1
|
Jarrard CP, McKenna ZJ, Atkins WC, Foster J, Hendrix JM, Jouett NP, Oldham ZR, LeBlanc BJ, Watso JC, Crandall CG. Low-dose sufentanil does not affect tolerance to LBNP-induced central hypovolemia or blood pressure responses during a cold pressor test. Am J Physiol Regul Integr Comp Physiol 2024; 327:R497-R507. [PMID: 39155710 DOI: 10.1152/ajpregu.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Hemorrhage is a leading cause of death in the prehospital setting. Since trauma-induced pain often accompanies a hemorrhagic insult, the administered pain medication must not interfere with critical autonomic regulation of arterial blood pressure and vital organ perfusion. The purpose of this study was to test two unrelated hypotheses: 1) sublingual sufentanil (Dsuvia) impairs tolerance to progressive central hypovolemia and 2) sublingual sufentanil attenuates pain sensation and the accompanying cardiovascular responses to a noxious stimulus. Twenty-nine adults participated in this double-blinded, randomized, crossover, placebo-controlled trial. After sublingual administration of sufentanil (30 μg) or placebo, participants completed a progressive lower-body negative pressure (LBNP) challenge to tolerance (aim 1). After a recovery period, participants completed a cold pressor test (CPT; aim 2). Addressing the first aim, tolerance to LBNP was not different between trials (P = 0.495). Decreases in systolic blood pressure from baseline to the end of LBNP also did not differ between trials (time P < 0.001, trial P = 0.477, interaction P = 0.587). Finally, increases in heart rate from baseline to the end of LBNP did not differ between trials (time P < 0.001, trial P = 0.626, interaction P = 0.424). Addressing the second aim, sufentanil attenuated perceived pain (P < 0.001) in response to the CPT, though the magnitude of the change in mean blood pressure during the CPT (P = 0.078) was not different between trials. These data demonstrate that sublingual sufentanil does not impair tolerance to progressive central hypovolemia. Additionally, sublingual sufentanil attenuates perceived pain, but not the accompanying mean blood pressure responses to the CPT.NEW & NOTEWORTHY Addressing two unique aims, we observed that sublingual sufentanil administration does not impair tolerance or cardiovascular responses to lower-body negative pressure (LBNP)-induced progressive central hypovolemia. Second, despite pain perception being reduced, sublingual sufentanil did not attenuate mean blood pressure responses to a cold pressor test (CPT).
Collapse
Affiliation(s)
- Caitlin P Jarrard
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Applied Clinical Research Department, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zachary J McKenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Whitley C Atkins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Joseph M Hendrix
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Noah P Jouett
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zachary R Oldham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Applied Physiology and Sport Management, Southern Methodist University, Dallas, Texas, United States
| | - Benjamin J LeBlanc
- University of Texas Southwestern Medical School, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph C Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Applied Clinical Research Department, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
2
|
Wang Y, Payne SJ. Static autoregulation in humans. J Cereb Blood Flow Metab 2024; 44:1191-1207. [PMID: 37933742 DOI: 10.1177/0271678x231210430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The process by which cerebral blood flow (CBF) remains approximately constant in response to short-term variations in arterial blood pressure (ABP) is known as cerebral autoregulation. This classic view, that it remains constant over a wide range of ABP, has however been challenged by a growing number of studies. To provide an updated understanding of the static cerebral pressure-flow relationship and to characterise the autoregulation curve more rigorously, we conducted a comprehensive literature research. Results were based on 143 studies in healthy individuals aged 18 to 65 years. The mean sensitivities of CBF to changes in ABP were found to be 1.47 ± 0.71%/% for decreased ABP and 0.37 ± 0.38%/% for increased ABP. The significant difference in CBF directional sensitivity suggests that cerebral autoregulation appears to be more effective in buffering increases in ABP than decreases in ABP. Regression analysis of absolute CBF and ABP identified an autoregulatory plateau of approximately 20 mmHg (ABP between 80 and 100 mmHg), which is much smaller than the widely accepted classical view. Age and sex were found to have no effect on autoregulation strength. This data-driven approach provides a quantitative method of analysing static autoregulation that can be easily updated as more experimental data become available.
Collapse
Affiliation(s)
- Yufan Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
3
|
Rosenberg AJ, Anderson GK, McKeefer HJ, Bird J, Pentz B, Byman BRM, Jendzjowsky N, Wilson RJ, Day TA, Rickards CA. Hemorrhage at high altitude: impact of sustained hypobaric hypoxia on cerebral blood flow, tissue oxygenation, and tolerance to simulated hemorrhage in humans. Eur J Appl Physiol 2024; 124:2365-2378. [PMID: 38489034 PMCID: PMC11321930 DOI: 10.1007/s00421-024-05450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
With ascent to high altitude (HA), compensatory increases in cerebral blood flow and oxygen delivery must occur to preserve cerebral metabolism and consciousness. We hypothesized that this compensation in cerebral blood flow and oxygen delivery preserves tolerance to simulated hemorrhage (via lower body negative pressure, LBNP), such that tolerance is similar during sustained exposure to HA vs. low altitude (LA). Healthy humans (4F/4 M) participated in LBNP protocols to presyncope at LA (1130 m) and 5-7 days following ascent to HA (3800 m). Internal carotid artery (ICA) blood flow, cerebral delivery of oxygen (CDO2) through the ICA, and cerebral tissue oxygen saturation (ScO2) were determined. LBNP tolerance was similar between conditions (LA: 1276 ± 304 s vs. HA: 1208 ± 306 s; P = 0.58). Overall, ICA blood flow and CDO2 were elevated at HA vs. LA (P ≤ 0.01) and decreased with LBNP under both conditions (P < 0.0001), but there was no effect of altitude on ScO2 responses (P = 0.59). Thus, sustained exposure to hypobaric hypoxia did not negatively impact tolerance to simulated hemorrhage. These data demonstrate the robustness of compensatory physiological mechanisms that preserve human cerebral blood flow and oxygen delivery during sustained hypoxia, ensuring cerebral tissue metabolism and neuronal function is maintained.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
- Physiology Department, Midwestern University, Downers Grove, IL, USA
| | - Garen K Anderson
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haley J McKeefer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | | - Nicholas Jendzjowsky
- University of Calgary, Calgary, AB, Canada
- Institute of Respiratory Medicine & Exercise Physiology, The Lundquist Institute at UCLA Harbor Medical, Torrance, CA, USA
| | | | | | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
4
|
Jarrard CP, Watso JC, Atkins WC, McKenna ZJ, Foster J, Huang M, Belval LN, Crandall CG. Sex Differences in Sympathetic Responses to Lower-Body Negative Pressure. Med Sci Sports Exerc 2024; 56:1056-1065. [PMID: 38233995 PMCID: PMC11187698 DOI: 10.1249/mss.0000000000003392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Trauma-induced hemorrhage is a leading cause of death in prehospital settings. Experimental data demonstrate that females have a lower tolerance to simulated hemorrhage (i.e., central hypovolemia). However, the mechanism(s) underpinning these responses are unknown. Therefore, this study aimed to compare autonomic cardiovascular responses during central hypovolemia between the sexes. We hypothesized that females would have a lower tolerance and smaller increase in muscle sympathetic nerve activity (MSNA) to simulated hemorrhage. METHODS Data from 17 females and 19 males, aged 19-45 yr, were retrospectively analyzed. Participants completed a progressive lower-body negative pressure (LBNP) protocol to presyncope to simulate hemorrhagic tolerance with continuous measures of MSNA and beat-to-beat hemodynamic variables. We compared responses at baseline, at two LBNP stages (-40 and -50 mmHg), and at immediately before presyncope. In addition, we compared responses at relative percentages (33%, 66%, and 100%) of hemorrhagic tolerance, calculated via the cumulative stress index (i.e., the sum of the product of time and pressure at each LBNP stage). RESULTS Females had lower tolerance to central hypovolemia (female: 561 ± 309 vs male: 894 ± 304 min·mmHg [time·LBNP]; P = 0.003). At LBNP -40 and -50 mmHg, females had lower diastolic blood pressures (main effect of sex: P = 0.010). For the relative LBNP analysis, females exhibited lower MSNA burst frequency (main effect of sex: P = 0.016) accompanied by a lower total vascular conductance (sex: P = 0.028; main effect of sex). CONCLUSIONS Females have a lower tolerance to central hypovolemia, which was accompanied by lower diastolic blood pressure at -40 and -50 mmHg LBNP. Notably, females had attenuated MSNA responses when assessed as relative LBNP tolerance time.
