1
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|
2
|
Cao LL, Holmes AP, Marshall JM, Fabritz L, Brain KL. Dynamic monitoring of single-terminal norepinephrine transporter rate in the rodent cardiovascular system: A novel fluorescence imaging method. Auton Neurosci 2020; 223:102611. [PMID: 31901784 PMCID: PMC6977090 DOI: 10.1016/j.autneu.2019.102611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
Here, we validate the use of a novel fluorescent norepinephrine transporter (NET) substrate for dynamic measurements of transporter function in rodent cardiovascular tissue; this technique avoids the use of radiotracers and provides single-terminal resolution. Rodent (Wistar rats and C57BL/6 mice) hearts and mesenteric arteries (MA) were isolated, loaded with NET substrate Neurotransmitter Transporter Uptake Assay (NTUA) ex vivo and imaged with confocal microscopy. NTUA labelled noradrenergic nerve terminals in all four chambers of the heart and on the surface of MA. In all tissues, a temperature-dependent, stable linear increase in intra-terminal fluorescence upon NTUA exposure was observed; this was abolished by NET inhibitor desipramine (1 μM) and reversed by indirectly-acting sympathomimetic amine tyramine (10 μM). NET reuptake rates were similar across the mouse cardiac chambers. In both species, cardiac NET activity was significantly greater than in MA (by 62 ± 29% (mouse) and 21 ± 16% (rat)). We also show that mouse NET reuptake rate was twice as fast as that in the rat (for example, in the heart, by 94 ± 30%). Finally, NET reuptake rate in the mouse heart was attenuated with muscarinic agonist carbachol (10 μM) thus demonstrating the potential for parasympathetic regulation of norepinephrine clearance. Our data provide the first demonstration of monitoring intra-terminal NET function in rodent cardiovascular tissue. This straightforward method allows dynamic measurements of transporter rate in response to varying physiological conditions and drug treatments; this offers the potential to study new mechanisms of sympathetic dysfunction associated with cardiovascular disease.
Collapse
Affiliation(s)
- Lily L Cao
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Andrew P Holmes
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Janice M Marshall
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Larissa Fabritz
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Keith L Brain
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
3
|
Kusmic C, Giorgetti A, Barsanti C, Burchielli S, Petroni D, Kusch A, Genovesi D, Menichetti L, Marzullo P. Spatial Inhomogeneity of Cardiac Norepinephrine Transport Protein and Meta-[ 123I]Iodobenzylguanidine Uptake in Swine Myocardial Tissue. Mol Imaging Biol 2018; 21:482-490. [PMID: 30187232 DOI: 10.1007/s11307-018-1269-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The aim of the present study was to evaluate the expression of the cardiac norepinephrine transporter (NET) in the left ventricle (LV) of healthy pigs and its relationship with regional meta-[123I]iodobenzylguanidine ([123I]MIBG) myocardial uptake. PROCEDURES Experiments were performed on animals injected with [123I]MIBG and acquired 2 h later using an ultrafast CZT gamma camera to assess the regional myocardial uptake. After image acquisition, animals were euthanized; the heart was quickly excised and underwent to an ex vivo single photon emission tomography (SPECT) imaging. Four small samples of tissue were then harvested from mid-walls and apex of the left ventricle; NET densities were evaluated and further normalized for protein loading per cardiac region. RESULTS Three variants of NET protein with different molecular weights were detected. The expression of NET was not homogenous in the LV, with the highest density in the inferior wall and the lowest one in the apical area. The regional in vivo [123I]MIBG uptake revealed an analogous trend, showing a good linear relationship with NET expression. Parallel results were obtained from the ex vivo study. CONCLUSION This study elucidates the expression of three different variants of NET proteins into the left ventricular myocardium of a healthy pig. NET expression into the LV was not homogeneous and paralleled by differences in regional [123I]MIBG uptake. Moreover, the correlation and the agreement between measurements of regional expression of NET variants and [123I]MIBG uptake represent a relevant finding for inferences about NET expression in the context of clinical imaging.
