1
|
Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P. Local sleep. Sleep Med Rev 2018; 43:14-21. [PMID: 30502497 DOI: 10.1016/j.smrv.2018.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The historic sleep regulatory paradigm invokes "top-down" imposition of sleep on the brain by sleep regulatory circuits. While remaining conceptually useful, many sleep phenomena are difficult to explain using that paradigm, including, unilateral sleep, sleep-walking, and poor performance after sleep deprivation. Further, all animals sleep after non-lethal brain lesions, regardless of whether the lesion includes sleep regulatory circuits, suggesting that sleep is a fundamental property of small viable neuronal/glial networks. That small areas of the brain can exhibit non-rapid eye movement sleep-like states is summarized. Further, sleep-like states in neuronal/glial cultures are described. The local sleep states, whether in vivo or in vitro, share electrophysiological properties and molecular regulatory components with whole animal sleep and exhibit sleep homeostasis. The molecular regulatory components of sleep are also involved in plasticity and inflammation. Like sleep, these processes, are initiated by local cell-activity dependent events, yet have at higher levels of tissue organization whole body functions. While there are large literatures dealing with local initiation and regulation of plasticity and inflammation, the literature surrounding local sleep is in its infancy and clinical applications of the local sleep concept are absent. Regardless, the local use-dependent sleep paradigm can advise and advance future research and clinical applications.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA.
| | - Joseph T Nguyen
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Cheryl J Dykstra-Aiello
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Ping Taishi
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| |
Collapse
|
2
|
Schally AV. Endocrine approaches to treatment of Alzheimer's disease and other neurological conditions: Part I: Some recollections of my association with Dr. Abba Kastin: A tale of successful collaboration. Peptides 2015; 72:154-63. [PMID: 25843023 DOI: 10.1016/j.peptides.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Andrew V Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, United States; Division of Hematology/Oncology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
3
|
Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model. Brain Behav Immun 2015; 47:163-71. [PMID: 25218899 PMCID: PMC4362875 DOI: 10.1016/j.bbi.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/13/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sleep-wake cycle in both humans and mice; ISF Aβ is higher during wakefulness and lower during sleep. Intracerebroventricular infusion of orexin increased wakefulness and ISF Aβ levels, and chronic sleep deprivation significantly increased Aβ plaque formation in amyloid precursor protein transgenic (APP) mice. Growth hormone-releasing hormone (GHRH) is a well-documented sleep regulatory substance which promotes non-rapid eye movement sleep. GHRHR(lit/lit) mice that lack functional GHRH receptor have shorter sleep duration and longer wakefulness during light periods. The current study was undertaken to determine whether manipulating sleep by interfering with GHRH signaling affects brain ISF Aβ levels in APPswe/PS1ΔE9 (PS1APP) transgenic mice that overexpress mutant forms of APP and PSEN1 that cause autosomal dominant AD. We found that intraperitoneal injection of GHRH at dark onset increased sleep and decreased ISF Aβ and that delivery of a GHRH antagonist via reverse-microdialysis suppressed sleep and increased ISF Aβ. The diurnal fluctuation of ISF Aβ in PS1APP/GHRHR(lit/lit) mice was significantly smaller than that in PS1APP/GHRHR(lit/+) mice. However despite decreased sleep in GHRHR deficient mice, this was not associated with an increase in Aβ accumulation later in life. One of several possibilities for the finding is the fact that GHRHR deficient mice have GHRH-dependent but sleep-independent factors which protect against Aβ deposition.
Collapse
|
4
|
Nair D, Ramesh V, Li RC, Schally AV, Gozal D. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. J Neurochem 2013; 127:531-40. [PMID: 23815362 DOI: 10.1111/jnc.12360] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 11/27/2022]
Abstract
Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep.
