1
|
He Y, Zheng W, Guo Y, Yue T, Cui C, Ouzhuluobu, Zhang H, Liu K, Yang Z, Wu T, Qu J, Jin ZB, Yang J, Lu F, Qi X, Su B. Deep phenotyping of 11,880 highlanders reveals novel adaptive traits in native Tibetans. iScience 2023; 26:107677. [PMID: 37680474 PMCID: PMC10481350 DOI: 10.1016/j.isci.2023.107677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Tibetans are the ideal population to study genetic adaptation in extreme environments. Here, we performed systematic phenotyping of 11,880 highlanders, covering 133 quantitative traits of 13 organ systems. We provided a comprehensive phenotypic atlas by comparing altitude adaptation and altitude acclimatization. We found the differences between adaptation and acclimatization are quantitative rather than qualitative, with a whole-system "blunted effect" seen in the adapted Tibetans. We characterized twelve different functional changes between adaptation and acclimatization. More importantly, we established a landscape of adaptive phenotypes of indigenous Tibetans, including 45 newly identified Tibetan adaptation-nominated traits, involving specific changes of Tibetans in internal organ state, metabolism, eye morphology, and skin pigmentation. In addition, we observed a sex-biased pattern between altitude acclimatization and adaptation. The generated atlas of phenotypic landscape provides new insights into understanding of human adaptation to high-altitude environments, and it serves as a valuable blueprint for future medical and physiological studies.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ouzhuluobu
- Tibetan Fukang Hospital, Lhasa 850000, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaohui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Academy of Medicine Science, Zhengzhou University, Zhengzhou 450052, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zi-Bing Jin
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Fan Lu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Tibetan Fukang Hospital, Lhasa 850000, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
2
|
Young JE, Wu M, Hunsberger HC. Editorial: Sex and gender differences in neurodegenerative diseases. Front Neurosci 2023; 17:1175674. [PMID: 37008208 PMCID: PMC10061136 DOI: 10.3389/fnins.2023.1175674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Affiliation(s)
- Jessica Elaine Young
- Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Holly C. Hunsberger
- Department of Neuroscience, Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Foundational Sciences and Humanities, The Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
3
|
Lazarov NE, Atanasova DY. Neurochemical Plasticity of the Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:105-122. [PMID: 37946079 DOI: 10.1007/978-3-031-44757-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A striking feature of the carotid body (CB) is its remarkable degree of plasticity in a variety of neurotransmitter/modulator systems in response to environmental stimuli, particularly following hypoxic exposure of animals and during ascent to high altitude. Current evidence suggests that acetylcholine and adenosine triphosphate are two major excitatory neurotransmitter candidates in the hypoxic CB, and they may also be involved as co-transmitters in hypoxic signaling. Conversely, dopamine, histamine and nitric oxide have recently been considered inhibitory transmitters/modulators of hypoxic chemosensitivity. It has also been revealed that interactions between excitatory and inhibitory messenger molecules occur during hypoxia. On the other hand, alterations in purinergic neurotransmitter mechanisms have been implicated in ventilatory acclimatization to hypoxia. Chronic hypoxia also induces profound changes in other neurochemical systems within the CB such as the catecholaminergic, peptidergic and nitrergic, which in turn may contribute to increased ventilatory and chemoreceptor responsiveness to hypoxia at high altitude. Taken together, current data suggest that complex interactions among transmitters markedly influence hypoxia-induced transmitter release from the CB. In addition, the expression of a wide variety of growth factors, proinflammatory cytokines and their receptors have been identified in CB parenchymal cells in response to hypoxia and their upregulated expression could mediate the local inflammation and functional alteration of the CB under hypoxic conditions.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
4
|
Zhu D, Zhang M, He B, Wan Y, Wang L, Gao F. The role of sex and ovarian hormones in hippocampal damage and cognitive deficits induced by chronic exposure to hypobaric hypoxia. Front Neurosci 2022; 16:953417. [PMID: 36003965 PMCID: PMC9393425 DOI: 10.3389/fnins.2022.953417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aims to investigate the role of sex and ovarian hormones in hippocampal damage and cognitive deficits and behavioral dysfunction in rats induced by chronic exposure to hypobaric hypoxia. Methods Six-week-old male and female SD rats were housed for 3 months either in a real altitude (4,250 m) environment as the model of chronic hypobaric-hypoxia (CHH) or in a plain as controls. The animal behavioral and hippocampal neurons at subcellular, molecular, and ultrastructural levels were characterized after CHH exposure. Results After 3 months of CHH exposure, (1) male CHH rats’ serum testosterone level was lower than male controls’ whereas female CHH rats’ serum estradiol level was higher than female controls’; (2) Morris water maze test finds that male rats showed more learning and spatial memory deficits than female rats; (3) male rats showed more severe hippocampal damage, hippocampal inflammation, oxidative stress and decreased hippocampal integrity (neurogenesis and dendritic spine density) than female rats; (4) Western blot analysis shows that, compared with the male control group, in male CHH group’s hippocampus, expression of nNOS, HO-1, and Bax protein increased whereas that of Bcl-2 protein decreased; (5) Expression of PON2 protein in male rats (CHH and controls) was lower than female rats (CHH and controls). In addition, CHH exposure decreased the expression of PON2 protein in both male and female rats; (6) qPCR analysis reveals that CHH exposure reduced the gene expression of N-methyl-D-aspartate receptor NR2A and NR2B subunits in male rats’ hippocampus. In addition, compared with the sham CHH group, the expression level of PON2 protein decreased in the OVX-CHH group’s hippocampus whereas oxidative stress, neuroinflammation, and degeneration of hippocampal neurons increased in the OVX-CHH group’s hippocampus. Conclusion After CHH exposure, male rats were significantly more likely than female rats to develop hippocampal damage, hippocampal neuroinflammation, and cognitive decline and deficits, suggesting that sex and ovarian hormones were significantly involved in regulating the rats’ susceptibility to CHH exposure-induced hippocampal damage.
