1
|
Jensen CH, Johnsen RH, Eskildsen T, Baun C, Ellman DG, Fang S, Bak ST, Hvidsten S, Larsen LA, Rosager AM, Riber LP, Schneider M, De Mey J, Thomassen M, Burton M, Uchida S, Laborda J, Andersen DC. Pericardial delta like non-canonical NOTCH ligand 1 (Dlk1) augments fibrosis in the heart through epithelial to mesenchymal transition. Clin Transl Med 2024; 14:e1565. [PMID: 38328889 PMCID: PMC10851088 DOI: 10.1002/ctm2.1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Heart failure due to myocardial infarction (MI) involves fibrosis driven by epicardium-derived cells (EPDCs) and cardiac fibroblasts, but strategies to inhibit and provide cardio-protection remains poor. The imprinted gene, non-canonical NOTCH ligand 1 (Dlk1), has previously been shown to mediate fibrosis in the skin, lung and liver, but very little is known on its effect in the heart. METHODS Herein, human pericardial fluid/plasma and tissue biopsies were assessed for DLK1, whereas the spatiotemporal expression of Dlk1 was determined in mouse hearts. The Dlk1 heart phenotype in normal and MI hearts was assessed in transgenic mice either lacking or overexpressing Dlk1. Finally, in/ex vivo cell studies provided knowledge on the molecular mechanism. RESULTS Dlk1 was demonstrated in non-myocytes of the developing human myocardium but exhibited a restricted pericardial expression in adulthood. Soluble DLK1 was twofold higher in pericardial fluid (median 45.7 [34.7 (IQR)) μg/L] from cardiovascular patients (n = 127) than in plasma (median 26.1 μg/L [11.1 (IQR)]. The spatial and temporal expression pattern of Dlk1 was recapitulated in mouse and rat hearts. Similar to humans lacking Dlk1, adult Dlk1-/- mice exhibited a relatively mild developmental, although consistent cardiac phenotype with some abnormalities in heart size, shape, thorax orientation and non-myocyte number, but were functionally normal. However, after MI, scar size was substantially reduced in Dlk1-/- hearts as compared with Dlk1+/+ littermates. In line, high levels of Dlk1 in transgenic mice Dlk1fl/fl xWT1GFPCre and Dlk1fl/fl xαMHCCre/+Tam increased scar size following MI. Further mechanistic and cellular insight demonstrated that pericardial Dlk1 mediates cardiac fibrosis through epithelial to mesenchymal transition (EMT) of the EPDC lineage by maintaining Integrin β8 (Itgb8), a major activator of transforming growth factor β and EMT. CONCLUSIONS Our results suggest that pericardial Dlk1 embraces a, so far, unnoticed role in the heart augmenting cardiac fibrosis through EMT. Monitoring DLK1 levels as well as targeting pericardial DLK1 may thus offer new venues for cardio-protection.
Collapse
Affiliation(s)
- Charlotte Harken Jensen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Rikke Helin Johnsen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Tilde Eskildsen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Christina Baun
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Shu Fang
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Svend Hvidsten
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
| | - Lars Allan Larsen
- Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ann Mari Rosager
- Department of Clinical PathologySydvestjysk HospitalEsbjergDenmark
| | - Lars Peter Riber
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Cardiothoracic and Vascular SurgeryOdense University HospitalOdenseDenmark
| | - Mikael Schneider
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Jo De Mey
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Mads Thomassen
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
| | - Mark Burton
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
| | - Shizuka Uchida
- Center for RNA MedicineDepartment of Clinical MedicineAalborg UniversityCopenhagenDenmark
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and BiochemistryUniversity of Castilla‐La Mancha Medical SchoolAlbaceteSpain
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| |
Collapse
|
2
|
Scagliotti V, Vignola ML, Willis T, Howard M, Marinelli E, Gaston-Massuet C, Andoniadou C, Charalambous M. Imprinted Dlk1 dosage as a size determinant of the mammalian pituitary gland. eLife 2023; 12:e84092. [PMID: 37589451 PMCID: PMC10468206 DOI: 10.7554/elife.84092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Co-regulated genes of the Imprinted Gene Network are involved in the control of growth and body size, and imprinted gene dysfunction underlies human paediatric disorders involving the endocrine system. Imprinted genes are highly expressed in the pituitary gland, among them, Dlk1, a paternally expressed gene whose membrane-bound and secreted protein products can regulate proliferation and differentiation of multiple stem cell populations. Dosage of circulating DLK1 has been previously implicated in the control of growth through unknown molecular mechanisms. Here we generate a series of mouse genetic models to modify levels of Dlk1 expression in the pituitary gland and demonstrate that the dosage of DLK1 modulates the process of stem cell commitment with lifelong impact on pituitary gland size. We establish that stem cells are a critical source of DLK1, where embryonic disruption alters proliferation in the anterior pituitary, leading to long-lasting consequences on growth hormone secretion later in life.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| | - Maria Lillina Vignola
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| | - Thea Willis
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College LondonLondonUnited Kingdom
| | - Eugenia Marinelli
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Cynthia Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Eggermann T, Monk D, de Nanclares GP, Kagami M, Giabicani E, Riccio A, Tümer Z, Kalish JM, Tauber M, Duis J, Weksberg R, Maher ER, Begemann M, Elbracht M. Imprinting disorders. Nat Rev Dis Primers 2023; 9:33. [PMID: 37386011 DOI: 10.1038/s41572-023-00443-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - David Monk
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Caserta, Italy
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Departments of Pediatrics and Genetics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maithé Tauber
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Jessica Duis
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Paediatrics and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Riegl SD, Starnes C, Jima DD, Baptissart M, Diehl AM, Belcher SM, Cowley M. The imprinted gene Zac1 regulates steatosis in developmental cadmium-induced nonalcoholic fatty liver disease. Toxicol Sci 2023; 191:34-46. [PMID: 36200916 PMCID: PMC9887675 DOI: 10.1093/toxsci/kfac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) exposure in adulthood is associated with nonalcoholic fatty liver disease (NAFLD), characterized by steatosis, inflammation, and fibrosis. The prevalence of NAFLD in children is increasing, suggesting a role for the developmental environment in programming susceptibility. However, the role of developmental Cd exposure in programming NAFLD and the underlying mechanisms remain unclear. We have proposed that imprinted genes are strong candidates for connecting the early life environment and later life disease. In support of this, we previously identified roles for the Imprinted Gene Network (IGN) and its regulator Zac1 in programming NAFLD in response to maternal metabolic dysfunction. Here, we test the hypothesis that developmental Cd exposure is sufficient to program NAFLD, and further, that this process is mediated by Zac1 and the IGN. Using mice, we show that developmental cadmium chloride (CdCl2) exposure leads to histological, biochemical, and molecular signatures of steatosis and fibrosis in juveniles. Transcriptomic analyses comparing livers of CdCl2-exposed and control mice show upregulation of Zac1 and the IGN coincident with disease presentation. Increased hepatic Zac1 expression is independent of promoter methylation and imprinting statuses. Finally, we show that over-expression of Zac1 in cultured hepatocytes is sufficient to induce lipid accumulation in a Pparγ-dependent manner and demonstrate direct binding of Zac1 to the Pparγ promoter. Our findings demonstrate that developmental Cd exposure is sufficient to program NAFLD in later life, and with our previous work, establish Zac1 and the IGN as key regulators of prosteatotic and profibrotic pathways, two of the major pathological hallmarks of NAFLD.
Collapse
Affiliation(s)
- Sierra D Riegl
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Cassie Starnes
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Marine Baptissart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Scott M Belcher
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Michael Cowley
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
5
|
Keck MK, Sill M, Wittmann A, Joshi P, Stichel D, Beck P, Okonechnikow K, Sievers P, Wefers AK, Roncaroli F, Avula S, McCabe MG, Hayden JT, Wesseling P, Øra I, Nistér M, Kranendonk MEG, Tops BBJ, Zapotocky M, Zamecnik J, Vasiljevic A, Fenouil T, Meyronet D, von Hoff K, Schüller U, Loiseau H, Figarella-Branger D, Kramm CM, Sturm D, Scheie D, Rauramaa T, Pesola J, Gojo J, Haberler C, Brandner S, Jacques T, Sexton Oates A, Saffery R, Koscielniak E, Baker SJ, Yip S, Snuderl M, Ud Din N, Samuel D, Schramm K, Blattner-Johnson M, Selt F, Ecker J, Milde T, von Deimling A, Korshunov A, Perry A, Pfister SM, Sahm F, Solomon DA, Jones DTW. Amplification of the PLAG-family genes-PLAGL1 and PLAGL2-is a key feature of the novel tumor type CNS embryonal tumor with PLAGL amplification. Acta Neuropathol 2023; 145:49-69. [PMID: 36437415 PMCID: PMC9807491 DOI: 10.1007/s00401-022-02516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/β-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.