Collapse
Affiliation(s)
- Caitlin P. Jarrard
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Applied Clinical Research Department, University of Texas Southwestern Medical Center, Dallas TX
| | - Joseph C. Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Applied Clinical Research Department, University of Texas Southwestern Medical Center, Dallas TX
- College of Health and Human Sciences, Florida State University, Tallahassee, FL
| | - Whitley C. Atkins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zachary J. McKenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, UNITED KINGDOM
| | - Mu Huang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Office of Science, Medicine, and Health, American Heart Association, Dallas, TX
| | - Luke N. Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Craig G. Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Miutz LN, Burma JS, Van Roessel RK, Johnson NE, Phillips AA, Emery CA, Brassard P, Smirl JD. The effect of supine cycling and progressive lower body negative pressure on cerebral blood velocity responses. J Appl Physiol (1985) 2023; 135:316-325. [PMID: 37348016 DOI: 10.1152/japplphysiol.00758.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
Moderate-intensity aerobic exercise increases cerebral blood velocity (CBv) primarily due to hyperpnea-induced vasodilation; however, the integrative control of cerebral blood flow (CBF) allows other factors to contribute to the vasodilation. Although lower body negative pressure (LBNP) can reduce CBv, the exact LBNP intensity required to blunt the aforementioned exercise-induced CBv response is unknown. This could hold utility for concussion recovery, allowing individuals to exercise at higher intensities without symptom exacerbation. Thirty-two healthy adults (age: 20-33 yr; 19 females/13 males) completed a stepwise maximal exercise test during a first visit to determine each participant's wattage associated with their exercise-induced maximal CBv increase. During the second visit, following supine rest, participants completed moderate-intensity exercise at their determined threshold, while progressive LBNP was applied at 0, -20, -40, -60, -70, -80, and ∼88 Torr. Bilateral middle cerebral artery blood velocities (MCAvs), mean arterial pressure (MAP), heart rate, respiratory rate, and end-tidal carbon dioxide levels were measured continuously. Two-way analysis of variance with effect sizes compared between sexes and stages. Compared with resting supine baseline, averaged MCAv was elevated during 0 and -20 Torr LBNP (q value > 7.73; P < 0.001); however, no differences were noted between baseline and -40 to -70 Torr (q value < |4.24|; P > 0.262). Differences were present between females and males for absolute MCAv measures (q value > 11.2; P < 0.001), but not when normalized to baseline (q value < 0.03; P > 0.951). Supine cycling-elicited increases in MCAv are able to be blunted during the application of LBNP ranging from -40 to -70 Torr. The blunted CBv response demonstrates the potential benefit of allowing individuals to aerobically train (moderate-intensity supine cycling with LBNP) without exacerbating symptoms during the concussion recovery phase.NEW & NOTEWORTHY The current investigation demonstrated that moderate-intensity supine cycling-induced increases in cerebral blood velocities were balanced by the lower body negative pressure-induced decreases in cerebral blood velocity. Although performed in a healthy population, the results may lend themselves to a potential treatment option for individuals recovering from concussion or experience persistent concussion symptoms.
Collapse
Affiliation(s)
- Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, United States
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Rowan K Van Roessel
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Phillips
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, University Laval, Quebec City, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Washio T, Hissen SL, Takeda R, Manabe K, Akins JD, Sanchez B, D'Souza AW, Nelson DB, Khan S, Tomlinson AR, Babb TG, Fu Q. Effects of posture changes on dynamic cerebral autoregulation during early pregnancy in women with obesity and/or sleep apnea. Clin Auton Res 2023; 33:121-131. [PMID: 37115467 PMCID: PMC11384342 DOI: 10.1007/s10286-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
The incidence of syncope during orthostasis increases in early human pregnancy, which may be associated with cerebral blood flow (CBF) dysregulation in the upright posture. In addition, obesity and/or sleep apnea per se may influence CBF regulation due to their detrimental impacts on cerebrovascular function. However, it is unknown whether early pregnant women with obesity and/or sleep apnea could have impaired CBF regulation in the supine position and whether this impairment would be further exacerbated in the upright posture. Dynamic cerebral autoregulation (CA) was evaluated using transfer function analysis in 33 women during early pregnancy (13 with obesity, 8 with sleep apnea, 12 with normal weight) and 15 age-matched nonpregnant women during supine rest. Pregnant women also underwent a graded head-up tilt (30° and 60° for 6 min each). We found that pregnant women with obesity or sleep apnea had a higher transfer function low-frequency gain compared with nonpregnant women in the supine position (P = 0.026 and 0.009, respectively) but not normal-weight pregnant women (P = 0.945). Conversely, the transfer function low-frequency phase in all pregnancy groups decreased during head-up tilt (P = 0.001), but the phase was not different among pregnant groups (P = 0.180). These results suggest that both obesity and sleep apnea may have a detrimental effect on dynamic CA in the supine position during early pregnancy. CBF may be more vulnerable to spontaneous blood pressure fluctuations in early pregnant women during orthostatic stress compared with supine rest due to less efficient dynamic CA, regardless of obesity and/or sleep apnea.
Collapse
Affiliation(s)
- Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryosuke Takeda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Akins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
| | - Andrew W D'Souza
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - David B Nelson
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Safia Khan
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew R Tomlinson
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA.
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Rosenberg AJ, Kay VL, Anderson GK, Luu ML, Barnes HJ, Sprick JD, Alvarado HB, Rickards CA. The reciprocal relationship between cardiac baroreceptor sensitivity and cerebral autoregulation during simulated hemorrhage in humans. Auton Neurosci 2022; 241:103007. [PMID: 35716525 PMCID: PMC10424721 DOI: 10.1016/j.autneu.2022.103007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
A reciprocal relationship between the baroreflex and cerebral autoregulation (CA) has been demonstrated at rest and in response to acute hypotension. We hypothesized that the reciprocal relationship between cardiac baroreflex sensitivity (BRS) and CA would be maintained during sustained central hypovolemia induced by lower body negative pressure (LBNP), and that the strength of this relationship would be greater in subjects with higher tolerance to this stress. Healthy young adults (n = 51; 23F/28M) completed a LBNP protocol to presyncope. Subjects were classified as high tolerant (HT; completion of -60 mmHg LBNP stage, ≥20-min) or low tolerant (LT; did not complete -60 mmHg LBNP stage, <20-min). R-R intervals (RRI), systolic arterial pressure (SAP), mean arterial pressure (MAP), and middle cerebral artery velocity (MCAv) were measured continuously. Cardiac BRS was calculated in the time domain (ΔHR/ΔSAP) and frequency domain (RRI-SAP low frequency (LF) transfer function gain), and CA was calculated in the time domain (ΔMCAv/ΔMAP) and frequency domain (MAP-mean MCAv LF transfer function gain). There was a moderate relationship between cardiac BRS and CA for the group of 51 subjects in both the time (R = -0.54, P < 0.0001) and frequency (R = 0.61, P < 0.001) domains; there was a stronger relationship in the HT group (R = 0.73) compared to the LT group (R = 0.31) in the frequency domain (P = 0.08), but no difference between groups in the time domain (HT: R = -0.73 vs. LT: R = -0.63; P = 0.27). These findings suggest that an interaction between BRS and CA may be an important compensatory mechanism that contributes to tolerance to simulated hemorrhage in young healthy adults.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, IL, USA; Physiology Department, Midwestern University, IL, USA
| | - Victoria L Kay
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Garen K Anderson
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Loan Luu
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haley J Barnes
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Justin D Sprick
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah B Alvarado
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Family Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Caroline A Rickards
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
8
|
Skow RJ, Brothers RM, Claassen JAHR, Day TA, Rickards CA, Smirl JD, Brassard P. On the use and misuse of cerebral hemodynamics terminology using Transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 2022; 323:H350-H357. [PMID: 35839156 DOI: 10.1152/ajpheart.00107.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics (e.g., cerebral blood flow) can be measured and quantified using many different methods, with Transcranial Doppler ultrasound (TCD) being one of the most commonly utilized approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent, and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspectives article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Canada
| |
Collapse
|
9
|
Watso JC, Belval LN, Cimino FA, Orth BD, Hendrix JM, Huang M, Johnson E, Foster J, Hinojosa-Laborde C, Crandall CG. Low-dose morphine reduces tolerance to central hypovolemia in healthy adults without affecting muscle sympathetic outflow. Am J Physiol Heart Circ Physiol 2022; 323:H89-H99. [PMID: 35452317 PMCID: PMC9190738 DOI: 10.1152/ajpheart.00091.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
Abstract
Hemorrhage is a leading cause of preventable battlefield and civilian trauma deaths. Low-dose (i.e., an analgesic dose) morphine is recommended for use in the prehospital (i.e., field) setting. Morphine administration reduces hemorrhagic tolerance in rodents. However, it is unknown whether morphine impairs autonomic cardiovascular regulation and consequently reduces hemorrhagic tolerance in humans. Thus, the purpose of this study was to test the hypothesis that low-dose morphine reduces hemorrhagic tolerance in conscious humans. Thirty adults (15 women/15 men; 29 ± 6 yr; 26 ± 4 kg·m-2, means ± SD) completed this randomized, crossover, double-blinded, placebo-controlled trial. One minute after intravenous administration of morphine (5 mg) or placebo (saline), we used a presyncopal limited progressive lower-body negative pressure (LBNP) protocol to determine hemorrhagic tolerance. Hemorrhagic tolerance was quantified as a cumulative stress index (mmHg·min), which was compared between trials using a Wilcoxon matched-pairs signed-rank test. We also compared muscle sympathetic nerve activity (MSNA; microneurography) and beat-to-beat blood pressure (photoplethysmography) during the LBNP test using mixed-effects analyses [time (LBNP stage) × trial]. Median LBNP tolerance was lower during morphine trials (placebo: 692 [473-997] vs. morphine: 385 [251-728] mmHg·min, P < 0.001, CI: -394 to -128). Systolic blood pressure was 8 mmHg lower during moderate central hypovolemia during morphine trials (post hoc P = 0.02; time: P < 0.001, trial: P = 0.13, interaction: P = 0.006). MSNA burst frequency responses were not different between trials (time: P < 0.001, trial: P = 0.80, interaction: P = 0.51). These data demonstrate that low-dose morphine reduces hemorrhagic tolerance in conscious humans. Thus, morphine is not an ideal analgesic for a hemorrhaging individual in the prehospital setting.NEW & NOTEWORTHY In this randomized, crossover, placebo-controlled trial, we found that tolerance to simulated hemorrhage was lower after low-dose morphine administration. Such reductions in hemorrhagic tolerance were observed without differences in MSNA burst frequency responses between morphine and placebo trials. These data, the first to be obtained in conscious humans, demonstrate that low-dose morphine reduces hemorrhagic tolerance. Thus, morphine is not an ideal analgesic for a hemorrhaging individual in the prehospital setting.
