1
|
Zhang J, Wang QH, Miao BB, Wu RX, Li QQ, Tang BG, Liang ZB, Niu SF. Liver transcriptome analysis reveal the metabolic and apoptotic responses of Trachinotus ovatus under acute cold stress. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109476. [PMID: 38447780 DOI: 10.1016/j.fsi.2024.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.
Collapse
Affiliation(s)
- Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
2
|
Proteomic analysis of temperature-dependent developmental plasticity within the ventricle of juvenile Atlantic salmon (Salmo salar). Curr Res Physiol 2022; 5:344-354. [PMID: 36035983 PMCID: PMC9403292 DOI: 10.1016/j.crphys.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
|
3
|
Digital RNA-seq analysis of the cardiac transcriptome response to thermal stress in turbot Scophthalmus maximus. J Therm Biol 2021; 104:103141. [DOI: 10.1016/j.jtherbio.2021.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022]
|
4
|
Feidantsis K, Pörtner HO, Giantsis IA, Michaelidis B. Advances in understanding the impacts of global warming on marine fishes farmed offshore: Sparus aurata as a case study. JOURNAL OF FISH BIOLOGY 2021; 98:1509-1523. [PMID: 33161577 DOI: 10.1111/jfb.14611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Monitoring variations in proteins involved in metabolic processes, oxidative stress responses, cell signalling and protein homeostasis is a powerful tool for developing hypotheses of how environmental variations affect marine organisms' physiology and biology. According to the oxygen- and capacity-limited thermal tolerance hypothesis, thermal acclimation mechanisms such as adjusting the activities of enzymes of intermediary metabolism and of antioxidant defence mechanisms, inducing heat shock proteins (Hsps) or activating mitogen-activated protein kinases may all shift tolerance windows. Few studies have, however, investigated the molecular, biochemical and organismal responses by fishes to seasonal temperature variations in the field to link these to laboratory findings. Investigation of the impacts of global warming on fishes farmed offsore, in the open sea, can provide a stepping stone towards understanding effects on wild populations because they experience similar environmental fluctuations. Over the last 30 years, farming of the gilthead sea bream Sparus aurata (Linnaeus 1758) has become widespread along the Mediterranean coastline, rendering this species a useful case study. Based on available information, the prevailing seasonal temperature variations expose the species to the upper and lower limits of its thermal range. Evidence for this includes oxygen restriction, reduced feeding, reduced responsiveness to environmental stimuli, plus a range of molecular and biochemical indicators that change across the thermal range. Additionally, close relationships between biochemical pathways and seasonal patterns of metabolism indicate a connection between energy demand and metabolic processes on the one hand, and cellular stress responses such as oxidative stress, inflammation and autophagy on the other. Understanding physiological responses to temperature fluctuations in fishes farmed offshore can provide crucial background information for the conservation and successful management of aquaculture resources in the face of global change.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans O Pörtner
- Alfred-Wegener-Institut für Polar-und Meeresforschung, Physiologie Mariner Tiere, Bremerhaven, Germany
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Vornanen M. Effects of acute warming on cardiac and myotomal sarco(endo)plasmic reticulum ATPase (SERCA) of thermally acclimated brown trout (Salmo trutta). J Comp Physiol B 2020; 191:43-53. [PMID: 32980918 PMCID: PMC7819936 DOI: 10.1007/s00360-020-01313-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 11/24/2022]
Abstract
At high temperatures, ventricular beating rate collapses and depresses cardiac output in fish. The role of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in thermal tolerance of ventricular function was examined in brown trout (Salmo trutta) by measuring heart SERCA and comparing it to that of the dorsolateral myotomal muscle. Activity of SERCA was measured from crude homogenates of cold-acclimated (+ 3 °C, c.a.) and warm-acclimated (+ 13 °C, w.a.) brown trout as cyclopiazonic acid (20 µM) sensitive Ca2+-ATPase between + 3 and + 33 °C. Activity of the heart SERCA was significantly higher in c.a. than w.a. trout and increased strongly between + 3 and + 23 °C with linear Arrhenius plots but started to plateau between + 23 and + 33 °C in both acclimation groups. The rate of thermal inactivation of the heart SERCA at + 35 °C was similar in c.a. and w.a. fish. Activity of the muscle SERCA was less temperature dependent and more heat resistant than that of the heart SERCA and showed linear Arrhenius plots between + 3 and + 33 °C in both c.a. and w.a. fish. SERCA activity of the c.a. muscle was slightly higher than that of w.a. muscle. The rate of thermal inactivation at + 40 °C was similar for both c.a. and w.a. muscle SERCA at + 40 °C. Although the heart SERCA is more sensitive to high temperatures than the muscle SERCA, it is unlikely to be a limiting factor for heart rate, because its heat tolerance, unlike that of the ventricular beating rate, was not changed by temperature acclimation.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland.