Collapse
Affiliation(s)
- Michaela-Kristina Keck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Wittmann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Piyush Joshi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Konstantin Okonechnikow
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Martin G McCabe
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - James T Hayden
- Department of Pediatric Hematology and Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Location VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Ingrid Øra
- Department of Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michal Zapotocky
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Alexandre Vasiljevic
- Institut de Pathologie Multisite-Site Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Tanguy Fenouil
- Institut de Pathologie Multisite-Site Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - David Meyronet
- Institut de Pathologie Multisite-Site Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Katja von Hoff
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Hugues Loiseau
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-INSERM U1312 Université de Bordeaux, 146 rue Leo Saignat, Case 76, 33076, Bordeaux, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital and Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jouni Pesola
- Department of Pediatrics, Pediatric Hematology and Oncology Ward, Kuopio University Hospital and Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Tom Jacques
- Department of Developmental Biology and Cancer, UCL GOS Institute of Child Health, University College London, London, UK
| | - Alexandra Sexton Oates
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Ewa Koscielniak
- Department of Pediatric Oncology/Hematology/Immunology, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, The University of British Colombia, Vancouver, Canada
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - David Samuel
- Department of Pediatric Hematology-Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Kathrin Schramm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California San Francisco (UCSF), 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David A Solomon
- Division of Neuropathology, Department of Pathology, University of California San Francisco (UCSF), 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA.
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Suvorov A. Modalities of aging in organisms with different strategies of resource allocation. Ageing Res Rev 2022; 82:101770. [PMID: 36330930 PMCID: PMC10435286 DOI: 10.1016/j.arr.2022.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023]
Abstract
Although the progress of aging research relies heavily on a theoretical framework, today there is no consensus on many critical questions in aging biology. I hypothesize that a systematic analysis of the intersection of different evolutionary mechanisms of aging with diverse resource allocation strategies in different organisms may reconcile aging hypotheses. The application of disposable soma, mutation accumulation, antagonistic pleiotropy, and life-history theory is considered across organisms with asexual reproduction, organisms with sexual reproduction and indeterminate growth in different conditions of extrinsic mortality, and organisms with determinate growth, with endotherms/homeotherms as a subgroup. This review demonstrates that different aging mechanisms are complementary to each other, and in organisms with different resource allocation strategies they form aging modalities ranging from immortality to suicidal programs. It also revamps the role of growth arrest in aging. Growth arrest evolved in many different groups of organisms as a result of resource reallocation from growth to reproduction (e.g., semelparous animals, holometabolic insects), or from growth to nutrient storage (endotherms/homeotherms). Growth arrest in different animal lineages has similar molecular mechanisms and similar consequences for longevity due to the conflict between growth-promoting and growth-suppressing programs and suppression of regenerative capacity.
Collapse
Affiliation(s)
- Alexander Suvorov
- Environmental Health Sciences, University of Massachusetts, Amherst 240B Goessmann, 686 Noth Pleasant Str., Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Baptissart M, Bradish CM, Jones BS, Walsh E, Tehrani J, Marrero‐Colon V, Mehta S, Jima DD, Oh SH, Diehl AM, Fougeray T, Guillou H, Cowley M. Zac1 and the Imprinted Gene Network program juvenile NAFLD in response to maternal metabolic syndrome. Hepatology 2022; 76:1090-1104. [PMID: 35083765 PMCID: PMC9314464 DOI: 10.1002/hep.32363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Within the next decade, NAFLD is predicted to become the most prevalent cause of childhood liver failure in developed countries. Predisposition to juvenile NAFLD can be programmed during early life in response to maternal metabolic syndrome (MetS), but the underlying mechanisms are poorly understood. We hypothesized that imprinted genes, defined by expression from a single parental allele, play a key role in maternal MetS-induced NAFLD, due to their susceptibility to environmental stressors and their functions in liver homeostasis. We aimed to test this hypothesis and determine the critical periods of susceptibility to maternal MetS. APPROACH AND RESULTS We established a mouse model to compare the effects of MetS during prenatal and postnatal development on NAFLD. Postnatal but not prenatal MetS exposure is associated with histological, biochemical, and molecular signatures of hepatic steatosis and fibrosis in juvenile mice. Using RNA sequencing, we show that the Imprinted Gene Network (IGN), including its regulator Zac1, is up-regulated and overrepresented among differentially expressed genes, consistent with a role in maternal MetS-induced NAFLD. In support of this, activation of the IGN in cultured hepatoma cells by overexpressing Zac1 is sufficient to induce signatures of profibrogenic transformation. Using chromatin immunoprecipitation, we demonstrate that Zac1 binds the TGF-β1 and COL6A2 promoters, forming a direct pathway between imprinted genes and well-characterized pathophysiological mechanisms of NAFLD. Finally, we show that hepatocyte-specific overexpression of Zac1 is sufficient to drive fibrosis in vivo. CONCLUSIONS Our findings identify a pathway linking maternal MetS exposure during postnatal development to the programming of juvenile NAFLD, and provide support for the hypothesis that imprinted genes play a central role in metabolic disease programming.
Collapse
Affiliation(s)
- Marine Baptissart
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Christine M. Bradish
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Brie S. Jones
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Evan Walsh
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jesse Tehrani
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Vicmarie Marrero‐Colon
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Sanya Mehta
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Dereje D. Jima
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA,Bioinformatics Research CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Seh Hoon Oh
- Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Anna Mae Diehl
- Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Tiffany Fougeray
- UMR 1331Institut National de la Recherche AgronomiqueToxalim (Research Center in Food Toxicology)ToulouseFrance
| | - Hervé Guillou
- UMR 1331Institut National de la Recherche AgronomiqueToxalim (Research Center in Food Toxicology)ToulouseFrance
| | - Michael Cowley
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
8
|
Hou X, Wang Z, Shi L, Wang L, Zhao F, Liu X, Gao H, Shi L, Yan H, Wang L, Zhang L. Identification of imprinted genes in the skeletal muscle of newborn piglets by high-throughput sequencing. Anim Genet 2022; 53:479-486. [PMID: 35481679 DOI: 10.1111/age.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Imprinted genes - exhibiting parent-specific transcription - play essential roles in the process of mammalian development and growth. Skeletal muscle growth is crucial for meat production. To further understand the role of imprinted genes during the porcine skeletal muscle growth, DNA-seq and RNA-seq were used to explore the characteristics of imprinted genes from porcine reciprocal crosses. A total of 584 545 single-nucleotide variations were discovered in the DNA-seq data of F0 parents, heterozygous in two pig breeds (Yorkshire and Min pigs) but homozygous in each breed. These single-nucleotide variations were used to determine the allelic-specific expression in F1 individuals. Finally, eight paternal expression sites and three maternal expression sites were detected, whereas two paternally expressed imprinted genes (NDN and IGF2) and one maternally expressed imprinted gene (H1-3) were validated by Sanger sequencing. DNA methylation regulates the expression of imprinted genes, and all of the identified imprinted genes in this study were predicted to possess CpG islands. PBX1 and YY1 binding motifs were discovered in the promoter regions of all three imprinted genes, which were candidate elements regulating the transcription of imprinted genes. For these identified imprinted genes, IGF2 and NDN promoted muscle growth whereas H1-3 inhibited cell proliferation, corroborating the 'parental conflict' theory that paternally expressed imprinted genes assisted descendants' growth whereas maternally expressed imprinted genes inhibited it. This study discovered porcine imprinted genes in skeletal muscle and was the first to reveal that H1-3 was expressed by the maternal allele to our knowledge. Our findings provided valuable resources for the potential utilization of imprinted genes in pig breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zishuai Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liangyu Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ligang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Abstract
The functional mass of kidney tissue in an adult is an important determinant of human health. Kidney formation during development is an essential determinant of the final nephron endowment of the adult organ, and no evidence has been reported that mice or humans are able to generate new nephrons after the developmental period. Mechanisms controlling organ growth after development are essential to establish the final adult organ size. The potential for organ growth is maintained in adult life and the size of one kidney may be significantly increased by loss of the contralateral kidney. The mouse has provided a model system for investigators to critically explore genetic, cell biological, and hormonal control of developmental and juvenile kidney growth. This article reviews three basic aspects of kidney size regulation: (1) Mechanisms that control nephron formation and how these are altered by the cessation of nephrogenesis at the end of the developmental period. (2) Applicability of the general model for growth hormone-insulin like growth factor control to kidney growth both pre- and postnatally. (3) Commonalities between mechanisms of juvenile kidney growth and the compensatory growth that is stimulated in adult life by reduction of kidney mass. Understanding the mechanisms that determine set-points for cell numbers and size in the kidney may inform ongoing efforts to generate kidney tissue from stem cells.
Collapse
Affiliation(s)
- Leif Oxburgh
- The Rogosin Institute, New York, NY, United States.
| |
Collapse
|
10
|
Vaigauskaitė B, Baušytė R, Valatkaitė E, Skliutė G, Kazėnaitė E, Ramašauskaitė D, Navakauskienė R. Prognostic Gene Predictors of Gestational Diabetes in Endometrium and Follicular Fluid of Women after Infertility. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:498. [PMID: 35454338 PMCID: PMC9025034 DOI: 10.3390/medicina58040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Background and objectives. Gestational diabetes mellitus is an increasingly diagnosed metabolic disorder during pregnancy with unknown pathological pathways. Taking into account the growing numbers of women who are conceiving after assisted reproductive technologies, they comprise an engaging target group for gestational diabetes mellitus etiopathogenesis research. In terms of metabolism and genetics, as the evidence shows, both unexplained infertility and gestational diabetes mellitus pose challenges for their interpretation due to the complex bodily processes. Materials and Methods. Our study examined the expression of genes (IGF2, GRB10, CRTC2, HMGA2, ESR1, DLK1, SLC6A15, GPT2, PLAGL1) associated with glucose metabolism in unexplained infertility patients who conceived after in vitro fertilization procedure, were diagnosed with GDM and their findings were compared with control population. Results. There were no significant differences in gene expression of endometrium stromal cells between healthy pregnant women and women with gestational diabetes, although the significant downregulation of CRTC2 was observed in the follicular fluid of women with gestational diabetes mellitus. Moreover, expression of HMGA2 and ESR1 was significantly reduced in FF cells when compared to endometrial cells. Conclusions. These findings may indicate about the importance of follicular fluid as an indicator for gestational diabetes and should be explored more by further research.
