1
|
Pamulapati V, Cuda CM, Smith TL, Jung J, Xiong L, Swaminathan S, Ho KJ. Inflammatory Cell Dynamics after Murine Femoral Artery Wire Injury: A Multi-Parameter Flow Cytometry-Based Analysis. Cells 2023; 12:689. [PMID: 36899827 PMCID: PMC10000449 DOI: 10.3390/cells12050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
An acute inflammatory response following arterial surgery for atherosclerosis, such as balloon angioplasty, stenting, and surgical bypass, is an important driver of neointimal hyperplasia after arterial injury, which leads to recurrent ischemia. However, a comprehensive understanding of the dynamics of the inflammatory infiltrate in the remodeling artery is difficult to attain due to the shortcomings of conventional methods such as immunofluorescence. We developed a 15-parameter flow cytometry method to quantitate leukocytes and 13 leukocyte subtypes in murine arteries at 4 time points after femoral artery wire injury. Live leukocyte numbers peaked at 7 days, which preceded the peak neointimal hyperplasia lesion at 28 days. Neutrophils were the most abundant early infiltrate, followed by monocytes and macrophages. Eosinophils were elevated after 1 day, while natural killer and dendritic cells gradually infiltrated over the first 7 days; all decreased between 7 and 14 days. Lymphocytes began accumulating at 3 days and peaked at 7 days. Immunofluorescence of arterial sections demonstrated similar temporal trends of CD45+ and F4/80+ cells. This method allows for the simultaneous quantitation of multiple leukocyte subtypes from small tissue samples of injured murine arteries and identifies the CD64+Tim4+ macrophage phenotype as being potentially important in the first 7 days post-injury.
Collapse
Affiliation(s)
- Vivek Pamulapati
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carla M. Cuda
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tracy L. Smith
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan Jung
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Liqun Xiong
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Suchitra Swaminathan
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karen J. Ho
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Wen X, Song G, Hu C, Pan J, Wu Z, Li L, Liu C, Tian X, Zhang F, Qian J, Zhu H, Li Y. Identification of Novel Serological Autoantibodies in Takayasu Arteritis Patients Using HuProt Arrays. Mol Cell Proteomics 2021; 20:100036. [PMID: 33545363 PMCID: PMC7995655 DOI: 10.1074/mcp.ra120.002119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/27/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
To identify novel autoantibodies of Takayasu arteritis (TAK) using HuProt array-based approach, a two-phase approach was adopted. In Phase I, serum samples collected from 40 TAK patients, 15 autoimmune disease patients, and 20 healthy subjects were screened to identify TAK-specific autoantibodies using human protein (HuProt) arrays. In phase II, the identified candidate autoantibodies were validated with TAK-focused arrays using an additional cohort comprised of 109 TAK patients, 110 autoimmune disease patients, and 96 healthy subjects. Subsequently, the TAK-specific autoantibodies validated in phase II were further confirmed using western blot analysis. We identified and validated eight autoantibodies as potential TAK-specific diagnostic biomarkers, including anti-SPATA7, -QDPR, -SLC25A2, -PRH2, -DIXDC1, -IL17RB, -ZFAND4, and -NOLC1 antibodies, with AUC of 0.803, 0.801, 0.780, 0.696, 0.695, 0.678, 0.635, and 0.613, respectively. SPATA7 could distinguish TAK from healthy and disease controls with 73.4% sensitivity at 85.4% specificity, while QDPR showed 71.6% sensitivity at 86.4% specificity. SLC25A22 showed the highest sensitivity of 80.7%, but at lower specificity of 67.0%. In addition, PRH2, IL17RB, and NOLC1 showed good specificities of 88.3%, 85.9%, and 86.9%, respectively, but at lower sensitivities (<50%). Finally, DIXDC1 and ZFAND4 showed moderate performance as compared with the other autoantibodies. Using a decision tree model, we could reach a specificity of 94.2% with AUC of 0.843, a significantly improved performance as compared with that by each individual biomarker. The performances of three autoantibodies, namely anti-SPATA7, -QDPR, and -PRH2, were successfully confirmed with western blot analysis. Using this two-phase strategy, we identified and validated eight novel autoantibodies as TAK-specific biomarker candidates, three of which could be readily adopted in a clinical setting.