Collapse
Affiliation(s)
- Joseph C Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luke N Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Frank A Cimino
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Bonnie D Orth
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Joseph M Hendrix
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mu Huang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elias Johnson
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carmen Hinojosa-Laborde
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Houston, Texas
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Huang M, Watso JC, Belval LN, Cimino FA, Fischer M, Jarrard CP, Hendrix JM, Laborde CH, Crandall CG. Low-dose fentanyl does not alter muscle sympathetic nerve activity, blood pressure, or tolerance during progressive central hypovolemia. Am J Physiol Regul Integr Comp Physiol 2022; 322:R55-R63. [PMID: 34851734 PMCID: PMC8742719 DOI: 10.1152/ajpregu.00217.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemorrhage is a leading cause of battlefield and civilian trauma deaths. Several pain medications, including fentanyl, are recommended for use in the prehospital (i.e., field setting) for a hemorrhaging solider. However, it is unknown whether fentanyl impairs arterial blood pressure (BP) regulation, which would compromise hemorrhagic tolerance. Thus, the purpose of this study was to test the hypothesis that an analgesic dose of fentanyl impairs hemorrhagic tolerance in conscious humans. Twenty-eight volunteers (13 females) participated in this double-blinded, randomized, placebo-controlled trial. We conducted a presyncopal limited progressive lower body negative pressure test (LBNP; a validated model to simulate hemorrhage) following intravenous administration of fentanyl (75 µg) or placebo (saline). We quantified tolerance as a cumulative stress index (mmHg·min), which was compared between trials using a paired, two-tailed t test. We also compared muscle sympathetic nerve activity (MSNA; microneurography) and beat-to-beat BP (photoplethysmography) during the LBNP test using a mixed effects model [time (LBNP stage) × trial]. LBNP tolerance was not different between trials (fentanyl: 647 ± 386 vs. placebo: 676 ± 295 mmHg·min, P = 0.61, Cohen's d = 0.08). Increases in MSNA burst frequency (time: P < 0.01, trial: P = 0.29, interaction: P = 0.94) and reductions in mean BP (time: P < 0.01, trial: P = 0.50, interaction: P = 0.16) during LBNP were not different between trials. These data, the first to be obtained in conscious humans, demonstrate that administration of an analgesic dose of fentanyl does not alter MSNA or BP during profound central hypovolemia, nor does it impair tolerance to this simulated hemorrhagic insult.
Collapse
Affiliation(s)
- Mu Huang
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas,2Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph C. Watso
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas,3Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luke N. Belval
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas,3Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Frank A. Cimino
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Mads Fischer
- 2Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas,4Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Caitlin P. Jarrard
- 2Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph M. Hendrix
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas,5Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carmen Hinojosa Laborde
- 6United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas
| | - Craig G. Crandall
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas,3Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG. Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 2021; 600:15-39. [PMID: 34842285 DOI: 10.1113/jp281058] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding the contribution of the autonomic nervous system to cerebral blood flow (CBF) control is challenging, and interpretations are unclear. The identification of calcium channels and adrenoreceptors within cerebral vessels has led to common misconceptions that the function of these receptors and actions mirror those of the peripheral vasculature. This review outlines the fundamental differences and complex actions of cerebral autonomic activation compared with the peripheral circulation. Anatomical differences, including the closed nature of the cerebrovasculature, and differential adrenoreceptor subtypes, density, distribution and sensitivity, provide evidence that measures on peripheral sympathetic nerve activity cannot be extrapolated to the cerebrovasculature. Cerebral sympathetic nerve activity seems to act opposingly to the peripheral circulation, mediated at least in part by changes in intracranial pressure and cerebral blood volume. Additionally, heterogeneity in cerebral adrenoreceptor distribution highlights region-specific autonomic regulation of CBF. Compensatory chemo- and autoregulatory responses throughout the cerebral circulation, and interactions with parasympathetic nerve activity are unique features to the cerebral circulation. This crosstalk between sympathetic and parasympathetic reflexes acts to ensure adequate perfusion of CBF to rising and falling perfusion pressures, optimizing delivery of oxygen and nutrients to the brain, while attempting to maintain blood volume and intracranial pressure. Herein, we highlight the distinct similarities and differences between autonomic control of cerebral and peripheral blood flow, and the regional specificity of sympathetic and parasympathetic regulation within the cerebrovasculature. Future research directions are outlined with the goal to further our understanding of autonomic control of CBF in humans.
Collapse
Affiliation(s)
- Jodie L Koep
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Anderson GK, Rosenberg AJ, Barnes HJ, Bird J, Pentz B, Byman BRM, Jendzjowsky N, Wilson RJA, Day TA, Rickards CA. Peaks and valleys: oscillatory cerebral blood flow at high altitude protects cerebral tissue oxygenation. Physiol Meas 2021; 42:10.1088/1361-6579/ac0593. [PMID: 34038879 PMCID: PMC11046575 DOI: 10.1088/1361-6579/ac0593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023]
Abstract
Introduction.Oscillatory patterns in arterial pressure and blood flow (at ∼0.1 Hz) may protect tissue oxygenation during conditions of reduced cerebral perfusion and/or hypoxia. We hypothesized that inducing oscillations in arterial pressure and cerebral blood flow at 0.1 Hz would protect cerebral blood flow and cerebral tissue oxygen saturation during exposure to a combination of simulated hemorrhage and sustained hypobaric hypoxia.Methods.Eight healthy human subjects (4 male, 4 female; 30.1 ± 7.6 year) participated in two experiments at high altitude (White Mountain, California, USA; altitude, 3800 m) following rapid ascent and 5-7 d of acclimatization: (1) static lower body negative pressure (LBNP, control condition) was used to induce central hypovolemia by reducing chamber pressure to -60 mmHg for 10 min(0 Hz), and; (2) oscillatory LBNP where chamber pressure was reduced to -60 mmHg, then oscillated every 5 s between -30 mmHg and -90 mmHg for 10 min(0.1 Hz). Measurements included arterial pressure, internal carotid artery (ICA) blood flow, middle cerebral artery velocity (MCAv), and cerebral tissue oxygen saturation (ScO2).Results.Forced 0.1 Hz oscillations in mean arterial pressure and mean MCAv were accompanied by a protection of ScO2(0.1 Hz: -0.67% ± 1.0%; 0 Hz: -4.07% ± 2.0%;P = 0.01). However, the 0.1 Hz profile did not protect against reductions in ICA blood flow (0.1 Hz: -32.5% ± 4.5%; 0 Hz: -19.9% ± 8.9%;P = 0.24) or mean MCAv (0.1 Hz: -18.5% ± 3.4%; 0 Hz: -15.3% ± 5.4%;P = 0.16).Conclusions.Induced oscillatory arterial pressure and cerebral blood flow led to protection of ScO2during combined simulated hemorrhage and sustained hypoxia. This protection was not associated with the preservation of cerebral blood flow suggesting preservation of ScO2may be due to mechanisms occurring within the microvasculature.