| |
Collapse
|
6
|
Logan ML, Cox CL. Genetic Constraints, Transcriptome Plasticity, and the Evolutionary Response to Climate Change. Front Genet 2020; 11:538226. [PMID: 33193610 PMCID: PMC7531272 DOI: 10.3389/fgene.2020.538226] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
In situ adaptation to climate change will be critical for the persistence of many ectotherm species due to their relative lack of dispersal capacity. Climate change is causing increases in both the mean and the variance of environmental temperature, each of which may act as agents of selection on different traits. Importantly, these traits may not be heritable or have the capacity to evolve independently from one another. When genetic constraints prevent the "baseline" values of thermal performance traits from evolving rapidly, phenotypic plasticity driven by gene expression might become critical. We review the literature for evidence that thermal performance traits in ectotherms are heritable and have genetic architectures that permit their unconstrained evolution. Next, we examine the relationship between gene expression and both the magnitude and duration of thermal stress. Finally, we identify genes that are likely to be important for adaptation to a changing climate and determine whether they show patterns consistent with thermal adaptation. Although few studies have measured narrow-sense heritabilities of thermal performance traits, current evidence suggests that the end points of thermal reaction norms (tolerance limits) are moderately heritable and have the potential to evolve rapidly. By contrast, performance at intermediate temperatures has substantially lower evolutionary potential. Moreover, evolution in many species appears to be constrained by genetic correlations such that populations can adapt to either increases in mean temperature or temperature variability, but not both. Finally, many species have the capacity for plastic expression of the transcriptome in response to temperature shifts, with the number of differentially expressed genes increasing with the magnitude, but not the duration, of thermal stress. We use these observations to develop a conceptual model that describes the likely trajectory of genome evolution in response to changes in environmental temperature. Our results indicate that extreme weather events, rather than gradual increases in mean temperature, are more likely to drive genetic and phenotypic change in wild ectotherms.
Collapse
Affiliation(s)
- Michael L Logan
- Department of Biology, University of Nevada, Reno, Reno, NV, United States.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Christian L Cox
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
7
|
Ciezarek A, Gardner L, Savolainen V, Block B. Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis. BMC Genomics 2020; 21:642. [PMID: 32942994 PMCID: PMC7499911 DOI: 10.1186/s12864-020-07058-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Background The Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles. Results Here, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation. Conclusions We find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the atrium associated with the higher expression of SERCA2b compared to the ventricle. We find no evidence that genes associated with thermogenesis are upregulated in the deep, warm muscle compared to superficial, cool muscle. Heat generation may be enabled by by the high aerobic capacity of bluefin tuna red muscle.
Collapse
Affiliation(s)
- Adam Ciezarek
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK. .,Earlham Institute, Norwich Research Park, Norwich, UK.
