1
|
Dobson GP, Morris JL, Letson HL. Traumatic brain injury: Symptoms to systems in the 21st century. Brain Res 2024; 1845:149271. [PMID: 39395646 DOI: 10.1016/j.brainres.2024.149271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Severe traumatic brain injury (TBI) is a devastating injury with a mortality of ∼ 25-30 %. Despite decades of high-quality research, no drug therapy has reduced mortality. Why is this so? We argue two contributing factors for the lack of effective drug therapies include the use of specific-pathogen free (SPF) animals for translational research and the flawed practice of single-nodal targeting for drug design. A revolution is required to better understand how the whole body responds to TBI, identify new markers of its progression, and discover new system-acting drugs to treat it. In this review, we present a brief history of TBI, discuss its system's pathophysiology and propose a new research strategy for the 21st century. TBI progression develops from injury signals radiating from the primary impact, which can cause local ischemia, hemorrhage, excitotoxicity, cellular depolarization, immune dysfunction, sympathetic hyperactivity, blood-brain barrier breach, coagulopathy and whole-body dysfunction. Metabolic reprograming of immune cells drives neuroinflammation and secondary injury processes. We propose if sympathetic hyperactivity and immune cell activation can be corrected early, cardiovascular function and endothelial-glycocalyx-mitochondrial coupling can be restored, and secondary injury minimized with improved patient outcomes. The therapeutic goal is to switch the injury phenotype to a healing phenotype by restoring homeostasis and maintaining sufficient tissue O2 delivery. We have been developing a small-volume fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat TBI and have shown that it blunts the CNS-stress response, supports cardiovascular function and reduces secondary injury. Future research will investigate its suitability for human translation.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia.
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia.
| |
Collapse
|
2
|
Silva GN, Brandão VGA, Perez MV, Blum K, Lewandrowski KU, Fiorelli RKA. Neuroinflammatory Approach to Surgical Trauma: Biomarkers and Mechanisms of Immune and Neuroendocrine Responses. J Pers Med 2024; 14:829. [PMID: 39202020 PMCID: PMC11355628 DOI: 10.3390/jpm14080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The severity and invasiveness of clinical outcomes from organic responses to trauma are influenced by individual, surgical, and anesthetic factors. A stress response elicits neuroendocrine and immune reactions that may lead to multi-organ dysfunction. The degree of neuroinflammatory reflex activation from trauma can increase pro-inflammatory cytokine production, leading to endothelial dysfunction, glycocalyx damage, neutrophil activation, and multisystem tissue destruction. A shift in patient treatment towards a neuroinflammatory perspective has prompted a new evaluation protocol for surgical patients, required to understand surgical pathogenesis and its link to chosen anesthetic-surgical methods. The goal of this study is to summarize and disseminate the present knowledge about the mechanisms involved in immune and neuroendocrine responses, focusing on video laparoscopic surgeries. This article outlines various measures cited in the literature aimed at reducing the burden of surgical trauma. It reviews anesthetic drugs, anesthetic techniques, and intensive care procedures that are known to have immunomodulatory effects. The results show a preference for more sensitive inflammatory mediators to tissue trauma serving as care tools, indicators for prognosis, and therapeutic outcomes.