Collapse
Affiliation(s)
- Claudia Kusmic
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, 1, 56124, Pisa, Italy.
| | - Assuero Giorgetti
- Fondazione Toscana G. Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy.
| | - Cristina Barsanti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, 1, 56124, Pisa, Italy
| | - Silvia Burchielli
- Fondazione Toscana G. Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Debora Petroni
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, 1, 56124, Pisa, Italy
| | - Annette Kusch
- Fondazione Toscana G. Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Dario Genovesi
- Fondazione Toscana G. Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, 1, 56124, Pisa, Italy.,Fondazione Toscana G. Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Paolo Marzullo
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, 1, 56124, Pisa, Italy.,Fondazione Toscana G. Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
| |
Collapse
|
4
|
Liu Y, Zhang J, Liu S, Wang W, Chen X, Jiang H, Li J, Wang K, Bai W, Zhang H, Qin L. Effects of oestrogen andCimicifuga racemosaon the cardiac noradrenaline pathway of ovariectomized rats. Exp Physiol 2017; 102:974-984. [PMID: 28590038 DOI: 10.1113/ep086285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yao Liu
- Department of Cardiology; Peking University People's Hospital; Beijing 100044 China
| | - Jing Zhang
- Department of Anatomy and Embryology; Peking University Health Science Center; Beijing 100191 China
| | - Shuya Liu
- Department of Stomatology; General Hospital of Armed Police; Beijing 100039 China
| | - Wenjuan Wang
- Department of Anatomy and Embryology; Peking University Health Science Center; Beijing 100191 China
| | - Xing Chen
- Department of Obstetrics and Gynecology; Peking University First Hospital; 100034 Beijing China
| | - Hai Jiang
- Department of Anatomy and Embryology; Peking University Health Science Center; Beijing 100191 China
| | - Junlei Li
- Department of Cardiology; Peking University People's Hospital; Beijing 100044 China
| | - Ke Wang
- Department of Anatomy and Embryology; Peking University Health Science Center; Beijing 100191 China
| | - Wenpei Bai
- Department of Obstetrics and Gynecology; Shijitan Hospital; Beijing 100038 China
| | - Haicheng Zhang
- Department of Cardiology; Peking University People's Hospital; Beijing 100044 China
| | - Lihua Qin
- Department of Anatomy and Embryology; Peking University Health Science Center; Beijing 100191 China
| |
Collapse
|
5
|
Zhou Q, Zhou X, TuEr-Hong ZL, Wang H, Yin T, Li Y, Zhang L, Lu Y, Xing Q, Zhang J, Yang Y, Tang B. Renal sympathetic denervation suppresses atrial fibrillation induced by acute atrial ischemia/infarction through inhibition of cardiac sympathetic activity. Int J Cardiol 2015; 203:187-95. [PMID: 26512836 DOI: 10.1016/j.ijcard.2015.10.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aims to explore the effects of renal sympathetic denervation (RSD) on atrial fibrillation (AF) inducibility and sympathetic activity induced by acute atrial ischemia/infarction. METHODS Acute ischemia/infarction was induced in 12 beagle dogs by ligating coronary arteries that supply the atria. Six dogs in the sham-RSD group did not undergo RSD, and six dogs without coronary artery ligation served as controls. AF induction rate, sympathetic discharge, catecholamine concentration and densities of tyrosine hydroxylase-positive nerves were measured. RESULTS Acute atrial ischemia/infarction resulted in a significant increase of AF induction rate, which was decreased by RSD compared to controls (P<0.05). The root-mean-square peak value, peak area and number of sympathetic discharges were significantly augmented by atrial ischemia relative to the baseline and control (P<0.05). The number of sympathetic discharges was significantly reduced in the RSD group, compared to the control and sham-RSD groups (P<0.05). Norepinephrine and epinephrine concentrations in the atria, ventricle and kidney were elevated by atrial ischemia/infarction, but were reduced by RSD (P<0.05). CONCLUSIONS Sympathetic hyperactivity was associated with pacing-induced AF after acute atrial ischemia/infarction. RSD has the potential to reduce the incidence of new-onset AF after acute atrial ischemia/infarction. The inhibition of cardiac sympathetic activity by RSD may be one of the major underlying mechanisms for the marked reduction of AF inducibility.