Collapse
Affiliation(s)
- Garen K Anderson
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
- Co-first authorship
| | - Alexander J Rosenberg
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
- Co-first authorship
| | - Haley J Barnes
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Jordan Bird
- Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Brandon Pentz
- Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Britta R M Byman
- Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Nicholas Jendzjowsky
- Institute of Respiratory Medicine & Exercise Physiology, The Lundquist Institute at UCLA Harbor Medical, Torrance, CA, United States of America
| | - Richard J A Wilson
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| |
Collapse
|
13
|
Rosenberg AJ, Kay VL, Anderson GK, Luu ML, Barnes HJ, Sprick JD, Rickards CA. The impact of acute central hypovolemia on cerebral hemodynamics: does sex matter? J Appl Physiol (1985) 2021; 130:1786-1797. [PMID: 33914663 DOI: 10.1152/japplphysiol.00499.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trauma-induced hemorrhage is a leading cause of disability and death due, in part, to impaired perfusion and oxygenation of the brain. It is unknown if cerebrovascular responses to blood loss are differentiated based on sex. We hypothesized that compared to males, females would have reduced tolerance to simulated hemorrhage induced by maximal lower body negative pressure (LBNP), and this would be associated with an earlier reduction in cerebral blood flow and cerebral oxygenation. Healthy young males (n = 29, 26 ± 4 yr) and females (n = 23, 27 ± 5 yr) completed a step-wise LBNP protocol to presyncope. Mean arterial pressure (MAP), stroke volume (SV), middle cerebral artery velocity (MCAv), end-tidal CO2 (etCO2), and cerebral oxygen saturation (ScO2) were measured continuously. Unexpectedly, tolerance to LBNP was similar between the sexes (males, 1,604 ± 68 s vs. females, 1,453 ± 78 s; P = 0.15). Accordingly, decreases (%Δ) in MAP, SV, MCAv, and ScO2 were similar between males and females throughout LBNP and at presyncope (P ≥ 0.20). Interestingly, although decreases in etCO2 were similar between the sexes throughout LBNP (P = 0.16), at presyncope, the %Δ etCO2 from baseline was greater in males compared to females (-30.8 ± 2.6% vs. -21.3 ± 3.0%; P = 0.02). Contrary to our hypothesis, sex does not influence tolerance, or the central or cerebral hemodynamic responses to simulated hemorrhage. However, the etCO2 responses at presyncope do suggest potential sex differences in cerebral vascular sensitivity to CO2 during central hypovolemia.NEW & NOTEWORTHY Tolerance and cerebral blood velocity responses to simulated hemorrhage (elicited by lower body negative pressure) were similar between male and female subjects. Interestingly, the change in etCO2 from baseline was greater in males compared to females at presyncope, suggesting potential sex differences in cerebral vascular sensitivity to CO2 during simulated hemorrhage. These findings may facilitate development of individualized therapeutic interventions to improve survival from hemorrhagic injuries in both men and women.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois
| | - Victoria L Kay
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Garen K Anderson
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - My-Loan Luu
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Haley J Barnes
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Justin D Sprick
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Caroline A Rickards
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
14
|
Convertino VA, Koons NJ, Suresh MR. Physiology of Human Hemorrhage and Compensation. Compr Physiol 2021; 11:1531-1574. [PMID: 33577122 DOI: 10.1002/cphy.c200016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemorrhage is a leading cause of death following traumatic injuries in the United States. Much of the previous work in assessing the physiology and pathophysiology underlying blood loss has focused on descriptive measures of hemodynamic responses such as blood pressure, cardiac output, stroke volume, heart rate, and vascular resistance as indicators of changes in organ perfusion. More recent work has shifted the focus toward understanding mechanisms of compensation for reduced systemic delivery and cellular utilization of oxygen as a more comprehensive approach to understanding the complex physiologic changes that occur following and during blood loss. In this article, we begin with applying dimensional analysis for comparison of animal models, and progress to descriptions of various physiological consequences of hemorrhage. We then introduce the complementary side of compensation by detailing the complexity and integration of various compensatory mechanisms that are activated from the initiation of hemorrhage and serve to maintain adequate vital organ perfusion and hemodynamic stability in the scenario of reduced systemic delivery of oxygen until the onset of hemodynamic decompensation. New data are introduced that challenge legacy concepts related to mechanisms that underlie baroreflex functions and provide novel insights into the measurement of the integrated response of compensation to central hypovolemia known as the compensatory reserve. The impact of demographic and environmental factors on tolerance to hemorrhage is also reviewed. Finally, we describe how understanding the physiology of compensation can be translated to applications for early assessment of the clinical status and accurate triage of hypovolemic and hypotensive patients. © 2021 American Physiological Society. Compr Physiol 11:1531-1574, 2021.
Collapse
Affiliation(s)
- Victor A Convertino
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Natalie J Koons
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Mithun R Suresh
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| |
Collapse
|
15
|
Rosenberg AJ, Kay VL, Anderson GK, Sprick JD, Rickards CA. A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure. J Appl Physiol (1985) 2021; 130:380-389. [PMID: 33211600 DOI: 10.1152/japplphysiol.00230.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lower body negative pressure (LBNP) elicits central hypovolemia, and it has been used to simulate the cardiovascular and cerebrovascular responses to hemorrhage in humans. LBNP protocols commonly use progressive stepwise reductions in chamber pressure for specific time periods. However, continuous ramp LBNP protocols have also been utilized to simulate the continuous nature of most bleeding injuries. The aim of this study was to compare tolerance and hemodynamic responses between these two LBNP profiles. Healthy human subjects (N = 19; age, 27 ± 4 y; 7 female/12 male) completed a 1) step LBNP protocol (5-min steps) and 2) continuous ramp LBNP protocol (3 mmHg/min), both to presyncope. Heart rate (HR), mean arterial pressure (MAP), stroke volume (SV), middle and posterior cerebral artery velocity (MCAv and PCAv), cerebral oxygen saturation (ScO2), and end-tidal CO2 (etCO2) were measured. LBNP tolerance, via the cumulative stress index (CSI, summation of chamber pressure × time at each pressure), and hemodynamic responses were compared between the two protocols. The CSI (step: 911 ± 97 mmHg/min vs. ramp: 823 ± 83 mmHg/min; P = 0.12) and the magnitude of central hypovolemia (%Δ SV, step: -54.6% ± 2.6% vs. ramp: -52.1% ± 2.8%; P = 0.32) were similar between protocols. Although there were no differences between protocols for the maximal %Δ HR (P = 0.88), the %Δ MAP during the step protocol was attenuated (P = 0.05), and the reductions in MCAv, PCAv, ScO2, and etCO2 were greater (P ≤ 0.08) when compared with the ramp protocol at presyncope. These results indicate that when comparing cardiovascular responses to LBNP across different laboratories, the specific pressure profile must be considered as a potential confounding factor.NEW & NOTEWORTHY Ramp lower body negative pressure (LBNP) protocols have been utilized to simulate the continuous nature of bleeding injuries. However, it unknown if tolerance or the physiological responses to ramp LBNP are similar to the more common stepwise LBNP protocol. We report similar tolerance between the two protocols, but the step protocol elicited a greater increase in cerebral oxygen extraction in the presence of reduced blood flow, presumably facilitating the matching of metabolic supply and demand.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Victoria L Kay
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Garen K Anderson
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Justin D Sprick
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Caroline A Rickards
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
16
|
Huang M, Watso JC, Moralez G, Cramer MN, Hendrix JM, Yoo JK, Badrov MB, Fu Q, Hinojosa-Laborde C, Crandall CG. Low-dose ketamine affects blood pressure, but not muscle sympathetic nerve activity, during progressive central hypovolemia without altering tolerance. J Physiol 2020; 598:5661-5672. [PMID: 33084081 DOI: 10.1113/jp280491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Haemorrhage is the leading cause of battlefield and civilian trauma deaths. Given that a haemorrhagic injury on the battlefield is almost always associated with pain, it is paramount that the administered pain medication does not disrupt the physiological mechanisms that are beneficial in defending against the haemorrhagic insult. Current guidelines from the US Army's Committee on Tactical Combat Casualty Care (CoTCCC) for the selection of pain medications administered to a haemorrhaging soldier are based upon limited scientific evidence, with the clear majority of supporting studies being conducted on anaesthetized animals. Specifically, the influence of low-dose ketamine, one of three analgesics employed in the pre-hospital setting by the US Army, on haemorrhagic tolerance in humans is unknown. For the first time in conscious males and females, the findings of the present study demonstrate that the administration of an analgesic dose of ketamine does not compromise tolerance to a simulated haemorrhagic insult. Increases in muscle sympathetic nerve activity during progressive lower-body negative pressure were not different between trials. Despite the lack of differences for muscle sympathetic nerve activity responses, mean blood pressure and heart rate were higher during moderate hypovolemia after ketamine vs. placebo administration. ABSTRACT Haemorrhage is the leading cause of battlefield and civilian trauma deaths. For a haemorrhaging soldier, there are several pain medications (e.g. ketamine) recommended for use in the prehospital, field setting. However, the data to support these recommendations are primarily limited to studies in animals. Therefore, it is unknown whether ketamine adversely affects physiological mechanisms responsible for maintenance of arterial blood pressure (BP) during haemorrhage in humans. In humans, ketamine has been demonstrated to raise resting BP, although it has not been studied with the concomitant central hypovolemia that occurs during haemorrhage. Thus, the present study aimed to test the hypothesis that ketamine does not impair haemorrhagic tolerance in humans. Thirty volunteers (15 females) participated in this double-blinded, randomized, placebo-controlled trial. A pre-syncopal limited progressive lower-body negative pressure (LBNP; a validated model for simulating haemorrhage) test was conducted following the administration of ketamine (20 mg) or placebo (saline). Tolerance was quantified as a cumulative stress index and compared between trials using a paired, two-tailed t test. We compared muscle sympathetic nerve activity (MSNA; microneurography), beat-to-beat BP (photoplethysmography) and heart rate (electrocardiogram) responses during the LBNP test using a mixed effects model (time [LBNP stage] × drug). Tolerance to the LBNP test was not different between trials (Ketamine: 635 ± 391 vs. Placebo: 652 ± 360 mmHg‧min, p = 0.77). Increases in MSNA burst frequency (time: P < 0.01, trial: p = 0.27, interaction: p = 0.39) during LBNP stages were no different between trials. Despite the lack of differences for MSNA responses, mean BP (time: P < 0.01, trial: P < 0.01, interaction: p = 0.01) and heart rate (time: P < 0.01, trial: P < 0.01, interaction: P < 0.01) were higher during moderate hypovolemia after ketamine vs. placebo administration (P < 0.05 for all, post hoc), but not at the end of LBNP. These data, which are the first to be obtained in conscious humans, demonstrate that the administration of low-dose ketamine does not impair tolerance to simulated haemorrhage or mechanisms responsible for maintenance of BP.