Collapse
Affiliation(s)
- Gustavo N. Silva
- Department of Anesthesiology, Gaffrée e Guinle Universitary Hospital (EBSERH), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| | - Virna G. A. Brandão
- Department of Anesthesiology, Gaffrée e Guinle Universitary Hospital (EBSERH), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| | - Marcelo V. Perez
- Department of Surgery and Anesthesia, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, SP, Brazil;
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona and Surgical Institute of Tucson, Tucson, AZ 85712, USA;
| | - Rossano K. A. Fiorelli
- Department of General and Specialized Surgery, Gaffrée e Guinle Universitary Hospital (EBSERH), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| |
Collapse
|
3
|
Dobson GP, Letson HL, Morris JL. Revolution in sepsis: a symptoms-based to a systems-based approach? J Biomed Sci 2024; 31:57. [PMID: 38811967 PMCID: PMC11138085 DOI: 10.1186/s12929-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O2 supply. Future research will investigate the potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| |
Collapse
|
4
|
Silva GN, Brandão VG, Perez MV, Sobrinho SL, Villardi JGDCC, Sacramento PMD, Ribeiro LCP, Alvim Fiorelli RK. Immunotherapeutic Properties of Dexmedetomidine on Pain Management and Cardiovascular Function in Videolaparoscopic Cholecystectomies: A Randomized, Two-Arm, Double-Blinded, Placebo-Controlled Trial. Surg Innov 2024; 31:137-147. [PMID: 38383315 DOI: 10.1177/15533506241234591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Laparoscopy represented one of the most innovative surgical techniques approached in the surgery field. Dexmedetomidine association with general anesthesia promotes the response control to trauma by altering the neuroinflammatory reflex, provides better clinical outcomes in the postoperative period and reduces the excessive use of drugs with risk for addiction. This trial aims to evaluate the potential drug treatment of dexmedetomidine on organic function, with the targets in neuroinflammation, perioperative pain control and blood pressure measurements in a medium-sized surgical model. METHODS Fifty-two patients were randomized in two groups: Sevoflurane and Dexmedetomidine - A (dexmedetomidine infusion [1 μg/kg loading, .2-.5 μg/kg/h thereafter]) vs Sevoflurane and Saline .9% - B. Three blood samples were collected at three times: before surgery, 4 to 6 hours after surgery and 24 hours postoperatively. The primary outcome was inflammatory and endocrine mediators dosage analisys. Finally, we evaluated pain and opioid use as secondary outcomes, also the hemodynamic values. RESULTS In Dexmedetomidine group A, a reduction of Interleukin 6 was found during 4-6 hours after surgery. A reduction of IL-10 was noted in the measurement of its values 24 hours after the procedure, with statistical significance. Also, systolic and diastolic blood pressure, as well heart rate were attenuated, and there was a lower incidence of pain and opioid consumption in the first postoperative hour (P < .0001) in the anesthetic recovery room. CONCLUSIONS Dexmedetomidine provided anti-inflammatory activity, sympatholytic effect and analgesia with cardiovascular safety. It reinforces the therapeutic nature of highly selective α2-adrenergic agonists when combined within anesthetic interventions.
Collapse
Affiliation(s)
- Gustavo Nascimento Silva
- Department of Anesthesiology, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Virna Guedes Brandão
- Department of Anesthesiology, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Marcelo Vaz Perez
- Department of Surgery and Anesthesia, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sandoval Lage Sobrinho
- Department of General and Specialized Surgery, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | | | | | - Rossano Kepler Alvim Fiorelli
- Department of General and Specialized Surgery, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Faber J, Milanez MIO, Simões CS, Campos RR. Frequency-coded patterns of sympathetic vasomotor activity are differentially evoked by the paraventricular nucleus of the hypothalamus in the Goldblatt hypertension model. Front Cell Neurosci 2023; 17:1176634. [PMID: 37674868 PMCID: PMC10477436 DOI: 10.3389/fncel.2023.1176634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction The paraventricular nucleus of the hypothalamus (PVN) contains premotor neurons involved in the control of sympathetic vasomotor activity. It is known that the stimulation of specific areas of the PVN can lead to distinct response patterns at different target territories. The underlying mechanisms, however, are still unclear. Recent evidence from sympathetic nerve recording suggests that relevant information is coded in the power distribution of the signal along the frequency range. In the present study, we addressed the hypothesis that the PVN is capable of organizing specific spectral patterns of sympathetic vasomotor activation to distinct territories in both normal and hypertensive animals. Methods To test it, we investigated the territorially differential changes in the frequency parameters of the renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), before and after disinhibition of the PVN by bicuculline microinjection. Subjects were control and Goldblatt rats, a sympathetic overactivity-characterized model of neurogenic hypertension (2K1C). Additionally, considering the importance of angiotensin II type 1 receptors (AT1) in the sympathetic responses triggered by bicuculline in the PVN, we also investigated the impact of angiotensin AT1 receptors blockade in the spectral features of the rSNA and sSNA activity. Results The results revealed that each nerve activity (renal and splanchnic) presents its own electrophysiological pattern of frequency-coded rhythm in each group (control, 2K1C, and 2K1C treated with AT1 antagonist losartan) in basal condition and after bicuculline microinjection, but with no significant differences regarding total power comparison among groups. Additionally, the losartan 2K1C treated group showed no decrease in the hypertensive response triggered by bicuculline when compared to the non-treated 2K1C group. However, their spectral patterns of sympathetic nerve activity were different from the other two groups (control and 2K1C), suggesting that the blockade of AT1 receptors does not totally recover the basal levels of neither the autonomic responses nor the electrophysiological patterns in Goldblatt rats, but act on their spectral frequency distribution. Discussion The results suggest that the differential responses evoked by the PVN were preferentially coded in frequency, but not in the global power of the vasomotor sympathetic responses, indicating that the PVN is able to independently control the frequency and the power of sympathetic discharges to different territories.