Collapse
Affiliation(s)
- Qina Zhou
- Clinical Medicine, Postdoctoral Scientific Research Station, Xinjiang Medical University, Urumqi, China
| | - Xianhui Zhou
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - ZuKe-la TuEr-Hong
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hongli Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Yin
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yaodong Li
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ling Zhang
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanmei Lu
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Xing
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianghua Zhang
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yining Yang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Baopeng Tang
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
6
|
Vatta MS, Bianciotti LG, Guil MJ, Hope SI. Regulation of the Norepinephrine Transporter by Endothelins. HORMONES AND TRANSPORT SYSTEMS 2015; 98:371-405. [DOI: 10.1016/bs.vh.2014.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Laukova M, Tillinger A, Novakova M, Krizanova O, Kvetnansky R, Myslivecek J. Repeated immobilization stress increases expression of β3 -adrenoceptor in the left ventricle and atrium of the rat heart. Stress Health 2014; 30:301-9. [PMID: 23878066 DOI: 10.1002/smi.2515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 11/12/2022]
Abstract
Stress is a contributor of many cardiovascular diseases. Positive inotropic and chronotropic effects of catecholamines are regulated via β-adrenergic receptors (ARs). Many reports exist concerning changes of cardiac β1 - and β2 -ARs in stress, but only a few deal with modulation of cardiac β3 -AR. Our aim was to analyze the expression and binding sites of β1 -, β2 - and β3 -ARs and adenylyl cyclase activity in the left ventricle, and β3 -AR expression and binding in the left atrium of rats exposed to acute and chronic immobilization stress (IMO). The concentration of noradrenaline in the ventricle decreased, while adrenaline increased, especially after repeated IMO. The mRNA and protein levels, and binding sites of β3 -subtype significantly rose following chronic IMO, while all parameters for β2 -AR dropped after single and repeated exposure. Similarly, the mRNA levels and binding sites for β3 -subtype increased in the left atrium as a consequence of chronic IMO. The rise in β3 -subtypes and a drop in β2 -subtypes resulted in inhibition of adenylyl cyclase activity within the left ventricle. Taken together, among other factors, up-regulation of β3 -AR could represent an adaptation mechanism, which might be related to altered physiological function of the left ventricle and atrium during prolonged emotional stress and might serve cardioprotective function during catecholamine overload.
Collapse
Affiliation(s)
- Marcela Laukova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
8
|
Wehrwein EA, Novotny M, Swain GM, Parker LM, Esfahanian M, Spitsbergen JM, Habecker BA, Kreulen DL. Regional changes in cardiac and stellate ganglion norepinephrine transporter in DOCA-salt hypertension. Auton Neurosci 2013; 179:99-107. [PMID: 24075956 DOI: 10.1016/j.autneu.2013.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
Uptake of norepinephrine via the neuronal norepinephrine transporter is reduced in the heart during deoxycorticosterone (DOCA)-salt hypertension. We hypothesized that this was due to reduced norepinephrine transporter mRNA and/or protein expression in the stellate ganglia and heart. After 4 weeks of DOCA-salt treatment there was no change in norepinephrine transporter mRNA in either the right or the left stellate ganglia from hypertensive rats (n=5-7, p>0.05). Norepinephrine transporter immunoreactivity in the left stellate ganglion was significantly increased (n=4, p<0.05) while the right stellate ganglion was unchanged (n=4, p>0.05). Whole heart norepinephrine content was significantly reduced in DOCA rats consistent with reduced uptake function; however, when norepinephrine was assessed by chamber, a significant decrease was noted only in the right atrium and right ventricle (n=6, p<0.05). Cardiac norepinephrine transport binding by chamber revealed that it was only reduced in the left atrium (n=5-7, p>0.05). Therefore, 1) contrary to our hypothesis reduced reuptake in the hypertensive heart is not exclusively due to an overall reduction in norepinephrine transporter mRNA or protein in the stellate ganglion or heart, and 2) norepinephrine transporter regulation occurs regionally in the heart and stellate ganglion in the hypertensive rat heart.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The autonomic nervous system is the primary extrinsic control of cardiac performance, and altered autonomic activity has been recognized as an important factor in the progression of various cardiac pathologies. Molecular imaging techniques have been developed for global and regional interrogation of pre- and postsynaptic targets of the cardiac autonomic nervous system. Building on established work with the guanethidine analogue ¹²³I-metaiodobenzylguanidine (MIBG) for single-photon emission tomography (SPECT), development of radiotracers and protocols for positron emission tomography (PET) investigation of autonomic signaling has expanded. PET is limited in availability and requires specialized centers for radiosynthesis and interpretation, but the higher resolution allows for improved regional analysis and kinetic modeling provides more true quantification than is possible with SPECT. A wider array of radiolabeled catecholamines, analogues of catecholamines, and receptor ligands have been characterized and evaluated. Sympathetic neuronal PET tracers have shown promise in the identification of several cardiac pathologies. In particular, recent studies have elucidated a mechanistic role for heterogeneous sympathetic innervation in the development of lethal ventricular arrhythmias. Evaluation of cardiomyocyte adrenergic receptor expression and the parasympathetic nervous system has been slower to develop, with clinical studies beginning to emerge. This review summarizes the clinical and the experimental PET tracers currently available for autonomic imaging and discusses their application in health and cardiovascular disease, with particular emphasis on the major findings of the last decade.
Collapse
Affiliation(s)
- James T Thackeray
- Klinik für Nuklearmedizin, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
10
|
Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, Dasilva JN. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol 2011; 10:75. [PMID: 21831292 PMCID: PMC3170183 DOI: 10.1186/1475-2840-10-75] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/10/2011] [Indexed: 12/19/2022] Open
Abstract
Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE) release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ) rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function. Methods Cardiac sympathetic nervous integrity was investigated in vivo via biodistribution of the positron emission tomography radiotracer and NE analogue [11C]meta-hydroxyephedrine ([11C]HED). Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET) expression were evaluated as correlative measurements. Results The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [11C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle. Conclusions Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system signaling in the absence of systolic impairment.