Collapse
Affiliation(s)
- Mu Huang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gilbert Moralez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew N Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Present address: Defense Research and Development Canada-Toronto Research Centre, Toronto, ON, Canada
| | - Joseph M Hendrix
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark B Badrov
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Present address: University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
The effect of hypercapnia on regional cerebral blood flow regulation during progressive lower-body negative pressure. Eur J Appl Physiol 2020; 121:339-349. [PMID: 33089364 DOI: 10.1007/s00421-020-04506-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Previous work indicates that dynamic cerebral blood flow (CBF) regulation is impaired during hypercapnia; however, less is known about the impact of resting hypercapnia on regional CBF regulation during hypovolemia. Furthermore, there is disparity within the literature on whether differences between anterior and posterior CBF regulation exist during physiological stressors. We hypothesized: (a) lower-body negative pressure (LBNP)-induced reductions in cerebral blood velocity (surrogate for CBF) would be more pronounced during hypercapnia, indicating impaired CBF regulation; and (b) the anterior and posterior cerebral circulations will exhibit similar responses to LBNP. METHODS In 12 healthy participants (6 females), heart rate (electrocardiogram), mean arterial pressure (MAP; finger photoplethosmography), partial pressure of end-tidal carbon dioxide (PETCO2), middle cerebral artery blood velocity (MCAv) and posterior cerebral artery blood velocity (PCAv; transcranial Doppler ultrasound) were measured. Cerebrovascular conductance (CVC) was calculated as MCAv or PCAv indexed to MAP. Two randomized incremental LBNP protocols were conducted (- 20, - 40, - 60 and - 80 mmHg; three-minute stages), during coached normocapnia (i.e., room air), and inspired 5% hypercapnia (~ + 7 mmHg PETCO2 in normoxia). RESULTS The main findings were: (a) static CBF regulation in the MCA and PCA was similar during normocapnic and hypercapnic LBNP trials, (b) MCA and PCA CBV and CVC responded similarly to LBNP during normocapnia, but (c) PCAv and PCA CVC were reduced to a greater extent at - 60 mmHg LBNP (P = 0.029; P < 0.001) during hypercapnia. CONCLUSION CBF regulation during hypovolemia was preserved in hypercapnia, and regional differences in cerebrovascular control may exist during superimposed hypovolemia and hypercapnia.
Collapse
|
18
|
Gerega A, Wojtkiewicz S, Sawosz P, Kacprzak M, Toczylowska B, Bejm K, Skibniewski F, Sobotnicki A, Gacek A, Maniewski R, Liebert A. Assessment of the brain ischemia during orthostatic stress and lower body negative pressure in air force pilots by near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1043-1060. [PMID: 32133236 PMCID: PMC7041453 DOI: 10.1364/boe.377779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 05/26/2023]
Abstract
A methodology for the assessment of the cerebral hemodynamic reaction to normotensive hypovolemia, reduction in cerebral perfusion and orthostatic stress leading to ischemic hypoxia and reduced muscular tension is presented. Most frequently, the pilots of highly maneuverable aircraft are exposed to these phenomena. Studies were carried out using the system consisting of a chamber that generates low pressure around the lower part of the body - LBNP (lower body negative pressure) placed on the tilt table. An in-house developed 6-channel NIRS system operating at 735 and 850 nm was used in order to assess the oxygenation of the cerebral cortex, based on measurements of diffusely reflected light in reflectance geometry. The measurements were carried out on a group of 12 active pilots and cadets of the Polish Air Force Academy and 12 healthy volunteers. The dynamics of changes in cerebral oxygenation was evaluated as a response to LBNP stimuli with a simultaneous rapid change of the tilt table angle. Parameters based on calculated changes of total hemoglobin concentration were proposed allowing to evaluate differences in reactions observed in control subjects and pilots/cadets. The results of orthogonal partial least squares-discriminant analysis based on these parameters show that the subjects can be classified into their groups with 100% accuracy.
Collapse
Affiliation(s)
- Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Bejm
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Franciszek Skibniewski
- Technical Department of Aeromedical Research and Flight Simulators, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Aleksander Sobotnicki
- Department of Research and Development, Institute of Medical Technology and Equipment, Zabrze, Poland
| | - Adam Gacek
- Department of Research and Development, Institute of Medical Technology and Equipment, Zabrze, Poland
| | - Roman Maniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Ogoh S, Sato K, Abreu S, Denise P, Normand H. Arterial and venous cerebral blood flow responses to long‐term head‐down bed rest in male volunteers. Exp Physiol 2019; 105:44-52. [DOI: 10.1113/ep088057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering Toyo University Kawagoe‐Shi Saitama Japan
| | - Kohei Sato
- Tokyo Gakugei University Koganei Tokyo Japan
| | - Steven Abreu
- Normandie Université, Unicaen; Inserm Comete GIP Cyceron Chu Caen France
| | - Pierre Denise
- Normandie Université, Unicaen; Inserm Comete GIP Cyceron Chu Caen France
| | - Hervé Normand
- Normandie Université, Unicaen; Inserm Comete GIP Cyceron Chu Caen France
| |
Collapse
|
20
|
Anderson GK, Sprick JD, Park FS, Rosenberg AJ, Rickards CA. Responses of cerebral blood velocity and tissue oxygenation to low-frequency oscillations during simulated haemorrhagic stress in humans. Exp Physiol 2019; 104:1190-1201. [PMID: 31090115 PMCID: PMC11022286 DOI: 10.1113/ep087358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/14/2019] [Indexed: 04/19/2024]
Abstract
NEW FINDINGS What is the central question of this study? Do low-frequency oscillations in arterial pressure and cerebral blood velocity protect cerebral blood velocity and oxygenation during central hypovolaemia? What is the main finding and its importance? Low-frequency oscillations in arterial pressure and cerebral blood velocity attenuate reductions in cerebral oxygen saturation but do not protect absolute cerebral blood velocity during central hypovolaemia. This finding indicates the potential importance of haemodynamic oscillations in maintaining cerebral oxygenation and therefore viability of tissues during challenges to cerebral blood flow and oxygen delivery. ABSTRACT Tolerance to both real and simulated haemorrhage varies between individuals. Exaggerated low-frequency (∼0.1 Hz) oscillations in mean arterial pressure and brain blood flow [indexed via middle cerebral artery velocity (MCAv)] have been associated with improved tolerance to reduced central blood volume. The mechanism for this association has not been explored. We hypothesized that inducing low-frequency oscillations in arterial pressure and cerebral blood velocity would attenuate reductions in cerebral blood velocity and oxygenation during simulated haemorrhage. Fourteen subjects (11 men and three women) were exposed to oscillatory (0.1 and 0.05 Hz) and non-oscillatory (0 Hz) lower-body negative pressure profiles with an average chamber pressure of -60 mmHg (randomized and counterbalanced order). Measurements included arterial pressure and stroke volume via finger photoplethysmography, MCAv via transcranial Doppler ultrasound, and cerebral oxygenation of the frontal lobe via near-infrared spectroscopy. Tolerance was higher during the two oscillatory profiles compared with the 0 Hz profile (0.05 Hz, P = 0.04; 0.1 Hz, P = 0.09), accompanied by attenuated reductions in stroke volume (P < 0.001) and cerebral oxygenation of the frontal lobe (P ≤ 0.02). No differences were observed between profiles for reductions in mean arterial pressure (P = 0.17) and MCAv (P = 0.30). In partial support of our hypothesis, cerebral oxygenation, but not cerebral blood velocity, was protected during the oscillatory profiles. Interestingly, more subjects tolerated the oscillatory profiles compared with the static 0 Hz profile, despite similar arterial pressure responses. These findings emphasize the potential importance of haemodynamic oscillations in maintaining perfusion and oxygenation of cerebral tissues during haemorrhagic stress.
Collapse
Affiliation(s)
- Garen K. Anderson
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Justin D. Sprick
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Flora S. Park
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Alexander J. Rosenberg
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Caroline A. Rickards
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
21
|
Rickards CA. Vive la résistance! The role of inspiratory resistance breathing on cerebral blood flow. Respir Physiol Neurobiol 2019; 265:76-82. [DOI: 10.1016/j.resp.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/22/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
|
22
|
Hisdal J, Landsverk SA, Hoff IE, Hagen OA, Kirkebøen KA, Høiseth LØ. Associations between changes in precerebral blood flow and cerebral oximetry in the lower body negative pressure model of hypovolemia in healthy volunteers. PLoS One 2019; 14:e0219154. [PMID: 31251778 PMCID: PMC6599124 DOI: 10.1371/journal.pone.0219154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Reductions in cerebral oxygen saturation (ScO2) measured by near infra-red spectroscopy have been found during compensated hypovolemia in the lower body negative pressure (LBNP)-model, which may reflect reduced cerebral blood flow. However, ScO2 may also be contaminated from extracranial (scalp) tissues, mainly supplied by the external carotid artery (ECA), and it is possible that a ScO2 reduction during hypovolemia is caused by reduced scalp, and not cerebral, blood flow. The aim of the present study was to explore the associations between blood flow in precerebral arteries and ScO2 during LBNP-induced hypovolemia. Twenty healthy volunteers were exposed to LBNP 20, 40, 60 and 80 mmHg. Blood flow in the internal carotid artery (ICA), ECA and vertebral artery (VA) was measured by Doppler ultrasound. Stroke volume for calculating cardiac output was measured by suprasternal Doppler. Associations of changes within subjects were examined using linear mixed-effects regression models. LBNP reduced cardiac output, ScO2 and ICA and ECA blood flow. Changes in flow in both ICA and ECA were associated with changes in ScO2 and cardiac output. Flow in the VA did not change during LBNP and changes in VA flow were not associated with changes in ScO2 or cardiac output. During experimental compensated hypovolemia in healthy, conscious subjects, a reduced ScO2 may thus reflect a reduction in both cerebral and extracranial blood flow.