Collapse
Affiliation(s)
- Jean Faber
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maycon I. O. Milanez
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristiano S. Simões
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ruy R. Campos
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Kawai Y. Cross-frequency coupling between slow harmonics via the real brainstem oscillators: An in vivo animal study. PLoS One 2023; 18:e0289657. [PMID: 37549170 PMCID: PMC10406189 DOI: 10.1371/journal.pone.0289657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Brain waves of discrete rhythms (gamma to delta frequency ranges) are ubiquitously recorded and interpreted with respect to probable corresponding specific functions. The most challenging idea of interpreting varied frequencies of brain waves has been postulated as a communication mechanism in which different neuronal assemblies use specific ranges of frequencies cooperatively. One promising candidate is cross-frequency coupling (CFC), in which some neuronal assemblies efficiently utilize the fastest gamma range brain waves as an information carrier (phase-amplitude CFC); however, phase-phase CFC via the slowest delta and theta waves has rarely been described to date. Moreover, CFC has rarely been reported in the animal brainstem including humans, which most likely utilizes the slowest waves (delta and theta ranges). Harmonic waves are characterized by the presence of a fundamental frequency with several overtones, multiples of the fundamental frequency. Rat brainstem waves seemed to consist of slow harmonics with different frequencies that could cooperatively produce a phase-phase CFC. Harmonic rhythms of different frequency ranges can cross-couple with each other to sustain robust and resilient consonance via real oscillators, notwithstanding any perturbations.
Collapse
Affiliation(s)
- Yoshinori Kawai
- Adati Institute for Brain Study (AIBS), Kawaguchi, Saitama, Japan
| |
Collapse
|
7
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
8
|
Rhythmic firing of neurons in the medulla of conscious freely behaving rats: rhythmic coupling with baroreceptor input. Pflugers Arch 2023; 475:77-87. [PMID: 35396959 DOI: 10.1007/s00424-022-02687-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent investigations emphasized the importance of neural control of cardiovascular adjustments in complex behaviors, including stress, exercise, arousal, sleep-wake states, and different tasks. Baroreceptor feedback is an essential component of this system acting on different time scales from maintaining stable levels of cardiovascular parameters on the long-term to rapid alterations according to behavior. The baroreceptor input is essentially rhythmic, reflecting periodic fluctuations in arterial blood pressure. Cardiac rhythm is a prominent feature of the autonomic control system, present on different levels, including neuron activity in central circuits. The mechanism of rhythmic entrainment of neuron firing by the baroreceptor input was studied in great detail under anesthesia, but recordings of sympathetic-related neuron firing in freely moving animals remain extremely scarce. In this study, we recorded multiple single neuron activity in the reticular formation of the medulla in freely moving rats during natural behavior. Neurons firing in synchrony with the cardiac rhythm were detected in each experiment (n = 4). In agreement with prior observations in anesthetized cats, we found that neurons in this area exhibited high neuron-to-neuron variability and temporal flexibility in their coupling to cardiac rhythm in freely moving rats, as well. This included firing in bursts at multiples of cardiac cycles, but not directly coupled to the heartbeat, supporting the concept of baroreceptor input entraining intrinsic neural oscillations rather than imposing a rhythm of solely external origin on these networks. It may also point to a mechanism of maintaining the basic characteristics of sympathetic neuron activity, i.e., burst discharge and cardiac-related rhythmicity, on the background of behavior-related adjustments in their firing rate.