Collapse
Affiliation(s)
- James T Thackeray
- Molecular Function & Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Palomar AR, Larios BN, De Sánchez VC, Pérez LM, López FDLC, Flores G, Gómez-Villalobos MDJ. Expression and distribution of dopamine transporter in cardiac tissues of the guinea pig. Neurochem Res 2010; 36:399-405. [PMID: 21170736 DOI: 10.1007/s11064-010-0344-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Dopamine transporter (DAT) is a membrane protein that it is a marker for dopaminergic neurons. In the present work, throught Western blot and autoradiographic studies with a selective ligand for DAT ([(3)H] WIN-35428) and noradrenaline transporter (NET) ([(3)H] Nisoxetine), we search the expression and distribution of DAT in comparison with NET, in cardiac tissue of guinea pig in order to support the presence of dopaminergic nerve cells into the heart. Expression of DAT, and NET were evidenced by a bands of 75 and 54 kDa, respectively in the heart. Binding for DAT and NET were found in the four cardiac chambers. However, DAT show heterogeneous distribution with binding in right atria and in both ventricles, whereas NET show homogenous distribution in the four cardiac chambers. The results show the expression of DAT in cardiac tissues with a different distribution compared with NET, being an evidence for the presence of dopaminergic nerve cells into the heart.
Collapse
Affiliation(s)
- Alejandro Reynoso Palomar
- Instituto de Fisiología, Universidad Autonoma de Puebla, 14 Sur 6301, San Manuel, CP 72570, Puebla, Puebla, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Lawrence J, Chen M, Xiong F, Xiao D, Zhang H, Buchholz JN, Zhang L. Foetal nicotine exposure causes PKCε gene repression by promoter methylation in rat hearts. Cardiovasc Res 2010; 89:89-97. [PMID: 20733009 DOI: 10.1093/cvr/cvq270] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS foetal nicotine exposure results in decreased protein kinase C epsilon (PKCε) expression and increased cardiac vulnerability to ischaemia and reperfusion injury in adult rat offspring. The present study tested the hypothesis that maternal nicotine administration causes increased promoter methylation of the PKCε gene resulting in PKCε repression in the heart. METHODS AND RESULTS nicotine treatment of pregnant rats starting at day 4 of gestation increased the methylation of the Egr-1 binding site at the PKCε gene promoter and decreased PKCε protein and mRNA abundance in near-term foetal hearts. Methylation of the Egr-1 binding site reduced Egr-1 binding to the PKCε promoter in the heart. Site-specific deletion of the Egr-1 binding site significantly decreased PKCε promoter activity. The effects of nicotine were sustained in the heart of adult offspring. Ex vivo studies found no direct effect of nicotine on PKCε gene expression. However, maternal nicotine administration increased norepinephrine content in the foetal heart. Treatment of isolated foetal hearts with norepinephrine resulted in the same effects of increased methylation of the Egr-1 binding site and PKCε gene repression in the heart. 5-Aza-2'-deoxycytidine inhibited the norepinephrine-induced increase in methylation of the Egr-1 binding site and restored Egr-1 binding and PKCε gene expression to the control levels. CONCLUSION this study demonstrates that prolonged nicotine exposure increases the sympathetic neurotransmitter release in the foetal heart and causes programming of PKCε gene repression through promoter methylation, linking maternal smoking to pathophysiological consequences in the offspring heart.
Collapse
Affiliation(s)
- Jennifer Lawrence
- Department of Physiology and Pharmacology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Li H, Ma XQ, Ye F, Zhang J, Zhou X, Wang ZH, Li YM, Zhang GY. Expressions of cardiac sympathetic norepinephrine transporter and beta1-adrenergic receptor decreased in aged rats. J Zhejiang Univ Sci B 2009; 10:203-10. [PMID: 19283875 DOI: 10.1631/jzus.b0820213] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovascular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleft and maintains the sensitivity of the beta-adrenergic receptor (beta-AR). In the present study, we investigated NET and beta1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and left ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and beta1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.
Collapse
Affiliation(s)
- He Li
- Cardiovascular Division, Department of Geriatric Medicine, Pingjin Hospital, Medical College of Chinese People's Armed Police Force, Institute of Cardiovascular Disease of Chinese People's Armed Police Force, Tianjin 300162, China.
| | | | | | | | | | | | | | | |
Collapse
|