Collapse
Affiliation(s)
- Xiaoting Wen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jianbo Pan
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ziyan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Liubing Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Douglas G, Hale AB, Patel J, Chuaiphichai S, Al Haj Zen A, Rashbrook VS, Trelfa L, Crabtree MJ, McNeill E, Channon KM. Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression. Cardiovasc Res 2018; 114:1385-1399. [PMID: 29596571 PMCID: PMC6054219 DOI: 10.1093/cvr/cvy078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/22/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Aims GTP cyclohydrolase I catalyses the first and rate-limiting reaction in the synthesis of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthases (NOS). Both eNOS and iNOS have been implicated in the progression of atherosclerosis, with opposing effects in eNOS and iNOS knockout mice. However, the pathophysiologic requirement for BH4 in regulating both eNOS and iNOS function, and the effects of loss of BH4 on the progression of atherosclerosis remains unknown. Methods and results Hyperlipidemic mice deficient in Gch1 in endothelial cells and leucocytes were generated by crossing Gch1fl/flTie2cre mice with ApoE-/- mice. Deficiency of Gch1 and BH4 in endothelial cells and myeloid cells was associated with mildly increased blood pressure. High fat feeding for 6 weeks in Gch1fl/flTie2CreApoE-/- mice resulted in significantly decreased circulating BH4 levels, increased atherosclerosis burden and increased plaque macrophage content. Gch1fl/flTie2CreApoE-/- mice showed hallmarks of endothelial cell dysfunction, with increased aortic VCAM-1 expression and decreased endothelial cell dependent vasodilation. Furthermore, loss of BH4 from pro-inflammatory macrophages resulted in increased foam cell formation and altered cellular redox signalling, with decreased expression of antioxidant genes and increased reactive oxygen species. Bone marrow chimeras revealed that loss of Gch1 in both endothelial cells and leucocytes is required to accelerate atherosclerosis. Conclusion Both endothelial cell and macrophage BH4 play important roles in the regulation of NOS function and cellular redox signalling in atherosclerosis.
Collapse
Affiliation(s)
- Gillian Douglas
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ashley B Hale
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jyoti Patel
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ayman Al Haj Zen
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Victoria S Rashbrook
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lucy Trelfa
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eileen McNeill
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
4
|
Rivera JC, Noueihed B, Madaan A, Lahaie I, Pan J, Belik J, Chemtob S. Tetrahydrobiopterin (BH4) deficiency is associated with augmented inflammation and microvascular degeneration in the retina. J Neuroinflammation 2017; 14:181. [PMID: 28874201 PMCID: PMC5586016 DOI: 10.1186/s12974-017-0955-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background Tetrahydrobiopterin (BH4) is an essential cofactor in multiple metabolic processes and plays an essential role in maintaining the inflammatory and neurovascular homeostasis. In this study, we have investigated the deleterious effects of BH4 deficiency on retinal vasculature during development. Methods hph-1 mice, which display deficiency in BH4 synthesis, were used to characterize the inflammatory effects and the integrity of retinal microvasculature. BH4 levels in retinas from hph-1 and wild type (WT) mice were measured by LC-MS/MS. Retinal microvascular area and microglial cells number were quantified in hph-1 and WT mice at different ages. Retinal expression of pro-inflammatory, anti-angiogenic, and neuronal-derived factors was analyzed by qPCR. BH4 supplementation was evaluated in vitro, ex-vivo, and in vivo models. Results Our findings demonstrated that BH4 levels in the retina from hph-1 mice were significantly lower by ~ 90% at all ages analyzed compared to WT mice. Juvenile hph-1 mice showed iris atrophy, persistent fetal vasculature, significant increase in the number of microglial cells (p < 0.01), as well as a marked degeneration of the retinal microvasculature. Retinal microvascular alterations in juvenile hph-1 mice were associated with a decreased expression in Norrin (0.2-fold) and its receptor Frizzled-4 (FZD4; 0.51-fold), as well as with an augmented expression of pro-inflammatory factors such as IL-6 (3.2-fold), NRLP-3 (4.4-fold), IL-1β (8.6-fold), and the anti-angiogenic factor thrombospondin-1 (TSP-1; 17.5-fold). We found that TSP-1 derived from activated microglial cells is a factor responsible of inducing microvascular degeneration, but BH4 supplementation markedly prevented hyperoxia-induced microglial activation in vitro and microvascular injury in an ex-vivo model of microvascular angiogenesis and an in vivo model of oxygen-induced retinopathy (OIR). Conclusion Our findings reveal that BH4 is a key cofactor in regulating the expression of inflammatory and anti-angiogenic factors that play an important function in the maintenance of retinal microvasculature. Electronic supplementary material The online version of this article (10.1186/s12974-017-0955-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, 5415 Blvd de l'Assomption, Montréal, Québec, H1T 2M4, Canada. .,Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada.