Collapse
Affiliation(s)
- Brigita Vaigauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Raminta Baušytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
| | - Giedrė Skliutė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
| | - Edita Kazėnaitė
- Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Diana Ramašauskaitė
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
| |
Collapse
|
11
|
Rondini EA, Ramseyer VD, Burl RB, Pique-Regi R, Granneman JG. Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Mol Metab 2021; 53:101307. [PMID: 34298199 PMCID: PMC8385178 DOI: 10.1016/j.molmet.2021.101307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The current study addresses the cellular complexity and plasticity of subcutaneous (inguinal) white adipose tissue (iWAT) in mice during the critical periods of perinatal growth and establishment. METHODS We performed a large-scale single cell transcriptomic (scRNA-seq) and epigenomic (snATAC-seq) characterization of cellular subtypes (adipose stromal cells (ASC) and adipocyte nuclei) during inguinal WAT (subcutaneous; iWAT) development in mice, capturing the early postnatal period (postnatal days (PND) 06 and 18) through adulthood (PND56). RESULTS Perinatal and adult iWAT contain 3 major ASC subtypes that can be independently identified by RNA expression profiles and DNA transposase accessibility. Furthermore, the transcriptomes and enhancer landscapes of both ASC and adipocytes dynamically change during postnatal development. Perinatal ASC (PND06) are highly enriched for several imprinted genes (IGs; e.g., Mest, H19, Igf2) and extracellular matrix proteins whose expression then declines prior to weaning (PND18). By comparison, adult ASC (PND56) are more enriched for transcripts associated with immunoregulation, oxidative stress, and integrin signaling. Two clusters of mature adipocytes, identified through single nuclei RNA sequencing (snRNA-seq), were distinctive for proinflammatory/immune or metabolic gene expression patterns that became more transcriptionally diverse in adult animals. Single nuclei assay for transposase-accessible chromatin (snATAC-seq) revealed that differences in gene expression were associated with developmental changes in chromatin accessibility and predicted transcription factor motifs (e.g., Plagl1, Ar) in both stromal cells and adipocytes. CONCLUSIONS Our data provide new insights into transcriptional and epigenomic signaling networks important during iWAT establishment at a single cell resolution, with important implications for the field of metabolic programming.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Vanesa D Ramseyer
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Rayanne B Burl
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Huang J, Li M, Li J, Liang B, Chen Z, Yang J, Guo X, Huang S, Gu L, Su L. LncRNA H19 rs4929984 Variant is Associated with Coronary Artery Disease Susceptibility in Han Chinese Female Population. Biochem Genet 2021; 59:1359-1380. [PMID: 33826032 DOI: 10.1007/s10528-021-10055-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been reported to play an important role in cardiovascular diseases. The present study aimed to investigate the levels of lncRNA H19 in patients with coronary artery disease (CAD) and the genetic association of lncRNA H19 rs217727 and rs4929984 polymorphisms with CAD susceptibility. We detected an upregulated expression of lncRNA H19 in the peripheral blood of CAD patients compared with healthy controls, and the area under the receiver operating characteristic curve of lncRNA H19 for CAD diagnosis was 0.918. In addition, rs4929984 was associated with the susceptibility of Han Chinese females to CAD, as shown in the additive and dominant models, and the significant association remained after adjusting for age and Bonferroni correction. The A allele carriers of rs4929984 were correlated with females' susceptibility to CAD compared with the C allele, and the A-G haplotype of rs4929984-rs217727 was associated with females' susceptibility to CAD. Furthermore, rs217727 and rs4929984 were associated with the levels of clinicopathological parameters of CAD cases. We suggest that lncRNA H19 has a potential to be a diagnostic biomarker for CAD; rs4929984 polymorphism is associated with females' susceptibility to CAD in the Han Chinese population, and lncRNA H19 variants may influence lipid metabolism, inflammation, and coagulation function of CAD patients.
Collapse
Affiliation(s)
- Jiao Huang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Minhua Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinhong Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Baoyun Liang
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Zhaoxia Chen
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaojing Guo
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Siyun Huang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
13
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
14
|
Stevens A, Perchard R, Garner T, Clayton P, Murray P. Pharmacogenomics applied to recombinant human growth hormone responses in children with short stature. Rev Endocr Metab Disord 2021; 22:135-143. [PMID: 33712998 PMCID: PMC7979669 DOI: 10.1007/s11154-021-09637-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
We present current knowledge concerning the pharmacogenomics of growth hormone therapy in children with short stature. We consider the evidence now emerging for the polygenic nature of response to recombinant human growth hormone (r-hGH). These data are related predominantly to the use of transcriptomic data for prediction. The impact of the complex interactions of developmental phenotype over childhood on response to r-hGH are discussed. Finally, the issues that need to be addressed in order to develop a clinical test are described.
Collapse
Affiliation(s)
- Adam Stevens
- Division of Developmental Biology and Medicine, School of Medical Sciences, The Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Reena Perchard
- Division of Developmental Biology and Medicine, School of Medical Sciences, The Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Terence Garner
- Division of Developmental Biology and Medicine, School of Medical Sciences, The Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Peter Clayton
- Division of Developmental Biology and Medicine, School of Medical Sciences, The Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Philip Murray
- Division of Developmental Biology and Medicine, School of Medical Sciences, The Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Liao J, Zeng TB, Pierce N, Tran DA, Singh P, Mann JR, Szabó PE. Prenatal correction of IGF2 to rescue the growth phenotypes in mouse models of Beckwith-Wiedemann and Silver-Russell syndromes. Cell Rep 2021; 34:108729. [PMID: 33567274 PMCID: PMC7968144 DOI: 10.1016/j.celrep.2021.108729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting disorders manifesting as aberrant fetal growth and severe postnatal-growth-related complications. Based on the insulator model, one-third of BWS cases and two-thirds of SRS cases are consistent with misexpression of insulin-like growth factor 2 (IGF2), an important facilitator of fetal growth. We propose that the IGF2-dependent BWS and SRS cases can be identified by prenatal diagnosis and can be prevented by prenatal intervention targeting IGF2. We test this hypothesis using our mouse models of IGF2-dependent BWS and SRS. We find that genetically normalizing IGF2 levels in a double rescue experiment corrects the fetal overgrowth phenotype in the BWS model and the growth retardation in the SRS model. In addition, we pharmacologically rescue the BWS growth phenotype by reducing IGF2 signaling during late gestation. This animal study encourages clinical investigations to target IGF2 for prenatal diagnosis and prenatal prevention in human BWS and SRS. Liao et al. use mouse models to test a prenatal approach for correcting growth anomalies in two imprinting diseases, BWS and SRS. They find that cases where the fetal growth factor IGF2 is misregulated can be diagnosed, and growth can be corrected by prenatally adjusting IGF2 or its signaling output.
Collapse
Affiliation(s)
- Ji Liao
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tie-Bo Zeng
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nicholas Pierce
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Diana A Tran
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School, City of Hope, Duarte, CA 91010, USA
| | - Purnima Singh
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Jeffrey R Mann
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
16
|
Zhou E, Lui J. Physiological regulation of bone length and skeletal proportion in mammals. Exp Physiol 2020; 106:389-395. [PMID: 33369789 DOI: 10.1113/ep089086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Mechanisms regulating bone length and skeletal proportions What advances does it highlight? The study of differential bone length between leg and finger bones, metatarsals of the Egyptian jerboa and genomic analysis of giraffes. ABSTRACT Among mammalian species, skeletal structures vary greatly in size and shape, leading to a dramatic variety of body sizes and proportions. How different bones grow to different lengths, whether among different species, different individuals of the same species, or even in different anatomical parts of our the body, has always been a fascinating subject of research in biology and physiology. In the current review, we focus on some of the recent advances in the field and discuss how these provided important new insights into the mechanisms regulating bone length and skeletal proportions.
Collapse
Affiliation(s)
- Elaine Zhou
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Julian Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
17
|
de las Heras-Saldana S, Chung KY, Kim H, Lim D, Gondro C, van der Werf JHJ. Differential Gene Expression in Longissimus Dorsi Muscle of Hanwoo Steers-New Insight in Genes Involved in Marbling Development at Younger Ages. Genes (Basel) 2020; 11:genes11111381. [PMID: 33233382 PMCID: PMC7700136 DOI: 10.3390/genes11111381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
The Korean Hanwoo breed possesses a high capacity to accumulate intramuscular fat, which is measured as a marbling score in the beef industry. Unfortunately, the development of marbling is not completely understood and the identification of differentially expressed genes at an early age is required to better understand this trait. In this study, we took muscle samples from 12 Hanwoo steers at the age of 18 and 30 months. From the contrast between age and marbling score, we identified in total 1883 differentially expressed genes (FDR < 0.05 and logarithm fold change ≥ 1.5) with 782 genes up-regulated and 1101 down-regulated. Differences in gene expression were higher between the ages x marbling groups rather than between high and low marbling groups. At 18 months of age, the genes SLC38A4, ABCA10, APOL6, and two novel genes (ENSBTAG00000015330 and ENSBTAG00000046041) were up-regulated in the high marbling group. From the protein–protein interaction network analysis, we identified unique networks when comparing marbling scores between different ages. Nineteen genes (AGT, SERPINE1, ADORA1, FOS, LEP, FOXO1, FOXO3, ADIPOQ, ITGA1, SDC1, SDC4, ITGB3, ITGB4, CXCL10, ACTG2, MX1, EDN1, ACTA2, and ESPL1) were identified to have an important role in marbling development. Further analyses are needed to better understand the role of these genes.