Collapse
Affiliation(s)
- Jonny Hisdal
- Section of Vascular Investigations, Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Aslak Landsverk
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Ingrid Elise Hoff
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Norwegian Air Ambulance Foundation, Oslo, Norway
| | - Ove Andreas Hagen
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Knut Arvid Kirkebøen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Lars Øivind Høiseth
- Section of Vascular Investigations, Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
23
|
Li C, Chiluwal A, Afridi A, Chaung W, Powell K, Yang WL, Wang P, Narayan RK. Trigeminal Nerve Stimulation: A Novel Method of Resuscitation for Hemorrhagic Shock. Crit Care Med 2019; 47:e478-e484. [PMID: 30889027 DOI: 10.1097/ccm.0000000000003735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine if trigeminal nerve stimulation can ameliorate the consequences of acute blood loss and improve survival after severe hemorrhagic shock. DESIGN Animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Severe hemorrhagic shock was induced in rats by withdrawing blood until the mean arterial blood pressure reached 27 ± 1 mm Hg for the first 5 minutes and then maintained at 27 ± 2 mm Hg for 30 minutes. The rats were randomly assigned to either control, vehicle, or trigeminal nerve stimulation treatment groups. The effects of trigeminal nerve stimulation on survival rate, autonomic nervous system activity, hemodynamics, brain perfusion, catecholamine release, and systemic inflammation after severe hemorrhagic shock in the absence of fluid resuscitation were analyzed. MEASUREMENTS AND MAIN RESULTS Trigeminal nerve stimulation significantly increased the short-term survival of rats following severe hemorrhagic shock in the absence of fluid resuscitation. The survival rate at 60 minutes was 90% in trigeminal nerve stimulation treatment group whereas 0% in control group (p < 0.001). Trigeminal nerve stimulation elicited strong synergistic coactivation of the sympathetic and parasympathetic nervous system as measured by heart rate variability. Without volume expansion with fluid resuscitation, trigeminal nerve stimulation significantly attenuated sympathetic hyperactivity paralleled by increase in parasympathetic tone, delayed hemodynamic decompensation, and improved brain perfusion following severe hemorrhagic shock. Furthermore, trigeminal nerve stimulation generated sympathetically mediated low-frequency oscillatory patterns of systemic blood pressure associated with an increased tolerance to central hypovolemia and increased levels of circulating norepinephrine levels. Trigeminal nerve stimulation also decreased systemic inflammation compared with the vehicle. CONCLUSIONS Trigeminal nerve stimulation was explored as a novel resuscitation strategy in an animal model of hemorrhagic shock. The results of this study showed that the stimulation of trigeminal nerve modulates both sympathetic and parasympathetic nervous system activity to activate an endogenous pressor response, improve cerebral perfusion, and decrease inflammation, thereby improving survival.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Amrit Chiluwal
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Adil Afridi
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Wayne Chaung
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Keren Powell
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Raj K Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| |
Collapse
|
24
|
Park FS, Kay VL, Sprick JD, Rosenberg AJ, Anderson GK, Mallet RT, Rickards CA. Hemorrhage simulated by lower body negative pressure provokes an oxidative stress response in healthy young adults. Exp Biol Med (Maywood) 2019; 244:272-278. [PMID: 30727766 DOI: 10.1177/1535370219828706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT We characterize the systemic oxidative stress response in young, healthy human subjects with exposure to simulated hemorrhage via application of lower body negative pressure (LBNP). Prior work has demonstrated that LBNP and actual blood loss evoke similar hemodynamic and immune responses (i.e. white blood cell count), but it is unknown whether LBNP elicits oxidative stress resembling that produced by blood loss. We show that LBNP induces a 29% increase in F2-isoprostanes, a systemic marker of oxidative stress. The findings of this investigation may have important implications for the study of hemorrhage using LBNP, including future assessments of targeted interventions that may reduce oxidative stress, such as novel fluid resuscitation approaches.
Collapse
Affiliation(s)
- Flora S Park
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Victoria L Kay
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Justin D Sprick
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA.,2 Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander J Rosenberg
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Garen K Anderson
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Robert T Mallet
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Caroline A Rickards
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| |
Collapse
|
25
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol Rev 2019; 99:807-851. [PMID: 30540225 DOI: 10.1152/physrev.00006.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review presents lower body negative pressure (LBNP) as a unique tool to investigate the physiology of integrated systemic compensatory responses to altered hemodynamic patterns during conditions of central hypovolemia in humans. An early review published in Physiological Reviews over 40 yr ago (Wolthuis et al. Physiol Rev 54: 566-595, 1974) focused on the use of LBNP as a tool to study effects of central hypovolemia, while more than a decade ago a review appeared that focused on LBNP as a model of hemorrhagic shock (Cooke et al. J Appl Physiol (1985) 96: 1249-1261, 2004). Since then there has been a great deal of new research that has applied LBNP to investigate complex physiological responses to a variety of challenges including orthostasis, hemorrhage, and other important stressors seen in humans such as microgravity encountered during spaceflight. The LBNP stimulus has provided novel insights into the physiology underlying areas such as intolerance to reduced central blood volume, sex differences concerning blood pressure regulation, autonomic dysfunctions, adaptations to exercise training, and effects of space flight. Furthermore, approaching cardiovascular assessment using prediction models for orthostatic capacity in healthy populations, derived from LBNP tolerance protocols, has provided important insights into the mechanisms of orthostatic hypotension and central hypovolemia, especially in some patient populations as well as in healthy subjects. This review also presents a concise discussion of mathematical modeling regarding compensatory responses induced by LBNP. Given the diverse applications of LBNP, it is to be expected that new and innovative applications of LBNP will be developed to explore the complex physiological mechanisms that underline health and disease.
Collapse
Affiliation(s)
- Nandu Goswami
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Andrew Philip Blaber
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Helmut Hinghofer-Szalkay
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Victor A Convertino
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
26
|
Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Drapeau A, Smirl JD, Bailey DM, Brassard P. Dynamic cerebral autoregulation is attenuated in young fit women. Physiol Rep 2019; 7:e13984. [PMID: 30652420 PMCID: PMC6335382 DOI: 10.14814/phy2.13984] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Young women exhibit higher prevalence of orthostatic hypotension with presyncopal symptoms compared to men. These symptoms could be influenced by an attenuated ability of the cerebrovasculature to respond to rapid blood pressure (BP) changes [dynamic cerebral autoregulation (dCA)]. The influence of sex on dCA remains unclear. dCA in 11 fit women (25 ± 2 years) and 11 age-matched men (24 ± 1 years) was compared using a multimodal approach including a sit-to-stand (STS) and forced BP oscillations (repeated squat-stand performed at 0.05 and 0.10 Hz). Prevalence of initial orthostatic hypotension (IOH; decrease in systolic ≥ 40 mmHg and/or diastolic BP ≥ 20 mmHg) during the first 15 sec of STS was determined as a functional outcome. In women, the decrease in mean middle cerebral artery blood velocity (MCAvmean ) following the STS was greater (-20 ± 8 vs. -11 ± 7 cm sec-1 ; P = 0.018) and the onset of the regulatory change (time lapse between the beginning of the STS and the increase in the conductance index (MCAvmean /mean arterial pressure) was delayed (P = 0.007). Transfer function analysis gain during 0.05 Hz squat-stand was ~48% higher in women (6.4 ± 1.3 vs. 3.8 ± 2.3 cm sec-1 mmHg-1 ; P = 0.017). Prevalence of IOH was comparable between groups (women: 4/9 vs. men: 5/9, P = 0.637). These results indicate the cerebrovasculature of fit women has an attenuated ability to react to rapid changes in BP in the face of preserved orthostasis, which could be related to higher resting cerebral blood flow allowing women to better face transient hypotension.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Kevan Rahimaly
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Sarah Imhoff
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Myriam Paquette
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Olivier Le Blanc
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Simon Malenfant
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Audrey Drapeau
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Jonathan D. Smirl
- Concussion Research LaboratoryHealth and Exercise SciencesUniversity of British Columbia OkanaganBritish ColumbiaCanada
| | - Damian M. Bailey
- Neurovascular Research LaboratoryFaculty of Life Sciences and EducationUniversity of South WalesSouth WalesUnited Kingdom
| | - Patrice Brassard
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| |
Collapse
|
27
|
Washio T, Vranish JR, Kaur J, Young BE, Katayama K, Fadel PJ, Ogoh S. Acute reduction in posterior cerebral blood flow following isometric handgrip exercise is augmented by lower body negative pressure. Physiol Rep 2018; 6:e13886. [PMID: 30338667 PMCID: PMC6194212 DOI: 10.14814/phy2.13886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 01/31/2023] Open
Abstract
The mechanism(s) for the increased occurrence of a grayout or blackout, syncope, immediately after heavy resistance exercise are unclear. It is well-known that orthostatic stress increases the occurrence of postexercise syncope. In addition, previous findings have suggested that hypo-perfusion, especially in the posterior cerebral circulation rather than anterior cerebral circulation, may be associated with the occurrence of syncope. Herein, we hypothesized that the postexercise decrease in posterior, but not anterior, cerebral blood flow (CBF) would be greater during orthostatic stress. Nine healthy subjects performed 3-min isometric handgrip (HG) at 30% maximum voluntary contraction without (CONTROL) and during lower body negative pressure (LBNP; -40 Torr) while vertebral artery (VA) blood flow, as an index of posterior CBF, and middle cerebral artery blood velocity (MCAv), as an index of anterior CBF, were measured. Immediately after HG (0 to 15 sec of recovery phase), mean arterial pressure decreased but there was no difference in this reduction between CONTROL and LBNP conditions (-15.4 ± 4.0% and -17.0 ± 6.2%, P = 0.42). Similarly, MCAv decreased following exercise and was unaffected by the application of LBNP (P = 0.22). In contrast, decreases in VA blood flow immediately following HG during LBNP were significantly greater compared to CONTROL condition (-24.2 ± 9.5% and -13.4 ± 6.6%, P = 0.005). These findings suggest that the decrease in posterior CBF immediately following exercise was augmented by LBNP, whereas anterior CBF appeared unaffected. Thus, the posterior cerebral circulation may be more sensitive to orthostatic stress during the postexercise period.