| | - Luke Gardner
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Barbara Block
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
8
|
Feidantsis K, Giantsis IA, Vratsistas A, Makri S, Pappa AZ, Drosopoulou E, Anestis A, Mavridou E, Exadactylos A, Vafidis D, Michaelidis B. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am J Physiol Regul Integr Comp Physiol 2020; 319:R264-R281. [DOI: 10.1152/ajpregu.00066.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long-term exposure of Mytilus galloprovincialis to temperatures beyond 26°C triggers mussel mortality. The present study aimed to integratively illustrate the correlation between intermediary metabolism, hsp gene expression, and oxidative stress-related proteins in long-term thermally stressed Mytilus galloprovincialis and whether they are affected by thermal stress magnitude and duration. We accordingly evaluated the gene expression profiles, in the posterior adductor muscle (PAM) and the mantle, concerning heat shock protein 70 and 90 ( hsp70 and hsp90), and the antioxidant defense indicators Mn-SOD, Cu/Zn-SOD, catalase, glutathione S-transferase, and the metallothioneins mt-10 and mt-20. Moreover, we determined antioxidant enzyme activities, oxidative stress through lipid peroxidation, and activities of intermediary metabolism enzymes. The pattern of changes in relative mRNA expression levels indicate that mussels are able to sense thermal stress even when exposed to 22°C and before mussel mortality is initiated. Data indicate a close correlation between the magnitude and duration of thermal stress with lipid peroxidation levels and changes in the activity of antioxidant enzymes and the enzymes of intermediary metabolism. The gene expression and increase in the activities of antioxidant enzymes support a scenario, according to which exposure to 24°C might trigger reactive oxygen species (ROS) production, which is closely correlated with anaerobic metabolism under hypometabolic conditions. Increase and maintenance of oxidative stress in conjunction with energy balance disturbance seem to trigger mussel mortality after long-term exposure at temperatures beyond 26°C. Eventually, in the context of preparation for oxidative stress, certain hypotheses and models are suggested, integrating the several steps of cellular stress response.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Andreas Vratsistas
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula Makri
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia-Zoi Pappa
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Anestis
- Laboratory of Hygiene, Division of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mavridou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Dimitrios Vafidis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. J Comp Physiol B 2020; 190:403-418. [DOI: 10.1007/s00360-020-01278-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
10
|
Healy TM, Schulte PM. Patterns of alternative splicing in response to cold acclimation in fish. ACTA ACUST UNITED AC 2019; 222:jeb.193516. [PMID: 30692167 DOI: 10.1242/jeb.193516] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Phenotypic plasticity is an important aspect of an organism's response to environmental change that often requires the modulation of gene expression. These changes in gene expression can be quantitative, as a result of increases or decreases in the amounts of specific transcripts, or qualitative, as a result of the expression of alternative transcripts from the same gene (e.g. via alternative splicing of pre-mRNAs). Although the role of quantitative changes in gene expression in phenotypic plasticity is well known, relatively few studies have examined the role of qualitative changes. Here, we use skeletal muscle RNA-seq data from Atlantic killifish (Fundulus heteroclitus), threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio) to investigate the extent of qualitative changes in gene expression in response to cold acclimation. Fewer genes demonstrated alternative splicing than differential expression as a result of cold acclimation; however, differences in splicing were detected for 426 to 866 genes depending on species, indicating that large numbers of qualitative changes in gene expression are associated with cold acclimation. Many of these alternatively spliced genes were also differentially expressed, and there was functional enrichment for involvement in muscle contraction among the genes demonstrating qualitative changes in response to cold acclimation. Additionally, there was a common group of 29 genes with cold-acclimation-mediated changes in splicing in all three species, suggesting that there may be a set of genes with expression patterns that respond qualitatively to prolonged exposure to cold temperatures across fishes.
Collapse
Affiliation(s)
- Timothy M Healy
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M Schulte
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
11
|
Keen AN, Fenna AJ, McConnell JC, Sherratt MJ, Gardner P, Shiels HA. Macro- and micromechanical remodelling in the fish atrium is associated with regulation of collagen 1 alpha 3 chain expression. Pflugers Arch 2018; 470:1205-1219. [PMID: 29594338 PMCID: PMC6060776 DOI: 10.1007/s00424-018-2140-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Numerous pathologies lead to remodelling of the mammalian ventricle, often associated with fibrosis. Recent work in fish has shown that fibrotic remodelling of the ventricle is 'reversible', changing seasonally as temperature-induced changes in blood viscosity alter haemodynamic load on the heart. The atrial response to varying haemodynamic load is less understood in mammals and completely unexplored in non-mammalian vertebrates. To investigate atrial remodelling, rainbow trout were chronically cooled (from 10 ± 1 to 5 ± 1 °C) and chronically warmed (from 10 ± 1 to 18 ± 1 °C) for a minimum of 8 weeks. We assessed the functional effects on compliance using ex vivo heart preparations and atomic force microscopy nano-indentation and found chronic cold increased passive stiffness of the whole atrium and micromechanical stiffness of tissue sections. We then performed histological, biochemical and molecular assays to probe the mechanisms underlying functional remodelling of the atrial tissue. We found cooling resulted in collagen deposition which was associated with an upregulation of collagen-promoting genes, including the fish-specific collagen I alpha 3 chain, and a reduction in gelatinase activity of collagen-degrading matrix metalloproteinases (MMPs). Finally, we found that cooling reduced mRNA expression of cardiac growth factors and hypertrophic markers. Following long-term warming, there was an opposing response to that seen with cooling; however, these changes were more moderate. Our findings suggest that chronic cooling causes atrial dilation and increased myocardial stiffness in trout atria analogous to pathological states defined by changes in preload or afterload of the mammalian atria. The reversal of this phenotype following chronic warming is particularly interesting as it suggests that typically pathological features of mammalian atrial remodelling may oscillate seasonally in the fish, revealing a more dynamic and plastic atrial remodelling response.
