1
|
Zhao X, Nie J, Zhou W, Zeng X, Sun X. The metabolomics changes in epididymal lumen fluid of CABS1 deficient male mice potentially contribute to sperm deformity. Front Endocrinol (Lausanne) 2024; 15:1432612. [PMID: 39234505 PMCID: PMC11371703 DOI: 10.3389/fendo.2024.1432612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Epididymal lumen fluids provides a stable microenvironment for sperm maturation. Ca2+ binding protein CABS1 is known to maintain structural integrity of mouse sperm flagella during epididymal transit of sperm. Besides, CABS1 was reported to contain anti-inflammatory peptide sequences and be present in both human saliva and plasma. However, little is known about the role of CABS1 in regulation of the microenvironment of epididymal lumen fluids. Methods To further confirm the role of CABS1 in epididymis, we identified the expression of CABS1 in epididymal lumen fluids. Moreover, high performance liquid chromatography, coupled with tandem mass spectrometry technique was used to analyze the metabolic profiles and in vivo microperfusion of the cauda epididymis and inductively coupled plasma mass spectrometry (ICP-MS) assays was used to detect the concentration of metal ion of mouse cauda epididymal lumen fluids in CABS1 deficient and normal mice. Results The results showed that CABS1 is present in epididymal lumen fluids, and the concentration of calcium in epididymal lumen fluids is not changed in Cabs1-/- male mice. Among 34 differential metabolites identified in cauda epididymis, 21 were significantly upregulated while 13 were significantly downregulated in KO cauda epididymis. Pathway analysis identified pyrimidine metabolism, inositol phosphate metabolism, arachidonic acid metabolism, purine metabolism and histidine metabolism as relevant pathways in cauda epididymis. Discussion The perturbations of mitochondrial dysfunction and inflammation may be the crucial reason for the poor performance of Cabs1-/- sperm.
Collapse
Affiliation(s)
- Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Wenwen Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Sun
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Reyes-Serratos E, Ramielle L. Santos J, Puttagunta L, Lewis SJ, Watanabe M, Gonshor A, Buck R, Befus AD, Marcet-Palacios M. Identification and characterization of calcium binding protein, spermatid-associated 1 (CABS1)# in selected human tissues and fluids. PLoS One 2024; 19:e0301855. [PMID: 38753592 PMCID: PMC11098423 DOI: 10.1371/journal.pone.0301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium binding protein, spermatid associated 1 (CABS1) is a protein most widely studied in spermatogenesis. However, mRNA for CABS1 has been found in numerous tissues, albeit with little information about the protein. Previously, we identified CABS1 mRNA and protein in human salivary glands and provided evidence that in humans CABS1 contains a heptapeptide near its carboxyl terminus that has anti-inflammatory activities. Moreover, levels of an immunoreactive form of CABS1 were elevated in psychological stress. To more fully characterize human CABS1 we developed additional polyclonal and monoclonal antibodies to different sections of the protein and used these antibodies to characterize CABS1 in an overexpression cell lysate, human salivary glands, saliva, serum and testes using western blot, immunohistochemistry and bioinformatics approaches exploiting the Gene Expression Omnibus (GEO) database. CABS1 appears to have multiple molecular weight forms, consistent with its recognition as a structurally disordered protein, a protein with structural plasticity. Interestingly, in human testes, its cellular distribution differs from that in rodents and pigs, and includes Leydig cells, primary spermatogonia, Sertoli cells and developing spermatocytes and spermatids, Geodata suggests that CABS1 is much more widely distributed than previously recognized, including in the urogenital, gastrointestinal and respiratory tracts, as well as in the nervous system, immune system and other tissues. Much remains to be learned about this intriguing protein.
Collapse
Affiliation(s)
- Eduardo Reyes-Serratos
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Joy Ramielle L. Santos
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J. Lewis
- Departments of Pediatrics and Pharmacology, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Mechiko Watanabe
- Departments of Pediatrics and Pharmacology, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
- Division of Pediatric Cardiology, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | | | - Robert Buck
- GB Diagnostics, Montreal, Quebec, Canada
- GB Diagnostics, Albuquerque, New Mexico, United States of America
| | - A. Dean Befus
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Marcelo Marcet-Palacios
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Northern Alberta Institute of Technology, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
4
|
Cabs1 Maintains Structural Integrity of Mouse Sperm Flagella during Epididymal Transit of Sperm. Int J Mol Sci 2021; 22:ijms22020652. [PMID: 33440775 PMCID: PMC7827751 DOI: 10.3390/ijms22020652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
The calcium-binding protein spermatid-associated 1 (Cabs1) is a novel spermatid-specific protein. However, its function remains largely unknown. In this study, we found that a long noncoding RNA (lncRNA) transcripted from the Cabs1 gene antisense, AntiCabs1, was also exclusively expressed in spermatids. Cabs1 and AntiCabs1 knockout mice were generated separately (using Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 methods) to investigate their functions in spermatogenesis. The genetic loss of Cabs1 did not affect testicular and epididymal development; however, male mice exhibited significantly impaired sperm tail structure and subfertility. Ultrastructural analysis revealed defects in sperm flagellar differentiation leading to an abnormal annulus and disorganization of the midpiece-principal piece junction, which may explain the high proportion of sperm with a bent tail. Interestingly, the proportion of sperm with a bent tail increased during transit in the epididymis. Furthermore, Western blot and immunofluorescence analyses showed that a genetic loss of Cabs1 decreased Septin 4 and Krt1 and increased cyclin Y-like 1 (Ccnyl1) levels compared with the wild type, suggesting that Cabs1 deficiency disturbed the expression of cytoskeleton-related proteins. By contrast, AntiCabs1-/- mice were indistinguishable from the wild type regarding testicular and epididymal development, sperm morphology, concentration and motility, and male fertility. This study demonstrates that Cabs1 is an important component of the sperm annulus essential for proper sperm tail assembly and motility.