Collapse
Affiliation(s)
- Takuro Washio
- Department of Biomedical EngineeringToyo UniversityKawagoe‐shiSaitamaJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | | | - Jasdeep Kaur
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| | - Benjamin E. Young
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| | - Keisho Katayama
- Research Center of HealthPhysical Fitness and SportsNagoya UniversityNagoyaJapan
| | - Paul J. Fadel
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| | - Shigehiko Ogoh
- Department of Biomedical EngineeringToyo UniversityKawagoe‐shiSaitamaJapan
| |
Collapse
|
28
|
van Helmond N, Johnson BD, Holbein WW, Petersen‐Jones HG, Harvey RE, Ranadive SM, Barnes JN, Curry TB, Convertino VA, Joyner MJ. Effect of acute hypoxemia on cerebral blood flow velocity control during lower body negative pressure. Physiol Rep 2018; 6:e13594. [PMID: 29464923 PMCID: PMC5820424 DOI: 10.14814/phy2.13594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/24/2022] Open
Abstract
The ability to maintain adequate cerebral blood flow and oxygenation determines tolerance to central hypovolemia. We tested the hypothesis that acute hypoxemia during simulated blood loss in humans would cause impairments in cerebral blood flow control. Ten healthy subjects (32 ± 6 years, BMI 27 ± 2 kg·m-2 ) were exposed to stepwise lower body negative pressure (LBNP, 5 min at 0, -15, -30, and -45 mmHg) during both normoxia and hypoxia (Fi O2 = 0.12-0.15 O2 titrated to an SaO2 of ~85%). Physiological responses during both protocols were expressed as absolute changes from baseline, one subject was excluded from analysis due to presyncope during the first stage of LBNP during hypoxia. LBNP induced greater reductions in mean arterial pressure during hypoxia versus normoxia (MAP, at -45 mmHg: -20 ± 3 vs. -5 ± 3 mmHg, P < 0.01). Despite differences in MAP, middle cerebral artery velocity responses (MCAv) were similar between protocols (P = 0.41) due to increased cerebrovascular conductance index (CVCi) during hypoxia (main effect, P = 0.04). Low frequency MAP (at -45 mmHg: 17 ± 5 vs. 0 ± 5 mmHg2 , P = 0.01) and MCAv (at -45 mmHg: 4 ± 2 vs. -1 ± 1 cm·s-2 , P = 0.04) spectral power density, as well as low frequency MAP-mean MCAv transfer function gain (at -30 mmHg: 0.09 ± 0.06 vs. -0.07 ± 0.06 cm·s-1 ·mmHg-1 , P = 0.04) increased more during hypoxia versus normoxia. Contrary to our hypothesis, these findings support the notion that cerebral blood flow control is not impaired during exposure to acute hypoxia and progressive central hypovolemia despite lower MAP as a result of compensated increases in cerebral conductance and flow variability.
Collapse
Affiliation(s)
| | - Blair D. Johnson
- Center for Research and Education in Special EnvironmentsDepartment of Exercise and Nutrition SciencesUniversity at BuffaloBuffaloNew York
| | | | | | - Ronée E. Harvey
- Mayo Clinic School of Medicine and ScienceMayo ClinicRochesterMinnesota
| | | | - Jill N. Barnes
- Department of KinesiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | | | - Victor A. Convertino
- US Army Battlefield Health & Trauma Center for Human Integrative PhysiologyFort Sam HoustonTexas
| | | |
Collapse
|
29
|
Tymko MM, Rickards CA, Skow RJ, Ingram-Cotton NC, Howatt MK, Day TA. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations. Physiol Rep 2017; 4:4/17/e12957. [PMID: 27634108 PMCID: PMC5027361 DOI: 10.14814/phy2.12957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/14/2016] [Indexed: 11/24/2022] Open
Abstract
Steady-state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end-tidal carbon dioxide (PETCO2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head-up tilt (HUT; decreased central blood volume and intracranial pressure) and head-down tilt (HDT; increased central blood volume and intracranial pressure), and LBNP on cerebral blood flow (CBF) responses. We hypothesized that (a) cerebral blood velocity (CBV; an index of CBF) responses during LBNP would not change with HUT and HDT, and (b) CBV in the anterior cerebral circulation would decrease to a greater extent compared to posterior CBV during LBNP when controlling PETCO2 In 13 male participants, we measured CBV in the anterior (middle cerebral artery, MCAv) and posterior (posterior cerebral artery, PCAv) cerebral circulations using transcranial Doppler ultrasound during LBNP stress (-50 mmHg) in three body positions (45°HUT, supine, 45°HDT). PETCO2 was measured continuously and maintained at constant levels during LBNP through coached breathing. Our main findings were that (a) steady-state tilt had no effect on CBV responses during LBNP in both the MCA (P = 0.077) and PCA (P = 0.583), and (b) despite controlling for PETCO2, both the MCAv and PCAv decreased by the same magnitude during LBNP in HUT (P = 0.348), supine (P = 0.694), and HDT (P = 0.407). Here, we demonstrate that there are no differences in anterior and posterior circulations in response to LBNP in different body positions.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science University of British Columbia, Kelowna, Canada Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Centre, Fort Worth, Texas
| | - Rachel J Skow
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan C Ingram-Cotton
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| | - Michael K Howatt
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Kay VL, Sprick JD, Rickards CA. Cerebral oxygenation and regional cerebral perfusion responses with resistance breathing during central hypovolemia. Am J Physiol Regul Integr Comp Physiol 2017; 313:R132-R139. [PMID: 28539354 DOI: 10.1152/ajpregu.00385.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
Abstract
Resistance breathing improves tolerance to central hypovolemia induced by lower body negative pressure (LBNP), but this is not related to protection of anterior cerebral blood flow [indexed by mean middle cerebral artery velocity (MCAv)]. We hypothesized that inspiratory resistance breathing improves tolerance to central hypovolemia by maintaining cerebral oxygenation (ScO2), and protecting cerebral blood flow in the posterior cerebral circulation [indexed by posterior cerebral artery velocity (PCAv)]. Eight subjects (4 male/4 female) completed two experimental sessions of a presyncopal-limited LBNP protocol (3 mmHg/min onset rate) with and without (Control) resistance breathing via an impedance threshold device (ITD). ScO2 (via near-infrared spectroscopy), MCAv and PCAv (both via transcranial Doppler ultrasound), and arterial pressure (via finger photoplethysmography) were measured continuously. Hemodynamic responses were analyzed between the Control and ITD condition at baseline (T1) and the time representing 10 s before presyncope in the Control condition (T2). While breathing on the ITD increased LBNP tolerance from 1,506 ± 75 s to 1,704 ± 88 s (P = 0.003), both mean MCAv and mean PCAv were similar between conditions at T2 (P ≥ 0.46), and decreased by the same magnitude with and without ITD breathing (P ≥ 0.53). ScO2 also decreased by ~9% with or without ITD breathing at T2 (P = 0.97), and there were also no differences in deoxygenated (dHb) or oxygenated hemoglobin (HbO2) between conditions at T2 (P ≥ 0.43). There was no evidence that protection of regional cerebral blood velocity (i.e., anterior or posterior cerebral circulation) nor cerebral oxygen extraction played a key role in the determination of tolerance to central hypovolemia with resistance breathing.