| | - Baraa Noueihed
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, 5415 Blvd de l'Assomption, Montréal, Québec, H1T 2M4, Canada
| | - Ankush Madaan
- Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, 5415 Blvd de l'Assomption, Montréal, Québec, H1T 2M4, Canada
| | - Jingyi Pan
- Departments of Pediatrics and Physiology, The Hospital For Sick Children, University of Toronto, Toronto, Canada
| | - Jaques Belik
- Departments of Pediatrics and Physiology, The Hospital For Sick Children, University of Toronto, Toronto, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, 5415 Blvd de l'Assomption, Montréal, Québec, H1T 2M4, Canada. .,Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Kirkby NS, Duthie KM, Miller E, Kotelevtsev YV, Bagnall AJ, Webb DJ, Hadoke PWF. Non-endothelial cell endothelin-B receptors limit neointima formation following vascular injury. Cardiovasc Res 2012; 95:19-28. [DOI: 10.1093/cvr/cvs137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
d'Uscio LV, Smith LA, Katusic ZS. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice. Am J Physiol Heart Circ Physiol 2011; 301:H2227-34. [PMID: 21963838 PMCID: PMC3233811 DOI: 10.1152/ajpheart.00588.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/11/2011] [Indexed: 12/28/2022]
Abstract
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | |
Collapse
|
8
|
Moens AL, Kietadisorn R, Lin JY, Kass D. Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin. J Mol Cell Cardiol 2011; 51:559-63. [PMID: 21458460 DOI: 10.1016/j.yjmcc.2011.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for aromatic amino acid hydroxylases and for all three nitric oxide synthase (NOS) isoforms. It also has a protective role in the cell as an antioxidant and scavenger of reactive nitrogen and oxygen species. Experimental studies in humans and animals demonstrate that decreased BH(4)-bioavailability, with subsequent uncoupling of endothelial NOS (eNOS) plays an important role in the pathogenesis of endothelial dysfunction, hypertension, ischemia-reperfusion injury, and pathologic cardiac remodeling. Synthetic BH(4) is clinically approved for the treatment of phenylketonuria, and experimental studies support its capacity for ameliorating cardiovascular pathophysiologies. To date, however, the translation of these studies to human patients remains limited, and early results have been mixed. In this review, we discuss the pathophysiologic role of decreased BH(4) bioavailability, molecular mechanisms regulating its metabolism, and its potential therapeutic use as well as pitfalls as an NOS-modulating drug. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- An L Moens
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Dept. of Cardiology, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Khandelwal AR, Hebert VY, Dugas TR. Essential role of ER-alpha-dependent NO production in resveratrol-mediated inhibition of restenosis. Am J Physiol Heart Circ Physiol 2010; 299:H1451-8. [PMID: 20709862 DOI: 10.1152/ajpheart.00369.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Resveratrol (Resv), a red wine polyphenol, is known to exhibit vascular protective effects and reduce vascular smooth muscle cell mitogenesis. Vascular smooth muscle cell proliferation is a critical factor in the pathogenesis of restenosis, the renarrowing of vessels that often occurs after angioplasty and/or stent implantation. Although Resv has been shown to be an estrogen receptor (ER) modulator, the role of the ER in Resv-mediated protection against restenosis has not yet been elucidated in vivo. Therefore, with the use of a mouse carotid artery injury model, our objective was to determine the role of ER in modulating Resv-mediated effects on neointimal hyperplasia. Female wild-type and ER-α(-/-) mice were administered a high-fat diet ± Resv for 2 wk. A carotid artery endothelial denudation procedure was conducted, and the mice were administered a high-fat diet ± Resv for an additional 2 wk. Resv-treated wild-type mice exhibited a dramatic decrease in restenosis, with an increased arterial nitric oxide (NO) synthase (NOS) activity and NO production. However, in the ER-α(-/-) mice, Resv failed to afford protection and failed to increase NO production, apparently because of a decreased availability of the NOS cofactor tetrahydrobiopterin. To verify the role of NO in Resv-mediated effects, mice were coadministered Resv plus a nonselective NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME). Cotreatment with l-NAME significantly attenuated the antirestenotic properties of Resv. These data thus suggest that Resv inhibits vascular proliferative responses after injury, predominately through an ER-α-dependent increase in NO production.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103, USA
| | | | | |
Collapse
|
10
|
Jiang X, Kim B, Lin H, Lee CK, Kim J, Kang H, Lee P, Jung SH, Lee HM, Won KJ. Tetrahydrobiopterin Inhibits PDGF-stimulated Migration and Proliferation in Rat Aortic Smooth Muscle Cells via the Nitric Oxide Synthase-independent Pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:177-83. [PMID: 20631891 DOI: 10.4196/kjpp.2010.14.3.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 11/15/2022]
Abstract
Tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase (NOS) activity, is known to play important roles in modulating both NO and superoxide production during vascular diseases such as atherosclerosis. However, the role of BH4 in functions of vascular smooth muscle cells is not fully known. In this study, we tested the effects of BH4 and dihydrobiopterin (BH2), a BH4 precursor, on migration and proliferation in response to platelet-derived growth factor-BB (PDGF-BB) in rat aortic smooth muscle cells (RASMCs). Cell migration and proliferation were measured using a Boyden chamber and a 5-bromo-2'-deoxyuridine incorporation assay, respectively, and these results were confirmed with an ex vivo aortic sprout assay. Cell viability was examined by 2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assays. BH4 and BH2 decreased PDGF-BB-induced cell migration and proliferation in a dose-dependent manner. The inhibition of cell migration and proliferation by BH4 and BH2 was not affected by pretreatment with N(G)-nitro-L-arginine methyl ester, a NOS inhibitor. Moreover, the sprout outgrowth formation of aortic rings induced by PDGF-BB was inhibited by BH4 and BH2. Cell viability was not inhibited by BH4 and BH2 treatment. The present results suggest that BH4 and BH2 may inhibit PDGF-stimulated RASMC migration and proliferation via the NOS-independent pathway. Therefore, BH4 and its derivative could be useful for the development of a candidate molecule with an NO-independent anti-atherosclerotic function.