Collapse
|
5
|
Marcet-Palacios M, Reyes-Serratos E, Gonshor A, Buck R, Lacy P, Befus AD. Structural and posttranslational analysis of human calcium-binding protein, spermatid-associated 1. J Cell Biochem 2020; 121:4945-4958. [PMID: 32692864 DOI: 10.1002/jcb.29824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Recently, we detected a novel biomarker in human saliva called calcium-binding protein, spermatid-associated 1 (CABS1). CABS1 protein had previously been described only in testis, and little was known of its characteristics other than it was considered a structurally disordered protein. Levels of human CABS1 (hCABS1) in saliva correlate with stress, whereas smaller sized forms of hCABS1 in saliva are associated with resilience to stress. Interestingly, hCABS1 also has an anti-inflammatory peptide sequence near its carboxyl terminus, similar to that of a rat prohormone, submandibular rat 1. We performed phylogenetic and sequence analysis of hCABS1. We found that from 72 CABS1 sequences currently annotated in the National Center for Biotechnology Information protein database, only 14 contain the anti-inflammatory domain "TxIFELL," all of which are primates. We performed structural unfoldability analysis using PONDER and FoldIndex and discovered three domains that are highly disordered. Predictions of three-dimensional structure of hCABS1 using RaptorX, IonCom, and I-TASSER software agreed with these findings. Predicted neutrophil elastase cleavage density also correlated with hCABS1 regions of high structural disorder. Ligand binding prediction identified Ca2+ , Mg2+ , Zn2+ , leucine, and thiamine pyrophosphate, a pattern observed in enzymes associated with energy metabolism and mitochondrial localization. These new observations on hCABS1 raise intriguing questions about the interconnection between the autonomic nervous system, stress, and the immune system. However, the precise molecular mechanisms involved in the complex biology of hCABS1 remain unclear. We provide a detailed in silico analysis of relevant aspects of the structure and function of hCABS1 and postulate extracellular and intracellular roles.
Collapse
Affiliation(s)
- Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Northern Alberta Institute of Technology, Biological Sciences, Edmonton, Alberta, Canada
| | - Eduardo Reyes-Serratos
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Buck
- Fluids iQ Inc., Ottawa, Ontario, Canada
- GB Diagnostics, Kingman, Arizona
| | - Paige Lacy
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - A D Befus
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Reyes-Serratos E, Marcet-Palacios M, Rosenfield D, Ritz T, Befus AD. A method to study protein biomarkers in saliva using an automated capillary nano-immunoassay platform (Wes™). J Immunol Methods 2020; 479:112749. [PMID: 31972214 PMCID: PMC11416074 DOI: 10.1016/j.jim.2020.112749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 11/25/2022]
Abstract
Traditional immunoprobing techniques like Western blot continue to play a crucial role in the discovery and validation of biomarkers. This technique suffers from several limitations that affect reproducibility and feasibility for large-scale studies. Modern immunoprobing techniques have addressed several of these limitations. Here we contrast the use of Western blot and an automated capillary nano-immunoassay (CNIA), Wes™. We provide evidence highlighting the methodological advantages of Wes™ over Western blot in the validation of a novel biomarker, Calcium-binding protein and spermatid-associated 1 (hCABS1). While Wes™ offers a faster, more consistent approach with lower requirements for sample and antibody volumes, variations in expected molecular weights and computational algorithms used to analyze the data must receive careful consideration and assessment. Our data suggests that CNIA approaches are likely to positively impact biomarker discovery and validation.
Collapse
Affiliation(s)
- Eduardo Reyes-Serratos
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada.
| | - Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada; Northern Alberta Institute of Technology, Edmonton, Alberta, Canada
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - A Dean Befus
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|