Collapse
Affiliation(s)
- Adam N Keen
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Andrew J Fenna
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - James C McConnell
- Centre for Tissue Injury and Repair, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Michael J Sherratt
- Centre for Tissue Injury and Repair, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Peter Gardner
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
12
|
Chen Z, Farrell AP, Matala A, Narum SR. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol Ecol 2018; 27:659-674. [PMID: 29290103 DOI: 10.1111/mec.14475] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/26/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023]
Abstract
Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh-b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.
Collapse
Affiliation(s)
- Zhongqi Chen
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Anthony P Farrell
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.,Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Amanda Matala
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
13
|
Ecological significance of mitochondrial toxicants. Toxicology 2017; 391:64-74. [DOI: 10.1016/j.tox.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022]
|
14
|
Marra NJ, Richards VP, Early A, Bogdanowicz SM, Pavinski Bitar PD, Stanhope MJ, Shivji MS. Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy. BMC Genomics 2017; 18:87. [PMID: 28132643 PMCID: PMC5278576 DOI: 10.1186/s12864-016-3411-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy. RESULTS Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of 32,474 open reading frames within each species' heart transcriptome. About half of these genes were shared between all species while the remainder included functional differences between our groups of interest (elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as "antigen processing and presentation of exogenous peptide antigen via MHC class II", and such genes as MHC class II, HLA-DPB1. Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely in endotherms, several of which have significant roles in lipid and fat metabolism. CONCLUSIONS This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of elasmobranchs.
Collapse
Affiliation(s)
- Nicholas J Marra
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.,Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, 33004, USA
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Angela Early
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steve M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Mahmood S Shivji
- Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, 33004, USA.
| |
Collapse
|
15
|
|
16
|
Logan CA, Buckley BA. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. ACTA ACUST UNITED AC 2016; 218:1915-24. [PMID: 26085668 DOI: 10.1242/jeb.114397] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ectothermic species like fishes differ greatly in the thermal ranges they tolerate; some eurythermal species may encounter temperature ranges in excess of 25°C, whereas stenothermal species in polar and tropical waters live at essentially constant temperatures. Thermal specialization comes with fitness trade-offs and as temperature increases due to global warming, the physiological basis of specialization and thermal plasticity has become of great interest. Over the past 50 years, comparative physiologists have studied the physiological and molecular differences between stenothermal and eurythermal fishes. It is now well known that many stenothermal fishes have lost an inducible heat shock response (HSR). Recent advances in transcriptomics have now made it possible to examine genome-wide changes in gene expression (GE) in non-model ecologically important fish, broadening our view beyond the HSR to regulation of genes involved in hundreds of other cellular processes. Here, we review the major findings from transcriptomic studies of extreme eurythermal and stenothermal fishes in response to acute and long-term exposure to temperature, both time scales being critically important for predicting climate change responses. We consider possible molecular adaptations that underlie eurythermy and stenothermy in teleosts. Furthermore, we highlight the challenges that still face the field of comparative environmental genomics and suggest fruitful paths of future investigation.