Collapse
Affiliation(s)
- Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
- Correspondence:
| | - Ki Yong Chung
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Hyounju Kim
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Jeonbuk 55365, Korea;
| | - Cedric Gondro
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
- College of Agriculture & Resources, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Julius H. J. van der Werf
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
| |
Collapse
|
18
|
Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D, Lee YWW, Li G. The Roles of H19 in Regulating Inflammation and Aging. Front Immunol 2020; 11:579687. [PMID: 33193379 PMCID: PMC7653221 DOI: 10.3389/fimmu.2020.579687] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that long non-coding RNA H19 correlates with several aging processes. However, the role of H19 in aging remains unclear. Many studies have elucidated a close connection between H19 and inflammatory genes. Chronic systemic inflammation is an established factor associated with various diseases during aging. Thus, H19 might participate in the development of age-related diseases by interplay with inflammation and therefore provide a protective function against age-related diseases. We investigated the inflammatory gene network of H19 to understand its regulatory mechanisms. H19 usually controls gene expression by acting as a microRNA sponge, or through mir-675, or by leading various protein complexes to genes at the chromosome level. The regulatory gene network has been intensively studied, whereas the biogenesis of H19 remains largely unknown. This literature review found that the epithelial-mesenchymal transition (EMT) and an imprinting gene network (IGN) might link H19 with inflammation. Evidence indicates that EMT and IGN are also tightly controlled by environmental stress. We propose that H19 is a stress-induced long non-coding RNA. Because environmental stress is a recognized age-related factor, inflammation and H19 might serve as a therapeutic axis to fight against age-related diseases.
Collapse
Affiliation(s)
- Bin Wang
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Wai Suen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Haibin Ma
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yan Wang
- Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Kong
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dajiang Qin
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuk Wai Wayne Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Li
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Guerra-Cantera S, Frago LM, Jiménez-Hernaiz M, Ros P, Freire-Regatillo A, Barrios V, Argente J, Chowen JA. Impact of Long-Term HFD Intake on the Peripheral and Central IGF System in Male and Female Mice. Metabolites 2020; 10:metabo10110462. [PMID: 33202914 PMCID: PMC7698111 DOI: 10.3390/metabo10110462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF) system is responsible for growth, but also affects metabolism and brain function throughout life. New IGF family members (i.e., pappalysins and stanniocalcins) control the availability/activity of IGFs and are implicated in growth. However, how diet and obesity modify this system has been poorly studied. We explored how intake of a high-fat diet (HFD) or commercial control diet (CCD) affects the IGF system in the circulation, visceral adipose tissue (VAT) and hypothalamus. Male and female C57/BL6J mice received HFD (60% fat, 5.1 kcal/g), CCD (10% fat, 3.7 kcal/g) or chow (3.1 % fat, 3.4 kcal/g) for 8 weeks. After 7 weeks of HFD intake, males had decreased glucose tolerance (p < 0.01) and at sacrifice increased plasma insulin (p < 0.05) and leptin (p < 0.01). Circulating free IGF1 (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.05) and IGFBP3 (p < 0.01) were higher after HFD in both sexes, with CCD increasing IGFBP2 in males (p < 0.001). In VAT, HFD reduced mRNA levels of IGF2 (p < 0.05), PAPP-A (p < 0.001) and stanniocalcin (STC)-1 (p < 0.001) in males. HFD increased hypothalamic IGF1 (p < 0.01), IGF2 (p < 0.05) and IGFBP5 (p < 0.01) mRNA levels, with these changes more apparent in females. Our results show that diet-induced changes in the IGF system are tissue-, sex- and diet-dependent.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Department of Pediatrics, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| |
Collapse
|
20
|
Klobučar T, Kreibich E, Krueger F, Arez M, Pólvora-Brandão D, von Meyenn F, da Rocha ST, Eckersley-Maslin M. IMPLICON: an ultra-deep sequencing method to uncover DNA methylation at imprinted regions. Nucleic Acids Res 2020; 48:e92. [PMID: 32621604 PMCID: PMC7498334 DOI: 10.1093/nar/gkaa567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon leading to parental allele-specific expression. Dosage of imprinted genes is crucial for normal development and its dysregulation accounts for several human disorders. This unusual expression pattern is mostly dictated by differences in DNA methylation between parental alleles at specific regulatory elements known as imprinting control regions (ICRs). Although several approaches can be used for methylation inspection, we lack an easy and cost-effective method to simultaneously measure DNA methylation at multiple imprinted regions. Here, we present IMPLICON, a high-throughput method measuring DNA methylation levels at imprinted regions with base-pair resolution and over 1000-fold coverage. We adapted amplicon bisulfite-sequencing protocols to design IMPLICON for ICRs in adult tissues of inbred mice, validating it in hybrid mice from reciprocal crosses for which we could discriminate methylation profiles in the two parental alleles. Lastly, we developed a human version of IMPLICON and detected imprinting errors in embryonic and induced pluripotent stem cells. We also provide rules and guidelines to adapt this method for investigating the DNA methylation landscape of any set of genomic regions. In summary, IMPLICON is a rapid, cost-effective and scalable method, which could become the gold standard in both imprinting research and diagnostics.
Collapse
Affiliation(s)
- Tajda Klobučar
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Elisa Kreibich
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Maria Arez
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Duarte Pólvora-Brandão
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
21
|
Xu H, Zhao L, Feng X, Ma Y, Chen W, Zou L, Yang Q, Sun J, Yu H, Jiao B. Landscape of genomic imprinting and its functions in the mouse mammary gland. J Mol Cell Biol 2020; 12:857-869. [PMID: 32369566 PMCID: PMC7883822 DOI: 10.1093/jmcb/mjaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022] Open
Abstract
Genomic imprinting is an epigenetic modification of DNA, whereby gene expression is restricted to either maternally or paternally inherited alleles. Imprinted genes (IGs) in the placenta and embryo are essential for growth regulation and nutrient supply. However, despite being an important nutrition delivery organ, studies on mammary gland genomic imprinting remain limited. In this study, we found that both the number of IGs and their expression levels decreased during development of the mouse mammary gland. IG expression was lineage-specific and related to mammary gland development and lactation. Meta-analysis of single-cell RNA sequencing data revealed that mammary gland IGs were co-expressed in a network that regulated cell stemness and differentiation, which was confirmed by our functional studies. Accordingly, our data indicated that IGs were essential for the self-renewal of mammary gland stem cells and IG decline was correlated with mammary gland maturity. Taken together, our findings revealed the importance of IGs in a poorly studied nutrition-related organ, i.e. the mammary gland, thus providing a reference for further studies on genomic imprinting.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Lina Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xu Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yujie Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
22
|
Crespi BJ. Why and How Imprinted Genes Drive Fetal Programming. Front Endocrinol (Lausanne) 2020; 10:940. [PMID: 32117048 PMCID: PMC7025584 DOI: 10.3389/fendo.2019.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Imprinted genes mediate fetal and childhood growth and development, and early growth patterns drive fetal programming effects. However, predictions and evidence from the kinship theory of imprinting have yet to be directly integrated with data on fetal programming and risks of metabolic disease. I first define paternal-gene and maternal-gene optima with regard to early human growth and development. Next, I review salient evidence with regard to imprinted gene effects on birth weight, body composition, trajectories of feeding and growth, and timing of developmental stages, to evaluate why and how imprinted gene expression influences risks of metabolic disease in later life. I find that metabolic disease risks derive primarily from maternal gene biases that lead to reduced placental efficacy, low birth weight, low relative muscle mass, high relative white fat, increased abdominal adiposity, reduced pancreatic β-cell mass that promotes insulin resistance, reduced appetite and infant sucking efficacy, catch-up fat deposition from family foods after weaning, and early puberty. Paternal gene biases, by contrast, may contribute to metabolic disease via lower rates of brown fat thermiogenesis, and through favoring more rapid postnatal catch-up growth after intrauterine growth restriction from environmental causes. These disease risks can be alleviated through dietary and pharmacological alterations that selectively target imprinted gene expression and relevant metabolic pathways. The kinship theory of imprinting, and mother-offspring conflict more generally, provide a clear predictive framework for guiding future research on fetal programming and metabolic disease.
