in the reported lymphedema-associated loci: VEGFR3, PTPN11, FOXC2, ITGA9) parameters, as well as treatment outcome. Long-term survival was defined as survival to 1 year of age. RESULTS The overall long-term survival rate (LSR) was 35.6% (16/45); the LSR for non-hydropic fetuses was 66.7% (12/18) and for hydropic fetuses it was 14.8% (4/27). If we included only fetuses with onset of the condition in the second trimester, excluding those with onset in the third trimester, the LSR decreased to 29.4% (10/34). Notably, 29.6% (8/27) of hydropic fetuses had mutations in three of the four loci examined. CONCLUSIONS OK-432 pleurodesis appeared to be an experimental alternative to the gold-standard technique of thoracoamniotic shunting in non-hydropic fetal chylothorax. In hydropic fetuses, pleurodesis appeared less effective.
Collapse
Affiliation(s)
- Y-S Yang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Silbereis JC, Huang EJ, Back SA, Rowitch DH. Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech 2011; 3:678-88. [PMID: 21030421 DOI: 10.1242/dmm.002915] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Newborn neurological injuries are the leading cause of intellectual and motor disabilities that are associated with cerebral palsy. Cerebral white matter injury is a common feature in hypoxic-ischemic encephalopathy (HIE), which affects full-term infants, and in periventricular leukomalacia (PVL), which affects preterm infants. This article discusses recent efforts to model neonatal white matter injury using mammalian systems. We emphasize that a comprehensive understanding of oligodendrocyte development and physiology is crucial for obtaining new insights into the pathobiology of HIE and PVL as well as for the generation of more sophisticated and faithful animal models.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|