Collapse
Affiliation(s)
- Xiaowen Jiang
- Departments of Physiology and Biotechnology, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liao SJ, Lin L, Zeng JS, Huang RX, Channon KM, Chen AF. Endothelium-targeted transgenic GTP-cyclohydrolase I overexpression inhibits neointima formation in mouse carotid artery. Clin Exp Pharmacol Physiol 2007; 34:1260-6. [PMID: 17973864 DOI: 10.1111/j.1440-1681.2007.04719.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Tetrahydrobiopterin (BH(4)) is an essential cofactor that maintains the normal function of endothelial nitric oxide (NO) synthase. Restenosis is a key complication after transluminal angioplasty. Guanosine 5'-triphosphate-cyclohydrolase I (GTPCH) is the first rate-limiting enzyme for de novo BH(4) synthesis. However, the role of GTPCH in restenosis is not fully understood. The present study tested the hypothesis that endothelial-targeted GTPCH overexpression retards neointimal formation, a hallmark of restenosis, in mouse carotid artery. 2. Transluminal wire injury was induced in the left carotid arteries of adult male wild-type C57BL/6 (WT) and endothelial GTPCH transgenic (Tg-GCH) mice. Re-endothelialization was confirmed with in vivo Evans blue staining. Endothelium-dependent and -independent relaxations were measured using isometric tension recording. Morphological analysis was performed 2 and 4 weeks after carotid injury to assess neointimal formation. Fluorescence-based high-performance liquid chromatography (HPLC) was used to determine GTPCH activity and BH(4) levels. Basal NO release following carotid injury was assessed by N(G)-nitro-L-arginine methyl ester-induced vascular contraction. 3. The endothelium was completely removed upon transluminal wire injury and full re-endothelialization was achieved at Day 10. Endothelium-dependent relaxation was impaired 10 days and 4 weeks after carotid injury, whereas endothelium-independent relaxation remained unaffected. Morphological analysis revealed that the endothelial-specific overexpression of GTPCH reduced neointimal formation and medial hypertrophy 2 and 4 weeks after carotid injury. Both arterial GTPCH enzyme activity and BH(4) levels were significantly elevated in Tg-GCH mice compared with WT mice and basal NO release of the injured carotid artery tended to increase in Tg-GCH mice. 4. These findings suggest that the endothelial overexpression of GTPCH increased endothelial BH(4) synthesis and played a preventive role in neointimal formation induced by endothelium denudation.
Collapse
Affiliation(s)
- Song-Jie Liao
- Department of Pharmacology and Neurology, Neuroscience Program and Molecular Biology Program, Michigan State University, East Lansing, MI 48824-1317, USA
| | | | | | | | | | | |
Collapse
|
12
|
Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 2007; 113:47-63. [PMID: 17555404 DOI: 10.1042/cs20070108] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
NO produced by eNOS (endothelial nitric oxide synthase) is a key mediator of vascular homoeostasis. NO bioavailability is reduced early in vascular disease states, such as hypercholesterolaemia, diabetes and hypertension, and throughout the progression of atherosclerosis. This is a result of both reduced NO synthesis and increased NO consumption by reactive oxygen species. eNOS enzymatic activity appears to be determined by the availability of its cofactor BH4 (tetrahydrobiopterin). When BH4 levels are adequate, eNOS produces NO; when BH4 levels are limiting, eNOS becomes enzymatically uncoupled and generates superoxide, contributing to vascular oxidative stress and endothelial dysfunction. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus oxidative degradation in dysfunctional endothelium. Augmenting vascular BH4 levels by pharmacological supplementation, by enhancing the rate of de novo biosynthesis or by measures to reduce BH4 oxidation have been shown in experimental studies to enhance NO bioavailability. Thus BH4 represents a potential therapeutic target for preserving eNOS function in vascular disease.
Collapse
Affiliation(s)
- Tim S Schmidt
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|