Collapse
Affiliation(s)
- Bernard J. Crespi
- Department of Biological Sciences and Human Evolutionary Studies Program, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
23
|
Romanov D, Butenko E, Bakhtadze G, Shkurat T. Genome distance between conserved elements in neighborhoods of growth-regulating genes is correlated with morpho-physiological traits in mammals. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Neirijnck Y, Papaioannou MD, Nef S. The Insulin/IGF System in Mammalian Sexual Development and Reproduction. Int J Mol Sci 2019; 20:ijms20184440. [PMID: 31505893 PMCID: PMC6770468 DOI: 10.3390/ijms20184440] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent research over the past few decades has clearly established that the insulin-like family of growth factors, which is composed of insulin and insulin-like growth factors 1 (IGF1) and 2 (IGF2), plays essential roles in sexual development and reproduction of both males and females. Within the male and female reproductive organs, ligands of the family act in an autocrine/paracrine manner, in order to guide different aspects of gonadogenesis, sex determination, sex-specific development or reproductive performance. Although our knowledge has greatly improved over the last years, there are still several facets that remain to be deciphered. In this review, we first briefly outline the principles of sexual development and insulin/IGF signaling, and then present our current knowledge, both in rodents and humans, about the involvement of insulin/IGFs in sexual development and reproductive functions. We conclude by highlighting some interesting remarks and delineating certain unanswered questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Marilena D Papaioannou
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
West MD, Sternberg H, Labat I, Janus J, Chapman KB, Malik NN, de Grey ADNJ, Larocca D. Toward a unified theory of aging and regeneration. Regen Med 2019; 14:867-886. [DOI: 10.2217/rme-2019-0062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the antagonistic pleiotropy theory of mammalian aging. Accordingly, changes in gene expression following the pluripotency transition, and subsequent transitions such as the embryonic–fetal transition, while providing tumor suppressive and antiviral survival benefits also result in a loss of regenerative potential leading to age-related fibrosis and degenerative diseases. However, reprogramming somatic cells to pluripotency demonstrates the possibility of restoring telomerase and embryonic regeneration pathways and thus reversing the age-related decline in regenerative capacity. A unified model of aging and loss of regenerative potential is emerging that may ultimately be translated into new therapeutic approaches for establishing induced tissue regeneration and modulation of the embryo-onco phenotype of cancer.
Collapse
Affiliation(s)
| | | | - Ivan Labat
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
| | | | | | - Nafees N Malik
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence Ltd, London, UK
| | - Aubrey DNJ de Grey
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | |
Collapse
|
26
|
Traustadóttir GÁ, Lagoni LV, Ankerstjerne LBS, Bisgaard HC, Jensen CH, Andersen DC. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev 2019; 46:17-27. [DOI: 10.1016/j.cytogfr.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
|
27
|
Sellers ZP, Bolkun L, Kloczko J, Wojtaszewska ML, Lewandowski K, Moniuszko M, Ratajczak MZ, Schneider G. Increased methylation upstream of the MEG3 promotor is observed in acute myeloid leukemia patients with better overall survival. Clin Epigenetics 2019; 11:50. [PMID: 30876483 PMCID: PMC6419839 DOI: 10.1186/s13148-019-0643-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Background The delta-like non-canonical Notch ligand 1 (DLK1)-maternally expressed 3(MEG3) locus (DLK1-MEG3 locus) plays a critical role in the maintenance and differentiation of hematopoietic stem cells. Accumulating evidence implicates the imprinted genes from this locus, DLK1 and MEG3, in the development and progression of acute myeloid leukemia (AML). However, the contribution of this locus to the treatment response of patients and their survival is unknown. Methods DNA methylation of select CG dinucleotide-containing amplicons (CpG sites) within the DLK1-MEG3 locus and within differentially methylated regions of other imprinted loci was assessed in the mononuclear cells of 45 AML patients by combined bisulfite restriction analysis. Methylation results were compared with patient response to first-round induction therapy and overall survival. Multivariable analysis was employed to identify independent prognostic factors for patient overall survival in AML. Results Increased methylation at CpG sites within the MEG3 promotor region was observed in AML patients having longer overall survival. In addition, patients with shorter overall survival had increased expression of DLK1 and MEG3, and methylation at the MEG3-DMR CpG site inversely correlated with MEG3 expression. Multivariable analysis revealed that methylation at CG9, a non-imprinted CpG site within the MEG3 promotor region which contains a CCCTC-binding factor (CTCF)-binding DNA sequence, is an independent prognostic factor for the overall survival of AML patients. Conclusions The results of our pilot study underscore the importance of the DLK1-MEG3 locus in AML development and progression. We identify CG9 methylation as an independent prognostic factor for AML patient survival, which suggests that distinct miRNA signatures from the DLK1-MEG3 locus could reflect varying degrees of cell stemness and present novel opportunities for personalized therapies in the future. These data provide a foundation for future studies into the role of higher-order chromatin structure at DLK1-MEG3 in AML. Electronic supplementary material The online version of this article (10.1186/s13148-019-0643-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachariah Payne Sellers
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Kloczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | | | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, University of Medical Sciences, Poznań, Poland
| | - Marcin Moniuszko
- Department of Allergology, Medical University of Bialystok, Bialystok, Poland.,Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
28
|
Chan WH, Komada M, Fukushima T, Southard-Smith EM, Anderson CR, Wakefield MJ. RNA-seq of Isolated Chromaffin Cells Highlights the Role of Sex-Linked and Imprinted Genes in Adrenal Medulla Development. Sci Rep 2019; 9:3929. [PMID: 30850723 PMCID: PMC6408553 DOI: 10.1038/s41598-019-40501-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Adrenal chromaffin cells and sympathetic neurons synthesize and release catecholamines, and both cell types are derived from neural crest precursors. However, they have different developmental histories, with sympathetic neurons derived directly from neural crest precursors while adrenal chromaffin cells arise from neural crest-derived cells that express Schwann cell markers. We have sought to identify the genes, including imprinted genes, which regulate the development of the two cell types in mice. We developed a method of separating the two cell types as early as E12.5, using differences in expression of enhanced yellow fluorescent protein driven from the tyrosine hydroxylase gene, and then used RNA sequencing to confirm the characteristic molecular signatures of the two cell types. We identified genes differentially expressed by adrenal chromaffin cells and sympathetic neurons. Deletion of a gene highly expressed by adrenal chromaffin cells, NIK-related kinase, a gene on the X-chromosome, results in reduced expression of adrenaline-synthesizing enzyme, phenyl-N-methyl transferase, by adrenal chromaffin cells and changes in cell cycle dynamics. Finally, many imprinted genes are up-regulated in chromaffin cells and may play key roles in their development.
Collapse
Affiliation(s)
- Wing Hei Chan
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia.
| | - Masayuki Komada
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Colin R Anderson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Matthew J Wakefield
- Melbourne Bioinformatics, University of Melbourne, Melbourne, Australia. .,Walter and Eliza Hall Institute, Parkville, Australia.
| |
Collapse
|
29
|
Goovaerts T, Steyaert S, Vandenbussche CA, Galle J, Thas O, Van Criekinge W, De Meyer T. A comprehensive overview of genomic imprinting in breast and its deregulation in cancer. Nat Commun 2018; 9:4120. [PMID: 30297886 PMCID: PMC6175939 DOI: 10.1038/s41467-018-06566-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Genomic imprinting plays an important role in growth and development. Loss of imprinting (LOI) has been found in cancer, yet systematic studies are impeded by data-analytical challenges. We developed a methodology to detect monoallelically expressed loci without requiring genotyping data, and applied it on The Cancer Genome Atlas (TCGA, discovery) and Genotype-Tissue expression project (GTEx, validation) breast tissue RNA-seq data. Here, we report the identification of 30 putatively imprinted genes in breast. In breast cancer (TCGA), HM13 is featured by LOI and expression upregulation, which is linked to DNA demethylation. Other imprinted genes typically demonstrate lower expression in cancer, often associated with copy number variation and aberrant DNA methylation. Downregulation in cancer frequently leads to higher relative expression of the (imperfectly) silenced allele, yet this is not considered canonical LOI given the lack of (absolute) re-expression. In summary, our novel methodology highlights the massive deregulation of imprinting in breast cancer.
Collapse
Affiliation(s)
- Tine Goovaerts
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sandra Steyaert
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Chari A Vandenbussche
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jeroen Galle
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Olivier Thas
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Tim De Meyer
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
30
|
Provenzi L, Carli PD, Fumagalli M, Giorda R, Casavant S, Beri S, Citterio A, D'Agata A, Morandi F, Mosca F, Borgatti R, Montirosso R. Very preterm birth is associated with PLAGL1 gene hypomethylation at birth and discharge. Epigenomics 2018; 10:1121-1130. [PMID: 30070601 DOI: 10.2217/epi-2017-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Recent findings show that DNA methylation is susceptible to very preterm (VPT) birth and to the experience of the early stay in the neonatal intensive care unit. The aim of the study was to compare PLAGL1 methylation between VPT and full-term (FT) infants at birth as well as between VPT infants at discharge and FT infants at birth. METHODS DNA was collected from cord blood of 56 VPT and 27 FT infants at birth and from peripheral blood in VPT infants at neonatal intensive care unit discharge. Sociodemographic and neonatal variables were considered. RESULTS PLAGL1 methylation at birth and at discharge were highly correlated in VPT infants. Lower methylation emerged in VPT infants at birth and discharge compared to FT counterparts. CONCLUSION PLAGL1 hypomethylation emerged as a potential epigenetic mark of VPT birth. Future research is warranted to assess the functional consequences of PLAGL1 diminished methylation in VPT infants' development.