Collapse
|
9
|
Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) 2022; 9:968453. [PMID: 36111108 PMCID: PMC9468749 DOI: 10.3389/fmed.2022.968453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022] Open
Abstract
When a traumatic injury exceeds the body's internal tolerances, the innate immune and inflammatory systems are rapidly activated, and if not contained early, increase morbidity and mortality. Early deaths after hospital admission are mostly from central nervous system (CNS) trauma, hemorrhage and circulatory collapse (30%), and later deaths from hyperinflammation, immunosuppression, infection, sepsis, acute respiratory distress, and multiple organ failure (20%). The molecular drivers of secondary injury include damage associated molecular patterns (DAMPs), pathogen associated molecular patterns (PAMPs) and other immune-modifying agents that activate the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic stress response. Despite a number of drugs targeting specific anti-inflammatory and immune pathways showing promise in animal models, the majority have failed to translate. Reasons for failure include difficulty to replicate the heterogeneity of humans, poorly designed trials, inappropriate use of specific pathogen-free (SPF) animals, ignoring sex-specific differences, and the flawed practice of single-nodal targeting. Systems interconnectedness is a major overlooked factor. We argue that if the CNS is protected early after major trauma and control of cardiovascular function is maintained, the endothelial-glycocalyx will be protected, sufficient oxygen will be delivered, mitochondrial energetics will be maintained, inflammation will be resolved and immune dysfunction will be minimized. The current challenge is to develop new systems-based drugs that target the CNS coupling of whole-body function.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
10
|
Hamasaki T, Yamakawa T, Fujiwara K, Harashima H, Nakamura K, Ikuta Y, Yamamoto T, Hasegawa Y, Takezaki T, Mukasa A. Sympathetic hyperactivity, hypertension, and tachycardia induced by stimulation of the ponto-medullary junction in humans. Clin Neurophysiol 2021; 132:1264-1273. [PMID: 33867252 DOI: 10.1016/j.clinph.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/01/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate changes in autonomic activities and systemic circulation generated by surgical manipulation or electrical stimulation to the human brain stem. METHODS We constructed a system that simultaneously recorded microsurgical field videos and heart rate variability (HRV) that represent autonomic activities. In 20 brain stem surgeries recorded, HRV features and sites of surgical manipulation were analyzed in 19 hypertensive epochs, defined as the periods with transient increases in the blood pressure. We analyzed the period during electrical stimulation to the ponto-medullary junction, performed for the purpose of monitoring a cranial nerve function. RESULTS In the hypertensive epoch, HRV analysis showed that sympathetic activity predominated over the parasympathetic activity. The hypertensive epoch was more associated with surgical manipulation of the area in the caudal pons or the rostral medulla oblongata compared to controls. During the period of electrical stimulation, there were significant increases in blood pressures and heart rates, accompanied by sympathetic overdrive. CONCLUSIONS Our results provide physiological evidence that there is an important autonomic center located adjacent to the ponto-medullary junction. SIGNIFICANCE A large study would reveal a candidate target of neuromodulation for disorders with autonomic imbalances such as drug-resistant hypertension.
Collapse
Affiliation(s)
- Tadashi Hamasaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Toshitaka Yamakawa
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-0862, Japan
| | - Koichi Fujiwara
- Department of Material Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Haruki Harashima
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-0862, Japan
| | - Kota Nakamura
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-0862, Japan
| | - Yoshihiro Ikuta
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tatsuo Yamamoto
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yu Hasegawa
- Department of Occupational Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, 1-7-4 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
| | - Tatsuya Takezaki
- Department of Neurosurgery, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
11
|
Liu X, Yuan Y, Wong J, Meng G, Ueoka A, Woiewodski LM, Chen LS, Shen C, Li X, Lin SF, Everett TH, Chen PS. The frequency spectrum of sympathetic nerve activity and arrhythmogenicity in ambulatory dogs. Heart Rhythm 2020; 18:465-472. [PMID: 33246037 DOI: 10.1016/j.hrthm.2020.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Sympathetic nerve activity, heart rate (HR), and blood pressure (BP) all have very low frequency (VLF), low frequency (LF), and high frequency (HF) oscillations. OBJECTIVE The purpose of this study was to test the hypothesis that the frequency spectra of subcutaneous nerve activity (ScNA), stellate ganglion nerve activity (SGNA), HR, and BP are important to cardiac arrhythmogenesis. METHODS We used radiotransmitters to record SGNA, ScNA, HR, and BP in 6 ambulatory dogs and determined the dominant frequency and paroxysmal atrial tachyarrhythmias (PATs) episodes in 3-minute windows over a 24-hour period. RESULTS The frequency spectra determined in ScNA reflected that in SGNA. HF oscillations were present in both ScNA and SGNA at all time but could be overshadowed by the much larger LF and VLF burst activities. The dominant frequency could occur in any of the 3 frequency bands. There were circadian variations with more frequent occurrences of HF oscillations at night. HF oscillations in HR and BP matched HF oscillations in SGNA and ScNA. PATs occurred only when dominant frequencies of SGNA and ScNA were in the LF and VLF bands. CONCLUSION HF oscillations in BP and HR correlate with HF oscillations in sympathetic nerve activity and are present at all time. HF oscillations can be overshadowed by the much larger LF and VLF burst activities. PATs occur only when LF or VLF, but not when HF, is the dominant frequency. The frequency spectra determined in ScNA reflect that in SGNA.