Collapse
Affiliation(s)
- Deepti Nair
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
5
|
Arias-Carrión O, Huitrón-Reséndiz S, Arankowsky-Sandoval G, Murillo-Rodríguez E. Biochemical modulation of the sleep-wake cycle: Endogenous sleep-inducing factors. J Neurosci Res 2011; 89:1143-9. [DOI: 10.1002/jnr.22666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/13/2011] [Accepted: 03/17/2011] [Indexed: 11/09/2022]
|
6
|
Krueger JM, Majde JA, Rector DM. Cytokines in immune function and sleep regulation. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:229-40. [PMID: 21056190 PMCID: PMC5440845 DOI: 10.1016/b978-0-444-52006-7.00015-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- James M Krueger
- Department of Veterinary and Comparetive Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | |
Collapse
|
7
|
Myslobodsky M, Eldan A. Winning a won game: caffeine panacea for obesity syndemic. Curr Neuropharmacol 2010; 8:149-60. [PMID: 21119886 PMCID: PMC2923369 DOI: 10.2174/157015910791233213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, chronic sleep reduction and a concurrent development of obesity have been recognized as a common problem in the industrialized world. Among its numerous untoward effects, there is a possibility that insomnia is also a major contributor to obesity. This attribution poses a problem for caffeine, an inexpensive, “natural” agent that is purported to improve a number of conditions and is often indicated in a long-term pharmacotherapy in the context of weight management. The present study used the “common target” approach by exploring the tentative shared molecular networks of insomnia and adiposity. It discusses caffeine targets beyond those associated with adenosine signaling machinery, phosphodiesterases, and calcium release channels. Here, we provide a view suggesting that caffeine could exert some of its effects by acting on several signaling complexes composed of HIF-1α/VEGF/IL-8 along with NO, TNF-α, IL1, and GHRH, among others. Although the relevance of these targets to the reported therapeutic effects of caffeine has remained difficult to assess, the utilization of caffeine efficacies and potencies recommend its repurposing for development of novel therapeutic approaches. Among indications mentioned, are neuroprotective, nootropic, antioxidant, proliferative, anti-fibrotic, and anti-angiogenic that appear under a variety of dissimilar diagnostic labels comorbid with obesity. In the absence of safe and efficacious antiobesity agents, caffeine remains an attractive adjuvant.
Collapse
|
8
|
Krueger JM, Taishi P, De A, Davis CJ, Winters BD, Clinton J, Szentirmai E, Zielinski MR. ATP and the purine type 2 X7 receptor affect sleep. J Appl Physiol (1985) 2010; 109:1318-27. [PMID: 20829501 DOI: 10.1152/japplphysiol.00586.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep is dependent upon prior brain activities, e.g., after prolonged wakefulness sleep rebound occurs. These effects are mediated, in part, by humoral sleep regulatory substances such as cytokines. However, the property of wakefulness activity that initiates production and release of such substances and thereby provides a signal for indexing prior waking activity is unknown. We propose that extracellular ATP, released during neuro- and gliotransmission and acting via purine type 2 (P2) receptors, is such a signal. ATP induces cytokine release from glia. Cytokines in turn affect sleep. We show here that a P2 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP), increased non-rapid eye movement sleep (NREMS) and electroencephalographic (EEG) delta power while two different P2 receptor antagonists, acting by different inhibitory mechanisms, reduced spontaneous NREMS in rats. Rat P2X7 receptor protein varied in the somatosensory cortex with time of day, and P2X7 mRNA was altered by interleukin-1 treatment, by sleep deprivation, and with time of day in the hypothalamus and somatosensory cortex. Mice lacking functional P2X7 receptors had attenuated NREMS and EEG delta power responses to sleep deprivation but not to interleukin-1 treatment compared with wild-type mice. Data are consistent with the hypothesis that extracellular ATP, released as a consequence of cell activity and acting via P2 receptors to release cytokines and other sleep regulatory substances, provides a mechanism by which the brain could monitor prior activity and translate it into sleep.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, Programs in Neuroscience, Dept. of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Localized suppression of cortical growth hormone-releasing hormone receptors state-specifically attenuates electroencephalographic delta waves. J Neurosci 2010; 30:4151-9. [PMID: 20237285 DOI: 10.1523/jneurosci.6047-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) promotes non-rapid eye movement sleep (NREMS), in part via a well characterized hypothalamic sleep-promoting site. However, GHRH may also act in the cortex to influence sleep. Application of GHRH to the surface of the cortex changes electroencephalographic (EEG) delta power. GHRH and the GHRH receptor (GHRHR) mRNAs are detectable in the rat cortex, and the expression of cortical GHRHR is activity dependent. Here, we microinjected a GHRH antagonist or GHRHR small interfering RNA (siGHRHR) onto the somatosensory cortex surface in rats. The unilateral application of the GHRH antagonist ipsilaterally decreased EEG delta wave power during NREMS, but not wakefulness, during the initial 40 min after injection. Similarly, the injection of siGHRHR reduced cortical expression of GHRHR and suppressed NREMS EEG delta wave power during 20-24 h after injection. Using the fura-2 calcium imaging technique, cultured cortical cells responded to GHRH by increasing intracellular calcium. Approximately 18% of the GHRH-responsive cells were GABAergic as illustrated by glutamic acid decarboxylase-67 (GAD67) immunostaining. Double labeling for GAD67 and GHRHR in vitro and in vivo indicated that only a minority of cortical GHRHR-containing cells were GABAergic. Our data suggest that endogenous cortical GHRH activates local cortical cells to affect EEG delta wave power state-specifically. Results are also consistent with the hypothesis that GHRH contributes to local network state regulation.