Collapse
Affiliation(s)
- Livio Provenzi
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| | - Pietro De Carli
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| | - Monica Fumagalli
- NICU, Department of Clinical Sciences & Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 201223, Milan, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, 238424, Bosisio Parini, Italy
| | - Sharon Casavant
- School of Nursing, University of Connecticut, Storrs, CT, 060325, USA
| | - Silvana Beri
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, 238424, Bosisio Parini, Italy
| | - Andrea Citterio
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, 238424, Bosisio Parini, Italy
| | - Amy D'Agata
- College of Nursing, University of Rhode Island, Kingston, RI, 028816, USA
| | | | - Fabio Mosca
- NICU, Department of Clinical Sciences & Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 201223, Milan, Italy
| | - Renato Borgatti
- Neuropsychiatry & Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| |
Collapse
|
31
|
Vassilakos G, Lei H, Yang Y, Puglise J, Matheny M, Durzynska J, Ozery M, Bennett K, Spradlin R, Bonanno H, Park S, Ahima RS, Barton ER. Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice. FASEB J 2018; 33:181-194. [PMID: 29932867 DOI: 10.1096/fj.201800459r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factors (IGFs) are essential for local skeletal muscle growth and organismal physiology, but these actions are entwined with glucose homeostasis through convergence with insulin signaling. The objective of this work was to determine whether the effects of IGF-I on growth and metabolism could be separated. We generated muscle-specific IGF-I-deficient (MID) mice that afford inducible deletion of Igf1 at any age. After Igf1 deletion at birth or in young adult mice, evaluations of muscle physiology and glucose homeostasis were performed up to 16 wk of age. MID mice generated at birth had lower muscle and circulating IGF-I, decreased muscle and body mass, and impaired muscle force production. Eight-wk-old male MID had heightened insulin levels with trends of elevated fasting glucose. This phenotype progressed to impaired glucose handling and increased fat deposition without significant muscle mass loss at 16 wk of age. The same phenotype emerged in 16-wk-old MID mice induced at 12 wk of age, compounded with heightened muscle fatigability and exercise intolerance. We assert that muscle IGF-I independently modulates anabolism and metabolism in an age-dependent manner, thus positioning muscle IGF-I maintenance to be critical for both muscle growth and metabolic homeostasis.-Vassilakos, G., Lei, H., Yang, Y., Puglise, J., Matheny, M., Durzynska, J., Ozery, M., Bennett, K., Spradlin, R., Bonanno, H., Park, S., Ahima, R. S., Barton, E. R. Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice.
Collapse
Affiliation(s)
- Georgios Vassilakos
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Hanqin Lei
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Yun Yang
- Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA.,Gastrointestinal Surgery, West China School of Medicine, Sichuan University-West China Hospital, Chengdu, China
| | - Jason Puglise
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Michael Matheny
- Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Durzynska
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA.,Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Poznań, Poland
| | - Matan Ozery
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Katherine Bennett
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Ray Spradlin
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Heather Bonanno
- Animal Care Services, Cancer and Genetics Research Complex, University of Florida, Gainesville, Florida, USA
| | - Soohyun Park
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elisabeth R Barton
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA.,Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
32
|
Montrose L, Padmanabhan V, Goodrich JM, Domino SE, Treadwell MC, Meeker JD, Watkins DJ, Dolinoy DC. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 2018. [PMID: 29513082 DOI: 10.1080/15592294.2018.1448680] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) pose a public health risk through disruption of normal biological processes. Identifying toxicoepigenetic mechanisms of developmental exposure-induced effects for EDCs, such as phthalates or bisphenol A (BPA), is essential. Here, we investigate whether maternal exposure to EDCs is predictive of infant DNA methylation at candidate gene regions. In the Michigan Mother-Infant Pairs (MMIP) cohort, DNA was extracted from cord blood leukocytes for methylation analysis by pyrosequencing (n = 116) and methylation changes related to first trimester levels of 9 phthalate metabolites and BPA. Growth and metabolism-related genes selected for methylation analysis included imprinted (IGF2, H19) and non-imprinted (PPARA, ESR1) genes along with LINE-1 repetitive elements. Findings revealed decreases in methylation of LINE-1, IGF2, and PPARA with increasing phthalate concentrations. For example, a log unit increase in ΣDEHP corresponded to a 1.03 [95% confidence interval (CI): -1.83, -0.22] percentage point decrease in PPARA methylation. Changes in DNA methylation were also inversely correlated with PPARA gene expression determined by RT-qPCR (r = -0.34, P = 0.02), thereby providing evidence in support of functional relevance. A sex-stratified analysis of EDCs and DNA methylation showed that some relationships were female-specific. For example, urinary BPA exposure was associated with a 1.35 (95%CI: -2.69, -0.01) percentage point decrease in IGF2 methylation and a 1.22 (95%CI: -2.27, -0.16) percentage point decrease in PPARA methylation in females only. These findings add to a body of evidence suggesting epigenetically labile regions may provide a conduit linking early exposures with disease risk later in life and that toxicoepigenetic susceptibility may be sex specific.
Collapse
Affiliation(s)
- Luke Montrose
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Vasantha Padmanabhan
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA.,b Department of Pediatrics , University of Michigan , Ann Arbor , MI , USA.,c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA
| | - Jaclyn M Goodrich
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Steven E Domino
- c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA
| | - Marjorie C Treadwell
- c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA
| | - John D Meeker
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Deborah J Watkins
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Dana C Dolinoy
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA.,d Department of Nutritional Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
33
|
Insulin-like growth factor 2 is a key mitogen driving liver repopulation in mice. Cell Death Dis 2018; 9:26. [PMID: 29348399 PMCID: PMC5833551 DOI: 10.1038/s41419-017-0186-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/02/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Hepatocyte transplantation holds great promise as an alternative to orthotopic organ transplantation in the treatment of liver diseases. However, obtaining clinically meaningful levels of liver repopulation has not been achieved because the mechanisms regulating hepatocyte proliferation in recipient livers have not yet been well characterized. In the mouse model of Hereditary Tyrosinemia Type I, the fumarylacetoacetate hydrolase-deficient (Fah−/−) mouse, we found gradually increasing expression level of insulin-like growth factor 2 (IGF2) in the hepatocytes of host livers. Similarly, high levels of IGF2 were found in the livers of patients with deficient FAH activity. Recombinant IGF2 directly promotes proliferation of primary hepatocytes in vitro. Inhibition on IGF2 expression through the interruption of PI3K/Akt and MAPK pathways significantly reduced the level of liver repopulation in Fah−/− mice. Interestingly, treatment with IGF2 before hepatocyte transplantation generally improved the amount of liver repopulation seen in various mice models of liver injury. Altogether, these findings underscore the underlying mechanisms of therapeutic liver repopulation in Fah−/− mice, and indicate that IGF2 is a potential hepatocyte mitogen for liver cell transplantation therapies.
Collapse
|
34
|
Varrault A, Dantec C, Le Digarcher A, Chotard L, Bilanges B, Parrinello H, Dubois E, Rialle S, Severac D, Bouschet T, Journot L. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network. Nucleic Acids Res 2017; 45:10466-10480. [PMID: 28985358 PMCID: PMC5737700 DOI: 10.1093/nar/gkx672] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Christelle Dantec
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Laëtitia Chotard
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Benoit Bilanges
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Hugues Parrinello
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Stéphanie Rialle
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Dany Severac
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| |
Collapse
|
35
|
Haertle L, Maierhofer A, Böck J, Lehnen H, Böttcher Y, Blüher M, Schorsch M, Potabattula R, El Hajj N, Appenzeller S, Haaf T. Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals. PLoS One 2017; 12:e0184030. [PMID: 28854270 PMCID: PMC5576652 DOI: 10.1371/journal.pone.0184030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals.
Collapse
Affiliation(s)
- Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Harald Lehnen
- Department of Gynecology and Obstetrics, Municipal Clinics, Mönchengladbach, Germany
| | - Yvonne Böttcher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
- Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
| | | | - Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, Julius Maximilians University, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Chatzinikolaou G, Apostolou Z, Aid-Pavlidis T, Ioannidou A, Karakasilioti I, Papadopoulos GL, Aivaliotis M, Tsekrekou M, Strouboulis J, Kosteas T, Garinis GA. ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes. Nat Cell Biol 2017; 19:421-432. [PMID: 28368372 DOI: 10.1038/ncb3499] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
Inborn defects in DNA repair are associated with complex developmental disorders whose causal mechanisms are poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the nucleotide excision repair (NER) structure-specific endonuclease ERCC1-XPF complex interacts with the insulator binding protein CTCF, the cohesin subunits SMC1A and SMC3 and with MBD2; the factors co-localize with ATRX at the promoters and control regions (ICRs) of imprinted genes during postnatal hepatic development. Loss of Ercc1 or exposure to MMC triggers the localization of CTCF to heterochromatin, the dissociation of the CTCF-cohesin complex and ATRX from promoters and ICRs, altered histone marks and the aberrant developmental expression of imprinted genes without altering DNA methylation. We propose that ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes and that persistent DNA damage triggers chromatin changes that affect gene expression programs associated with NER disorders.