Collapse
Affiliation(s)
- Victoria L Kay
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Justin D Sprick
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Caroline A Rickards
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
31
|
Rasmussen MB, Eriksen VR, Andresen B, Hyttel-Sørensen S, Greisen G. Quantifying cerebral hypoxia by near-infrared spectroscopy tissue oximetry: the role of arterial-to-venous blood volume ratio. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:25001. [PMID: 28152128 DOI: 10.1117/1.jbo.22.2.025001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Tissue oxygenation estimated by near-infrared spectroscopy (NIRS) is a volume-weighted mean of the arterial and venous hemoglobin oxygenation. In vivo validation assumes a fixed arterial-to-venous volume-ratio (AV-ratio). Regulatory cerebro-vascular mechanisms may change the AV-ratio. We used hypotension to investigate the influence of blood volume distribution on cerebral NIRS in a newborn piglet model. Hypotension was induced gradually by inflating a balloon-catheter in the inferior vena cava and the regional tissue oxygenation from NIRS ( rStO 2 , NIRS ) was then compared to a reference ( rStO 2 , COX ) calculated from superior sagittal sinus and aortic blood sample co-oximetry with a fixed AV-ratio. Apparent changes in the AV-ratio and cerebral blood volume (CBV) were also calculated. The mean arterial blood pressure (MABP) range was 14 to 82 mmHg. PaCO 2 and SaO 2 were stable during measurements. rStO 2 , NIRS mirrored only 25% (95% Cl: 21% to 28%, p < 0.001 ) of changes in rStO 2 , COX . Calculated AV-ratio increased with decreasing MABP (slope: ? 0.007 · mmHg ? 1
Collapse
Affiliation(s)
- Martin B Rasmussen
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, Copenhagen 2100, DenmarkbUniversity of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Vibeke R Eriksen
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, Copenhagen 2100, DenmarkbUniversity of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Bjørn Andresen
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Simon Hyttel-Sørensen
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Gorm Greisen
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, Copenhagen 2100, Denmark
| |
Collapse
|
32
|
Imhoff S, Malenfant S, Nadreau É, Poirier P, Bailey DM, Brassard P. Uncoupling between cerebral perfusion and oxygenation during incremental exercise in an athlete with postconcussion syndrome: a case report. Physiol Rep 2017; 5:5/2/e13131. [PMID: 28122826 PMCID: PMC5269417 DOI: 10.14814/phy2.13131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022] Open
Abstract
High-intensity exercise may pose a risk to patients with postconcussion syndrome (PCS) when symptomatic during exertion. The case of a paralympic athlete with PCS who experienced a succession of convulsion-awakening periods and reported a marked increase in postconcussion symptoms after undergoing a graded symptom-limited aerobic exercise protocol is presented. Potential mechanisms of cerebrovascular function failure are then discussed.
Collapse
Affiliation(s)
- Sarah Imhoff
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Simon Malenfant
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Quebec, Canada.,Pulmonary Hypertension Research Group, Quebec Heart and Lungs Institute Research Center, Laval University, Quebec City, Quebec, Canada
| | - Éric Nadreau
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Paul Poirier
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, South Wales, United Kingdom.,Sondes Moléculaires en Biologie, Laboratoire Chimie Provence UMR 6264 CNRS, Université de Provence Marseille, Marseille, France
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada .,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
33
|
Oh CS, Kim SH, Lee J, Rhee KY. Impact of remote ischaemic preconditioning on cerebral oxygenation during total knee arthroplasty. Int J Med Sci 2017; 14:115-122. [PMID: 28260986 PMCID: PMC5332839 DOI: 10.7150/ijms.17227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
Background: Ischaemic reperfusion injury (IRI) after tourniquet release during total knee arthroplasty (TKR) is related to postoperative cerebral complications. Remote ischaemic preconditioning (RIPC) is known to minimise IRI in previous studies. Thus, we evaluated the effect of RIPC on regional cerebral oxygenation after tourniquet release during TKR. Methods: Patients undergoing TKR were randomly allocated to not receive RIPC (control group) and to receive RIPC (RIPC group). Regional cerebral oxygenation and pulmonary oxygenation were assessed up to 24 h postoperatively. The changes in serum cytokine and lactate dehydrogenase (LDH) levels were assessed and arterial blood gas analysis was performed. Total transfusion amounts and postoperative bleeding were also examined. Results: In total, 72 patients were included in the final analysis. Regional cerebral oxygenation (P < 0.001 in the left side, P = 0.003 in the right side) with pulmonary oxygenation (P = 0.001) was significantly higher in the RIPC group. The serum LDH was significantly lower in the RIPC group at 1 h and 24 h postoperatively (P < 0.001). The 24 h postoperative transfusion (P = 0.002) and bleeding amount (P < 0.001) were significantly lower in the RIPC group. Conclusions: RIPC increased cerebral oxygenation after tourniquet release during TKR by improving pulmonary oxygenation. Additionally, RIPC decreased the transfusion and bleeding amount with the serum LDH level.
Collapse
Affiliation(s)
- Chung-Sik Oh
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea
| | - Seong-Hyop Kim
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea;; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jaemoon Lee
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea
| | - Ka Young Rhee
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea;; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Schiller AM, Howard JT, Convertino VA. The physiology of blood loss and shock: New insights from a human laboratory model of hemorrhage. Exp Biol Med (Maywood) 2017; 242:874-883. [PMID: 28346013 DOI: 10.1177/1535370217694099] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to quickly diagnose hemorrhagic shock is critical for favorable patient outcomes. Therefore, it is important to understand the time course and involvement of the various physiological mechanisms that are active during volume loss and that have the ability to stave off hemodynamic collapse. This review provides new insights about the physiology that underlies blood loss and shock in humans through the development of a simulated model of hemorrhage using lower body negative pressure. In this review, we present controlled experimental results through utilization of the lower body negative pressure human hemorrhage model that provide novel insights on the integration of physiological mechanisms critical to the compensation for volume loss. We provide data obtained from more than 250 human experiments to classify human subjects into two distinct groups: those who have a high tolerance and can compensate well for reduced central blood volume (e.g. hemorrhage) and those with low tolerance with poor capacity to compensate.We include the conceptual introduction of arterial pressure and cerebral blood flow oscillations, reflex-mediated autonomic and neuroendocrine responses, and respiration that function to protect adequate tissue oxygenation through adjustments in cardiac output and peripheral vascular resistance. Finally, unique time course data are presented that describe mechanistic events associated with the rapid onset of hemodynamic failure (i.e. decompensatory shock). Impact Statement Hemorrhage is the leading cause of death in both civilian and military trauma. The work submitted in this review is important because it advances the understanding of mechanisms that contribute to the total integrated physiological compensations for inadequate tissue oxygenation (i.e. shock) that arise from hemorrhage. Unlike an animal model, we introduce the utilization of lower body negative pressure as a noninvasive model that allows for the study of progressive reductions in central blood volume similar to those reported during actual hemorrhage in conscious humans to the onset of hemodynamic decompensation (i.e. early phase of decompensatory shock), and is repeatable in the same subject. Understanding the fundamental underlying physiology of human hemorrhage helps to test paradigms of critical care medicine, and identify and develop novel clinical practices and technologies for advanced diagnostics and therapeutics in patients with life-threatening blood loss.
Collapse
Affiliation(s)
- Alicia M Schiller
- U. S. Army Institute of Surgical Research, Houston, TX 78234-6315, USA
| | - Jeffrey T Howard
- U. S. Army Institute of Surgical Research, Houston, TX 78234-6315, USA
| | | |
Collapse
|
35
|
Bronzwaer ASGT, Verbree J, Stok WJ, van Buchem MA, Daemen MJAP, van Osch MJP, van Lieshout JJ. Cardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia. Front Physiol 2016; 7:235. [PMID: 27378944 PMCID: PMC4913112 DOI: 10.3389/fphys.2016.00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
In healthy subjects, variation in cardiovascular responses to sympathetic stimulation evoked by submaximal lower body negative pressure (LBNP) is considerable. This study addressed the question whether inter-subject variation in cardiovascular responses coincides with consistent and reproducible responses in an individual subject. In 10 healthy subjects (5 female, median age 22 years), continuous hemodynamic parameters (finger plethysmography; Nexfin, Edwards Lifesciences), and time-domain baroreflex sensitivity (BRS) were quantified during three consecutive 5-min runs of LBNP at −50 mmHg. The protocol was repeated after 1 week to establish intra-subject reproducibility. In response to LBNP, 5 subjects (3 females) showed a prominent increase in heart rate (HR; 54 ± 14%, p = 0.001) with no change in total peripheral resistance (TPR; p = 0.25) whereas the other 5 subjects (2 females) demonstrated a significant rise in TPR (7 ± 3%, p = 0.017) with a moderate increase in HR (21 ± 9%, p = 0.004). These different reflex responses coincided with differences in resting BRS (22 ± 8 vs. 11 ± 3 ms/mmHg, p = 0.049) and resting HR (57 ± 8 vs. 71 ± 12 bpm, p = 0.047) and were highly reproducible over time. In conclusion, we found distinct cardiovascular response patterns to sympathetic stimulation by LBNP in young healthy individuals. These patterns of preferential autonomic blood pressure control appeared related to resting cardiac BRS and HR and were consistent over time.
Collapse
Affiliation(s)
- Anne-Sophie G T Bronzwaer
- Department of Internal Medicine, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical CenterAmsterdam, Netherlands
| | - Jasper Verbree
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Wim J Stok
- Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical CenterAmsterdam, Netherlands; Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | - Johannes J van Lieshout
- Department of Internal Medicine, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical CenterAmsterdam, Netherlands; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical CentreNottingham, UK
| |
Collapse
|