Collapse
|
10
|
Peterfi Z, Makara GB, Obál F, Krueger JM. The anterolateral projections of the medial basal hypothalamus affect sleep. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1228-38. [PMID: 19193940 DOI: 10.1152/ajpregu.90958.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the medial basal hypothalamus (MBH) and the anterior hypothalamus/preoptic area (AH/POA) in sleep regulation was investigated using the Halász knife technique to sever MBH anterior and lateral projections in rats. If both lateral and anterior connections of the MBH were cut, rats spent less time in non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS). In contrast, if the lateral connections remained intact, the duration of NREMS and REMS was normal. The diurnal rhythm of NREMS and REMS was altered in all groups except the sham control group. Changes in NREMS or REMS duration were not detected in a group with pituitary stalk lesions. Water consumption was enhanced in three groups of rats, possibly due to the lesion of vasopressin fibers entering the pituitary. EEG delta power during NREMS and brain temperatures (Tbr) were not affected by the cuts during baseline or after sleep deprivation. In response to 4 h of sleep deprivation, only one group, that with the most anterior-to-posterior cuts, failed to increase its NREMS or REMS time during the recovery sleep. After deprivation, Tbr returned to baseline in most of the treatment groups. Collectively, results indicate that the lateral projections of the MBH are important determinants of duration of NREMS and REMS, while more anterior projections are concerned with the diurnal distribution of sleep. Further, the MBH projections involved in sleep regulation are distinct from those involved in EEG delta activity, water intake, and brain temperature.
Collapse
Affiliation(s)
- Zoltan Peterfi
- Department of Veterinary and Comparative Anatomy, Washington State Univesity, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Interleukin-1 beta (IL1) and tumor necrosis factor alpha (TNF) promote non-rapid eye movement sleep under physiological and inflammatory conditions. Additional cytokines are also likely involved but evidence is insufficient to conclude that they are sleep regulatory substances. Many of the symptoms induced by sleep loss, e.g. sleepiness, fatigue, poor cognition, enhanced sensitivity to pain, can be elicited by injection of exogenous IL1 or TNF. We propose that ATP, released during neurotransmission, acting via purine P2 receptors on glia releases IL1 and TNF. This mechanism may provide the means by which the brain keeps track of prior usage history. IL1 and TNF in turn act on neurons to change their intrinsic properties and thereby change input-output properties (i.e. state shift) of the local network involved. Direct evidence indicates that cortical columns oscillate between states, one of which shares properties with organism sleep. We conclude that sleep is a local use-dependent process influenced by cytokines and their effector molecules such as nitric oxide, prostaglandins and adenosine.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
12
|
Krueger JM, Rector DM, Roy S, Van Dongen HPA, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 2008; 9:910-9. [PMID: 18985047 PMCID: PMC2586424 DOI: 10.1038/nrn2521] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sleep is vital to cognitive performance, productivity, health and well-being. Earlier theories of sleep presumed that it occurred at the level of the whole organism and that it was governed by central control mechanisms. However, evidence now indicates that sleep might be regulated at a more local level in the brain: it seems to be a fundamental property of neuronal networks and is dependent on prior activity in each network. Such local-network sleep might be initiated by metabolically driven changes in the production of sleep-regulatory substances. We discuss a mathematical model which illustrates that the sleep-like states of individual cortical columns can be synchronized through humoral and electrical connections, and that whole-organism sleep occurs as an emergent property of local-network interactions.
Collapse
Affiliation(s)
- James M Krueger
- Department of VCAPP, College of Veterinary Medicine, Washington State University, PO BOX 646520, Pullman, Washington 99164-6520, USA.
| | | | | | | | | | | |
Collapse
|