Collapse
Affiliation(s)
- Xiao Liu
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Cedars-Sinai Medical Center, Los Angeles, California
| | - Yuan Yuan
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Johnson Wong
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guannan Meng
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Akira Ueoka
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Leanne M Woiewodski
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lan S Chen
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Changyu Shen
- Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Xiaochun Li
- Department of Biostatistics, Indiana University School of Medicine & Richard M. Fairbanks School of Public Health, Indianapolis, Indiana
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan
| | - Thomas H Everett
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
12
|
Hirooka Y. Sympathetic Activation in Hypertension: Importance of the Central Nervous System. Am J Hypertens 2020; 33:914-926. [PMID: 32374869 DOI: 10.1093/ajh/hpaa074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system plays a critical role in the pathogenesis of hypertension. The central nervous system (CNS) organizes the sympathetic outflow and various inputs from the periphery. The brain renin-angiotensin system has been studied in various regions involved in controlling sympathetic outflow. Recent progress in cardiovascular research, particularly in vascular biology and neuroscience, as well as in traditional physiological approaches, has advanced the field of the neural control of hypertension in which the CNS plays a vital role. Cardiovascular research relating to hypertension has focused on the roles of nitric oxide, oxidative stress, inflammation, and immunity, and the network among various organs, including the heart, kidney, spleen, gut, and vasculature. The CNS mechanisms are similarly networked with these factors and are widely studied in neuroscience. In this review, I describe the development of the conceptual flow of this network in the field of hypertension on the basis of several important original research articles and discuss potential future breakthroughs leading to clinical precision medicine.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa City, Fukuoka, Japan
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Center, Takagi Hospital, Okawa City, Fukuoka, Japan
| |
Collapse
|
13
|
Ofner M, Walach H. The Vegetative Receptor-Vascular Reflex (VRVR) - A New Key to Regeneration. Front Physiol 2020; 11:547526. [PMID: 33071809 PMCID: PMC7538835 DOI: 10.3389/fphys.2020.547526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We describe a potentially new physiological reflex path that has so far been neglected but which could be used for a novel therapeutic approach: The vegetative receptor-vascular reflex. This is a physiological response that starts from the connective tissue and influences the whole organism. We cross-fertilized various research areas with each other. KEY FINDINGS The matrix or the connective tissue forms a passive reservoir of substrate for the growth and development of cells, and functions as the primordial communication system of all living systems. It contains a continuous network of cells, such as fibroblasts, along with protein bundles made up of collagen that support electrical exchange through piezoelectric effects. This archaic vegetative system surrounds all cells, including neurons, and can thus be viewed as the primordial coordinating system in every organism. It is very likely the basis for a reflex which we describe here for the first time: the vegetative receptor vascular reflex. We also indicate some potential practical applications and test procedures. CONCLUSION The vegetative receptor vascular reflex describes the pathway from stimuli that originate in the connective tissue or the extracellular matrix toward organ systems. They might be chemical in nature or electrical via piezo-electric effects stimulating nerve endings, and thus can influence higher order processes such as regeneration or healing of tissue. Thus, this reflex lends itself to a novel therapeutic approach via certain types of manipulation of the connective tissue.