Collapse
Affiliation(s)
- Cheryl A Logan
- Division of Science and Environmental Policy, California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Bradley A Buckley
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97207, USA
| |
Collapse
|
17
|
Jayasundara N, Tomanek L, Dowd WW, Somero GN. Proteomic analysis of cardiac response to thermal acclimation in the eurythermal goby fish Gillichthys mirabilis. ACTA ACUST UNITED AC 2016; 218:1359-72. [PMID: 25954043 DOI: 10.1242/jeb.118760] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac function is thought to play a central role in determining thermal optima and tolerance limits in teleost fishes. Investigating proteomic responses to temperature in cardiac tissues may provide insights into mechanisms supporting the thermal plasticity of cardiac function. Here, we utilized a global proteomic analysis to investigate changes in cardiac protein abundance in response to temperature acclimation (transfer from 13°C to 9, 19 and 26°C) in a eurythermal goby, Gillichthys mirabilis. Proteomic data revealed 122 differentially expressed proteins across acclimation groups, 37 of which were identified using tandem mass-spectrometry. These 37 proteins are involved in energy metabolism, mitochondrial regulation, iron homeostasis, cytoprotection against hypoxia, and cytoskeletal organization. Compared with the 9 and 26°C groups, proteins involved in energy metabolism increased in 19°C-acclimated fish, indicating an overall increase in the capacity for ATP production. Creatine kinase abundance increased in 9°C-acclimated fish, suggesting an important role for the phosphocreatine energy shuttle in cold-acclimated hearts. Both 9 and 26°C fish also increased abundance of hexosaminidase, a protein directly involved in post-hypoxia stress cytoprotection of cardiac tissues. Cytoskeletal restructuring appears to occur in all acclimation groups; however, the most prominent effect was detected in 26°C-acclimated fish, which exhibited significantly increased actin levels. Overall, proteomic analysis of cardiac tissue suggests that the capacity to adjust ATP-generating processes is crucial to the thermal plasticity of cardiac function. Furthermore, G. mirabilis may optimize cellular functions at temperatures near 19°C, which lies within the species' preferred temperature range.
Collapse
Affiliation(s)
- Nishad Jayasundara
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Lars Tomanek
- Biological Sciences Department, 1 Grand Avenue, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - W Wesley Dowd
- Loyola Marymount University, Department of Biology, 1 LMU Drive, MS 8220, Los Angeles, CA 90045, USA
| | - George N Somero
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
18
|
Trumbić Ž, Bekaert M, Taggart JB, Bron JE, Gharbi K, Mladineo I. Development and validation of a mixed-tissue oligonucleotide DNA microarray for Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758). BMC Genomics 2015; 16:1007. [PMID: 26607231 PMCID: PMC4659210 DOI: 10.1186/s12864-015-2208-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. RESULTS We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. CONCLUSIONS Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.
Collapse
Affiliation(s)
- Željka Trumbić
- University Department of Marine Studies, University of Split, Split, Croatia.
| | - Michaël Bekaert
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - Karim Gharbi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, Scotland, UK.
| | - Ivona Mladineo
- Institute of Oceanography and Fisheries, Split, Croatia.
| |
Collapse
|
19
|
Shiels HA, Sitsapesan R. Is there something fishy about the regulation of the ryanodine receptor in the fish heart? Exp Physiol 2015. [DOI: 10.1113/ep085136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences; University of Manchester; Manchester M13 9NT UK
| | | |
Collapse
|
20
|
Abstract
Endothermy in vertebrates has been postulated to confer physiological and ecological advantages. In endothermic fish, niche expansion into cooler waters is correlated with specific physiological traits and is hypothesized to lead to greater foraging success and increased fitness. Using the seasonal co-occurrence of three tuna species in the eastern Pacific Ocean as a model system, we used cardiac gene expression data (as a proxy for thermal tolerance to low temperatures), archival tag data, and diet analyses to examine the vertical niche expansion hypothesis for endothermy in situ. Yellowfin, albacore, and Pacific bluefin tuna (PBFT) in the California Current system used more surface, mesopelagic, and deep waters, respectively. Expression of cardiac genes for calcium cycling increased in PBFT and coincided with broader vertical and thermal niche utilization. However, the PBFT diet was less diverse and focused on energy-rich forage fishes but did not show the greatest energy gains. Ecosystem-based management strategies for tunas should thus consider species-specific differences in physiology and foraging specialization.
Collapse
|
21
|
Lilly LE, Bonaventura J, Lipnick MS, Block BA. Effect of temperature acclimation on red blood cell oxygen affinity in Pacific bluefin tuna (Thunnus orientalis) and yellowfin tuna (Thunnus albacares). Comp Biochem Physiol A Mol Integr Physiol 2015; 181:36-44. [DOI: 10.1016/j.cbpa.2014.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
|