Collapse
Affiliation(s)
- Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Tamara Aid-Pavlidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Anna Ioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Ismene Karakasilioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Giorgio L Papadopoulos
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Theodore Kosteas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| |
Collapse
|
37
|
Pope C, Mishra S, Russell J, Zhou Q, Zhong XB. Targeting H19, an Imprinted Long Non-Coding RNA, in Hepatic Functions and Liver Diseases. Diseases 2017; 5:E11. [PMID: 28933364 PMCID: PMC5456333 DOI: 10.3390/diseases5010011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
H19 is a long non-coding RNA regulated by genomic imprinting through methylation at the locus between H19 and IGF2. H19 is important in normal liver development, controlling proliferation and impacting genes involved in an important network controlling fetal development. H19 also plays a major role in disease progression, particularly in hepatocellular carcinoma. H19 participates in the epigenetic regulation of many processes impacting diseases, such as activating the miR-200 pathway by histone acetylation to inhibit the epithelial-mesenchymal transition to suppress tumor metastasis. Furthermore, H19's normal regulation is disturbed in diseases, such as hepatocellular carcinoma. In this disease, aberrant epigenetic maintenance results in biallelic expression of IGF2, leading to uncontrolled cellular proliferation. This review aims to further research utilizing H19 for drug discovery and the treatment of liver diseases by focusing on both the epigenetic regulation of H19 and how H19 regulates normal liver functions and diseases, particularly by epigenetic mechanisms.
Collapse
Affiliation(s)
- Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Shashank Mishra
- Department of Physiology and Neurobiology, University of Connecticut, 75 N Eagleville Road, Storrs, CT 06269, USA.
| | - Joshua Russell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Qingqing Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
38
|
Li J, Yang K, Ju T, Ho T, McKay CA, Gao Y, Forget SK, Gartner SR, Field CJ, Chan CB, Willing BP. Early life antibiotic exposure affects pancreatic islet development and metabolic regulation. Sci Rep 2017; 7:41778. [PMID: 28150721 PMCID: PMC5288777 DOI: 10.1038/srep41778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
Childhood antibiotic exposure has been recently linked with increased risk of metabolic disease later in life. A better understanding of this association would potentially provide strategies to reduce the childhood chronic disease epidemic. Therefore, we explored the underlying mechanisms using a swine model that better mimics human infants than rodents, and demonstrated that early life antibiotic exposure affects glucose metabolism 5 weeks after antibiotic withdrawal, which was associated with changes in pancreatic development. Antibiotics exerted a transient impact on postnatal gut microbiota colonization and microbial metabolite production, yet changes in the expression of key genes involved in short-chain fatty acid signaling and pancreatic development were detected in later life. These findings suggest a programming effect of early life antibiotic exposure that merits further investigation.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kaiyuan Yang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Tracy Ho
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Catharine A McKay
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Yanhua Gao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Shay K Forget
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Stephanie R Gartner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Catherine B Chan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
39
|
López IP, Piñeiro-Hermida S, Pais RS, Torrens R, Hoeflich A, Pichel JG. Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation. PLoS One 2016; 11:e0166388. [PMID: 27861515 PMCID: PMC5115747 DOI: 10.1371/journal.pone.0166388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors) signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor) in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice, and revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury.
Collapse
Affiliation(s)
- Icíar P López
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Sergio Piñeiro-Hermida
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Rosete S Pais
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Raquel Torrens
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - José G Pichel
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| |
Collapse
|
40
|
Swanzey E, Stadtfeld M. A reporter model to visualize imprinting stability at the Dlk1 locus during mouse development and in pluripotent cells. Development 2016; 143:4161-4166. [PMID: 27729406 PMCID: PMC5117214 DOI: 10.1242/dev.138255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this ‘imprinting reporter mouse’ can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. Summary: A Dlk1 knock-in reporter mouse reports allele- and tissue-specific Dlk1 expression in developing embryos that can be used to study changes in genomic imprinting during cellular reprogramming.
Collapse
Affiliation(s)
- Emily Swanzey
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
41
|
Lipid metabolism is associated with developmental epigenetic programming. Sci Rep 2016; 6:34857. [PMID: 27713555 PMCID: PMC5054359 DOI: 10.1038/srep34857] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/19/2016] [Indexed: 12/24/2022] Open
Abstract
Maternal diet and metabolism impact fetal development. Epigenetic reprogramming facilitates fetal adaptation to these in utero cues. To determine if maternal metabolite levels impact infant DNA methylation globally and at growth and development genes, we followed a clinical birth cohort of 40 mother-infant dyads. Targeted metabolomics and quantitative DNA methylation were analyzed in 1st trimester maternal plasma (M1) and delivery maternal plasma (M2) as well as infant umbilical cord blood plasma (CB). We found very long chain fatty acids, medium chain acylcarnitines, and histidine were: (1) stable in maternal plasma from pregnancy to delivery, (2) significantly correlated between M1, M2, and CB, and (3) in the top 10% of maternal metabolites correlating with infant DNA methylation, suggesting maternal metabolites associated with infant DNA methylation are tightly controlled. Global DNA methylation was highly correlated across M1, M2, and CB. Thus, circulating maternal lipids are associated with developmental epigenetic programming, which in turn may impact lifelong health and disease risk. Further studies are required to determine the causal link between maternal plasma lipids and infant DNA methylation patterns.
Collapse
|
42
|
Vincent RN, Gooding LD, Louie K, Chan Wong E, Ma S. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil Steril 2016; 106:739-748.e3. [PMID: 27178226 DOI: 10.1016/j.fertnstert.2016.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate DNA methylation and expression of imprinted genes and an imprinted gene network (IGN) in neonates conceived via assisted reproductive technology (ART). DESIGN Case control. SETTING Research institution. PATIENT(S) Two hundred sixty-four cases of cord blood and/or placental villi from neonates (101 IVF, 81 ICSI, 82 naturally conceived). INTERVENTION(S) Placentas were obtained at birth for biopsy and cord blood extraction. MAIN OUTCOME MEASURE(S) DNA methylation and expression of imprinted genes. RESULT(S) DNA methylation at the PLAGL1 differentially methylated region (DMR) was significantly higher in IVF cord blood (48.0%) compared with controls (46.0%). No differences were found in DNA methylation between conception modes for KvDMR1 and LINE-1 in cord blood and placenta as well as PLAGL1 and PEG10 in placenta villi. PLAGL1 expression was lower in both IVF and ICSI cord blood groups than in controls (relative quantification of 0.65, 0.74, 0.89, respectively). Analyzing the expression of 3 genes in a PLAGL1 regulated IGN revealed different expression between conception modes and a significant correlation to PLAGL1 expression in only one (KCNQ1OT1). CONCLUSION(S) Our results suggest a stability of DNA methylation at imprinted DMRs; however, we show PLAGL1 methylation/expression to be altered after ART. As PLAGL1 expression correlated with only one of the three IGN genes in cord blood, we propose there is a more complex mechanism of regulating the IGN that may involve other genes and epigenetic modifications in this tissue. Further research investigating IGN-implicated genes in various neonatal tissues is warranted to elucidate the full effects ART-induced alterations to PLAGL1 and the IGN may have on fetal growth/development.
Collapse
Affiliation(s)
- Rebecca N Vincent
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke D Gooding
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenny Louie
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edgar Chan Wong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
43
|
Li Y, Xie C, Murphy SK, Skaar D, Nye M, Vidal AC, Cecil KM, Dietrich KN, Puga A, Jirtle RL, Hoyo C. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:666-73. [PMID: 26115033 PMCID: PMC4858407 DOI: 10.1289/ehp.1408577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. OBJECTIVES The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. METHODS Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. RESULTS Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = -0.0014; 95% CI: -0.0023, -0.0005, p = 0.002), stronger in males (β = -0.0024; 95% CI: -0.0038, -0.0009, p = 0.003) than in females (β = -0.0009; 95% CI: -0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = -0.0013; 95% CI: -0.0023, -0.0003, p = 0.01) DMR methylation, but primarily in females, (β = -0.0017; 95% CI: -0.0029, -0.0006, p = 0.005) rather than in males, (β = -0.0004; 95% CI: -0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from 30 to 78 months. CONCLUSIONS Our findings provide evidence that early childhood lead exposure results in sex-dependent and gene-specific DNA methylation differences in the DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood. CITATION Li Y, Xie C, Murphy SK, Skaar D, Nye M, Vidal AC, Cecil KM, Dietrich KN, Puga A, Jirtle RL, Hoyo C. 2016. Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ Health Perspect 124:666-673; http://dx.doi.org/10.1289/ehp.1408577.