Collapse
Affiliation(s)
- Michael Ofner
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Harald Walach
- Department of Pediatric Gastroenterology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Psychology, Witten/Herdecke University, Witten, Germany
- Change Health Science Institute, Berlin, Germany
| |
Collapse
|
14
|
Segers LS, Nuding SC, Ott MM, O'Connor R, Morris KF, Lindsey BG. Blood pressure drives multispectral tuning of inspiration via a linked-loop neural network. J Neurophysiol 2020; 124:1676-1697. [PMID: 32965158 DOI: 10.1152/jn.00442.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory motor pattern is coordinated with cardiovascular system regulation. Inspiratory drive and respiratory phase durations are tuned by blood pressure and baroreceptor reflexes. We hypothesized that perturbations of systemic arterial blood pressure modulate inspiratory drive through a raphe-pontomedullary network. In 15 adult decerebrate vagotomized neuromuscular-blocked cats, we used multielectrode arrays to record the activities of 704 neurons within the medullary ventral respiratory column, pons, and raphe areas during baroreceptor-evoked perturbations of breathing, as measured by altered peak activity in integrated efferent phrenic nerve activity and changes in respiratory phase durations. Blood pressure was transiently (30 s) elevated or reduced by inflations of an embolectomy catheter in the descending aorta or inferior vena cava. S-transform time-frequency representations were calculated for multiunit phrenic nerve activity and some spike trains to identify changes in rhythmic activity during perturbations. Altered firing rates in response to either or both conditions were detected for 474 of 704 tested cells. Spike trains of 17,805 neuron pairs were evaluated for short-time scale correlational signatures indicative of functional connectivity with standard cross-correlation analysis, supplemented with gravitational clustering; ∼70% of tested (498 of 704) and responding neurons (333 of 474) were involved in a functional correlation with at least one other cell. Changes in high-frequency oscillations in the spiking of inspiratory neurons and the evocation or resetting of slow quasi-periodic fluctuations in the respiratory motor pattern associated with oscillations of arterial pressure were observed. The results support a linked-loop pontomedullary network architecture for multispectral tuning of inspiration.NEW & NOTEWORTHY The brain network that supports cardiorespiratory coupling remains poorly understood. Using multielectrode arrays, we tested the hypothesis that blood pressure and baroreceptor reflexes "tune" the breathing motor pattern via a raphe-pontomedullary network. Neuron responses to changes in arterial pressure and identified functional connectivity, together with altered high frequency and slow Lundberg B-wave oscillations, support a model with linked recurrent inhibitory loops that stabilize the respiratory network and provide a path for transmission of baroreceptor signals.
Collapse
Affiliation(s)
- Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mackenzie M Ott
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Russell O'Connor
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
15
|
Dobson GP. Trauma of major surgery: A global problem that is not going away. Int J Surg 2020; 81:47-54. [PMID: 32738546 PMCID: PMC7388795 DOI: 10.1016/j.ijsu.2020.07.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Globally, a staggering 310 million major surgeries are performed each year; around 40 to 50 million in USA and 20 million in Europe. It is estimated that 1-4% of these patients will die, up to 15% will have serious postoperative morbidity, and 5-15% will be readmitted within 30 days. An annual global mortality of around 8 million patients places major surgery comparable with the leading causes of death from cardiovascular disease and stroke, cancer and injury. If surgical complications were classified as a pandemic, like HIV/AIDS or coronavirus (COVID-19), developed countries would work together and devise an immediate action plan and allocate resources to address it. Seeking to reduce preventable deaths and post-surgical complications would save billions of dollars in healthcare costs. Part of the global problem resides in differences in institutional practice patterns in high- and low-income countries, and part from a lack of effective perioperative drug therapies to protect the patient from surgical stress. We briefly review the history of surgical stress and provide a path forward from a systems-based approach. Key to progress is recognizing that the anesthetized brain is still physiologically 'awake' and responsive to the sterile stressors of surgery. New intravenous drug therapies are urgently required after anesthesia and before the first incision to prevent the brain from switching to sympathetic overdrive and activating secondary injury progression such as hyperinflammation, coagulopathy, immune activation and metabolic dysfunction. A systems-based approach targeting central nervous system-mitochondrial coupling may help drive research to improve outcomes following major surgery in civilian and military medicine.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, 4811, Australia.
| |
Collapse
|
16
|
Ghali MGZ. Retracted: Control of hypoglossal pre‐inspiratory discharge. Exp Physiol 2020; 105:1232-1255. [DOI: 10.1113/ep087329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Michael George Zaki Ghali
- Departments of Neurological Surgery, Internal Medicine, General Surgery, and Neuroscience Karolinska Institutet Huddinge Stockholm Sweden
- Departments of Neurological Surgery, Neurophysiology, Neuroscience University of Oslo Oslo Norway
- Departments of Neurological Surgery and Neurochemistry University of Helsinki Helsinki Finland
- Departments of Neurological Surgery, Internal Medicine, Cardiothoracic Surgery, and Neuroscience University of California Francisco San Francisco CA USA
- Departments of Neurological Surgery and Neuroscience Barrow Neurological Institute Phoenix AZ USA
| |
Collapse
|
17
|
George Zaki Ghali M. Midbrain control of breathing and blood pressure: The role of periaqueductal gray matter and mesencephalic collicular neuronal microcircuit oscillators. Eur J Neurosci 2020; 52:3879-3902. [PMID: 32227408 DOI: 10.1111/ejn.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/01/2020] [Accepted: 03/22/2020] [Indexed: 01/12/2023]
Abstract
Neural circuitry residing within the medullary ventral respiratory column nuclei and dorsal respiratory group interact with the Kölliker-Fuse and medial parabrachial nuclei to generate the core breathing rhythm and pattern during resting conditions. Triphasic eupnea consists of inspiratory [I], post-inspiratory [post-I], and late-expiratory [E2] phases. Mesencephalic zones exert modulatory influences upon respiratory rhythm-generating circuitry, sympathetic oscillators, and parasympathetic nuclei. The earliest evidence supporting the existence of midbrain control of breathing derives from studies conducted by Martin and Booker in 1878. These authors demonstrated electrical stimulation of the deep layers of the mesencephalic colliculi in the rabbit augmented ventilation and sequentially elicited chest wall tremors and tetany. Investigations performed during the past several decades would demonstrate stimlation of distributed zones within the midbrain reticular formation elicits starkly disparate effects upon respiratory phase switching. Schmid, Böhmer, and Fallert demonstrated electrical stimulation of the nucleus rubre and emanating axon bundles alternately elicits or inhibits the activity of medullary expiratory- or inspiratory-related units and phrenic nerve discharge with differential latency. A series of studies would later indicate the red nucleus mediates hypoxic ventilatory depression. Periaqueductal gray matter neurons exhibit extensive afferent and efferent interconnectivity with suprabulbar, brainstem, and spinal cord zones aptly positioning these units to modulate breathing, autonomic outflow, nociception locomotion, micturtion, and sexual behavior. Experimental stimulatory activation of the tectal colliculi and periaqueductal gray matter via electrical current or glutamate, D,L-homocysteinic acid, or bicuculline microinjections coordinately modulates neuromotor inspiratory bursting frequency and amplitude and discharge of pre-Bötzinger complex, ventrolateral medullary late-I and post-I, and ventrolateral nucleus tractus solitarius decrementing early-I and augmenting and decrementing late-I neurons, elicits expiratory outflow and vocalization, and blunt the Hering-Breuer reflex in unanesthetzed decerebrate and anesthetized preprations of the cat and rat. Stimulation of the mesencephalic colliuli or dorsal divisions of the PAG potently amplifes renal sympathetic neural efferent activity, dynamic arterial pressure magnitude, and myocardial contraction frequency and elicits various behavioral defense responses. Elicited physiological effects exhibit extensive locoregional heterogeneity and variably enlist requisite contributions from the dorsomedial hypothalamus and/or lateral parabrachial nuclei. Stimulation of the dorsal mesencephalon occasionally elicits dynamic increases of arterial pressure magnitude exhibiting prominent oscillatory variability coherent with phrenic nerve discharge, perhaps by generating intra-neuraxial hysteresis, serving to intermittently deliver blood to organ vascular beds under high pressure in order to prevent organ edema, microcirculatory dysfunction, and downregulation of vascular smooth muscle alpha adrenergic receptors. Chemosensitive mesencephalic caudal raphé units and projections of hypoxia-sensitive units in the caudal hypothalamus to the periaqueductal gray matter may imply the existence of a diencephalo-smesencephalic chemosensitive network modulating breathing and sympathetic discharge.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas.,Department of Neurological Surgery, University of California, San Francisco, California.,Department of Neurological Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|