Collapse
Affiliation(s)
- Yue Li
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Changchun Xie
- Division of Epidemiology and Biostatistics, Department of Environmental Health, Center for Clinical and Translational Science and Training, University of Cincinnati (UC), Cincinnati, Ohio, USA
| | - Susan K. Murphy
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University (NCSU), Raleigh, North Carolina, USA
| | - Monica Nye
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adriana C. Vidal
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kim M. Cecil
- Cincinnati Children’s Environmental Health Center, Cincinnati Children’s Hospital Medical Center, UC College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology,
- Department of Pediatrics,
- Department of Environmental Health,
- Center for Environmental Genetics, and
| | - Kim N. Dietrich
- Division of Epidemiology and Biostatistics, UC College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental Health,
- Center for Environmental Genetics, and
| | - Randy L. Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University (NCSU), Raleigh, North Carolina, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Sport and Exercise Sciences, Institute of Sport and Physical Activity Research, University of Bedfordshire, Bedford, Bedfordshire, United Kingdom
- Address correspondence to C. Hoyo, Department of Biological Sciences, Center for Human Health and the Environment (CHHE), Program of Epidemiology and Environmental Epigenomics, North Carolina State University (NCSU), Raleigh, NC 27695-7633 USA. Telephone: (919) 515-0540. E-mail: , or R.L. Jirtle, Department of Biological Sciences, CHHE, NCSU, Raleigh, NC 27695-7633 USA. Telephone: (919) 399-3342. E-mail:
| | - Cathrine Hoyo
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University (NCSU), Raleigh, North Carolina, USA
- Address correspondence to C. Hoyo, Department of Biological Sciences, Center for Human Health and the Environment (CHHE), Program of Epidemiology and Environmental Epigenomics, North Carolina State University (NCSU), Raleigh, NC 27695-7633 USA. Telephone: (919) 515-0540. E-mail: , or R.L. Jirtle, Department of Biological Sciences, CHHE, NCSU, Raleigh, NC 27695-7633 USA. Telephone: (919) 399-3342. E-mail:
| |
Collapse
|
44
|
Haig D. Maternal-fetal conflict, genomic imprinting and mammalian vulnerabilities to cancer. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0178. [PMID: 26056362 DOI: 10.1098/rstb.2014.0178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antagonistic coevolution between maternal and fetal genes, and between maternally and paternally derived genes may have increased mammalian vulnerability to cancer. Placental trophoblast has evolved to invade maternal tissues and evade structural and immunological constraints on its invasion. These adaptations can be co-opted by cancer in intrasomatic selection. Imprinted genes of maternal and paternal origin favour different degrees of proliferation of particular cell types in which they reside. As a result, the set of genes favouring greater proliferation will be selected to evade controls on cell-cycle progression imposed by the set of genes favouring lesser proliferation. The dynamics of stem cell populations will be a particular focus of this intragenomic conflict. Gene networks that are battlegrounds of intragenomic conflict are expected to be less robust than networks that evolve in the absence of conflict. By these processes, maternal-fetal and intragenomic conflicts may undermine evolved defences against cancer.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
45
|
Martinet C, Monnier P, Louault Y, Benard M, Gabory A, Dandolo L. H19 controls reactivation of the imprinted gene network during muscle regeneration. Development 2016; 143:962-71. [DOI: 10.1242/dev.131771] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The H19 locus controls fetal growth by regulating expression of several genes from the imprinted gene network (IGN). H19 is fully repressed after birth, except in skeletal muscle. Using loss-of-function H19Δ3 mice, we investigated the function of H19 in adult muscle. Mutant muscles display hypertrophy and hyperplasia, with increased Igf2 and decreased myostatin (Mstn) expression. Many imprinted genes are expressed in muscle stem cells or satellite cells. Unexpectedly, the number of satellite cells was reduced by 50% in H19Δ3 muscle fibers. This reduction occurred after postnatal day 21, suggesting a link with their entry into quiescence. We investigated the biological function of these mutant satellite cells in vivo using a regeneration assay induced by multiple injections of cardiotoxin. Surprisingly, despite their reduced number, the self-renewal capacity of these cells is fully retained in the absence of H19. In addition, we observed a better regeneration potential of the mutant muscles, with enhanced expression of several IGN genes and genes from the IGF pathway.
Collapse
Affiliation(s)
- Clémence Martinet
- Institut Cochin, INSERM U1016, CNRS UMR 8104, University Paris Descartes, Paris 75014, France
| | - Paul Monnier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, University Paris Descartes, Paris 75014, France
| | - Yann Louault
- Institut Cochin, INSERM U1016, CNRS UMR 8104, University Paris Descartes, Paris 75014, France
| | - Matthieu Benard
- Institut Cochin, INSERM U1016, CNRS UMR 8104, University Paris Descartes, Paris 75014, France
| | - Anne Gabory
- Institut Cochin, INSERM U1016, CNRS UMR 8104, University Paris Descartes, Paris 75014, France
| | - Luisa Dandolo
- Institut Cochin, INSERM U1016, CNRS UMR 8104, University Paris Descartes, Paris 75014, France
| |
Collapse
|
46
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
47
|
Dobie R, Ahmed SF, Staines KA, Pass C, Jasim S, MacRae VE, Farquharson C. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1. J Cell Physiol 2015; 230:2796-806. [PMID: 25833299 PMCID: PMC4949688 DOI: 10.1002/jcp.25006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/30/2015] [Indexed: 11/12/2022]
Abstract
Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like‐growth factor‐1 (IGF‐1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling‐2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF‐1 levels. Wild‐type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF‐1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF‐1 levels were unchanged in GH‐challenged postnatal Socs2‐/‐ conditioned medium despite metatarsals showing enhanced linear growth. Growth‐plate Igf1 mRNA levels were not elevated in juvenile Socs2‐/‐ mice. GH did however elevate IGF‐binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2‐/‐ metatarsals. GH did not enhance the growth of Socs2‐/‐ metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF‐2 may be responsible as IGF‐2 promoted metatarsal growth and Igf2 expression was elevated in Socs2‐/‐ (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2‐/‐ mice, promoting growth via a mechanism that is independent of IGF‐1. J. Cell. Physiol. 9999: 2796–2806, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ross Dobie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Syed F Ahmed
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Yorkhill, Glasgow, Scotland, UK
| | - Katherine A Staines
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Chloe Pass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Seema Jasim
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Vicky E MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Colin Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Recent basic studies have yielded important new insights into the molecular mechanisms that regulate growth locally. Simultaneously, clinical studies have identified new molecular defects that cause growth failure and overgrowth, and genome-wide association studies have elucidated the genetic basis for normal human height variation. RECENT FINDINGS The Hippo pathway has emerged as one of the major mechanisms controlling organ size. In addition, an extensive genetic program has been described that allows rapid body growth in the fetus and infant but then causes growth to slow with age in multiple tissues. In human genome-wide association studies, hundreds of loci associated with adult stature have been identified; many appear to involve genes that function locally in the growth plate. Clinical genetic studies have identified a new genetic abnormality, microduplication of Xq26.3, that is responsible for growth hormone excess, and a gene, DNMT3A, in which mutations cause an overgrowth syndrome through epigenetic mechanisms. SUMMARY These recent advances in our understanding of somatic growth not only provide insight into childhood growth disorders but also have broader medical applications because disruption of these regulatory systems contributes to oncogenesis.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Presley Garrison
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
49
|
Hoffmann A, Daniel G, Schmidt-Edelkraut U, Spengler D. Roles of imprinted genes in neural stem cells. Epigenomics 2015; 6:515-32. [PMID: 25431944 DOI: 10.2217/epi.14.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure stem cell quiescence and differentiation. At the genome scale, imprinted genes are organized in dynamic networks formed by interchromosomal interactions and transcriptional coregulation of imprinted and nonimprinted genes. Such multilayered networks may synchronize NSC activity with the demand from the niche resembling their roles in adjusting fetal size.
Collapse
Affiliation(s)
- Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | | | |
Collapse
|
50
|
Szabo A, Czako M, Hadzsiev K, Duga B, Komlosi K, Melegh B. Partial tetrasomy of the proximal long arm of chromosome 15 in two patients: the significance of the gene dosage in terms of phenotype. Mol Cytogenet 2015; 8:41. [PMID: 26110020 PMCID: PMC4479342 DOI: 10.1186/s13039-015-0137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background Large amounts of low copy number repeats in the 15q11.2q13.3 chromosomal region increase the possibility of misalignments and unequal crossover during meiosis in this region, leading to deletions, duplications, triplications and supernumerary chromosomes. Most of the reported cases with epilepsy, autism and Prader-Willi/Angelman syndrome are in association with rearrangements of the proximal long arm of chromosome 15. Results Here we report the first two unrelated Hungarian patients with the same epileptic and dysmorphic features, who were investigated by array comparative genomic hybridization (array CGH). By G-banded karyotype followed by FISH and array CGH we could detect partial tetrasomy of the 15q11.2q13.3 chromosomal region, supporting proximal 15q duplication syndrome. Findings of the array CGH gave fully explanation of the phenotypic features of these patients, including epileptic seizures, delayed development, hyperactivity and craniofacial dysmorphic signs. Besides the described features of isodicentric (15) (idic(15)) syndrome Patient 1. suffered from bigeminic extrasystoles and had postnatal growth retardation, which had been published only in a few articles. Conclusions Dosage effect of some genes in the concerned genomic region is known, but several genes have no evidence to have dosage dependence. Our results expanded the previous literature data. We assume dosage dependence in the case of CHRNA7 and OTUD7A, which might be involved in growth regulation. On the other hand increased dosage of the KLF13 gene seems to have no direct causal relationship with heart morphology. The genomic environment of the affected genes may be responsible for the observed phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0137-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andras Szabo
- Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Centre, Ifjusag 20, H-7624 Pecs, Hungary
| | - Marta Czako
- Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Centre, Ifjusag 20, H-7624 Pecs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Centre, Ifjusag 20, H-7624 Pecs, Hungary
| | - Balazs Duga
- Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Centre, Ifjusag 20, H-7624 Pecs, Hungary
| | - Katalin Komlosi
- Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Centre, Ifjusag 20, H-7624 Pecs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Centre, Ifjusag 20, H-7624 Pecs, Hungary
| |
Collapse
|