Collapse
|
5
|
Akin AT, Kaymak E, Ceylan T, Ozturk E, Basaran KE, Karabulut D, Ozdamar S, Yakan B. Chloroquine attenuates chronic hypoxia-induced testicular damage via suppressing endoplasmic reticulum stress and apoptosis in experimental rat model. Clin Exp Pharmacol Physiol 2022; 49:813-823. [PMID: 35579513 DOI: 10.1111/1440-1681.13669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic hypoxia negatively affects male fertility by causing pathological changes in male reproductive system. However, underlying mechanisms of this damage are unknown. Chloroquine (CLQ) is an anti-inflammatory agent which is widely used in the treatment of inflammation-related diseases such as malaria and rheumatoid arthritis. This study aimed to investigate the therapeutic effects of CLQ in the hypoxia-induced testicular damage via assessment of hypoxic response, endoplasmic reticulum stress and apoptosis. For this purpose, 32 Wistar albino rats were divided into 4 groups as Control (given %20-21 O2 , no treatment), CLQ (given 50 mg/kg and %20-21 O2 for 28 days), HX (given %10 O2 for 28 days) and HX + CLQ (given 50 mg/kg and %10 O2 for 28 days). After experiment, blood samples and testicular tissues were taken. Histopathological evaluation was performed on testicular tissues and HIF1-α, HSP70, HSP90 and GADD153 expression levels were detected via immunohistochemistry. Moreover, apoptotic cells were detected via TUNEL staining and serum testosterone levels were determined by ELISA assay. Histopathological changes, apoptotic cell numbers and HIF1-α, HSP70, HSP90 and GADD153 expressions significantly increased in HX group (p < 0.05). Moreover, serum testosterone levels decreased in this group (p > 0.05). However, CLQ exerted a strong ameliorative effect on all parameters in HX + CLQ group. According to our results, we suggested that CLQ can be considered as an alternative protective agent for eliminating the negative effects of hypoxic conditions on male fertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embriology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Tayfun Ceylan
- Program of Pathology Laboratory Techniques, Kapadokya Vocational High School, Kapadokya University, Nevsehir, Turkey
| | - Emel Ozturk
- Histology-Embriology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kemal Erdem Basaran
- Physiology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embriology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
He Y, Li J, Yue T, Zheng W, Guo Y, Zhang H, Chen L, Li C, Li H, Cui C, Qi X, Su B. Seasonality and Sex-Biased Fluctuation of Birth Weight in Tibetan Populations. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:64-71. [PMID: 36939792 PMCID: PMC9590487 DOI: 10.1007/s43657-021-00038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED Birth weight (BW) is a key determinant of infant mortality. Previous studies have reported seasonal fluctuation of BW. However, the responsible environmental factors remain disputable. High-altitude environment provides a great opportunity to test the current hypotheses due to its distinctive climate conditions. We collected BW data of ~ 9000 Tibetan singletons born at Lhasa (elevation: 3660 m) from 2014 to 2018. Using regression models, we analyzed BW seasonality of highland Tibetans. Multivariate models with meteorological factors as independent variables were employed to examine responsible environmental factors accounting for seasonal variation. We compared BW, low-BW prevalence and sex ratio between highland and lowland populations, and we observed a significant seasonal pattern of BW in Tibetans, with a peak in winter and a trough in summer. Notably, there is a marked sex-biased pattern of BW seasonality (more striking in males than in females). Sunlight exposure in the 3rd trimester and barometric pressure exposure in the 2nd trimester are significantly correlated with BW, and the latter can be explained by seasonal change of oxygen partial pressure. In particular, due to the male-biased BW seasonality, we found a more serious BW reduction and higher prevalence of low-BW in males, and a skewed sex ratio in highlanders. The infant BW of highland Tibetans has a clear pattern of seasonality. The winter BW is larger than the summer BW, due to the longer sunlight exposure during the late-trimester. Male infants are more sensitive to hypoxia than female infants during the 2nd trimester, leading to more BW reduction and higher mortality. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43657-021-00038-7.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| | - Jun Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| | - Li Chen
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Chunxia Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Hongyan Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
7
|
Kinkead R, Gagnon M, Joseph V, Sériès F, Ambrozio-Marques D. Stress and Loss of Ovarian Function: Novel Insights into the Origins of Sex-Based Differences in the Manifestations of Respiratory Control Disorders During Sleep. Clin Chest Med 2021; 42:391-405. [PMID: 34353446 DOI: 10.1016/j.ccm.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The respiratory system of women and men develops and functions in distinct neuroendocrine milieus. Despite differences in anatomy and neural control, homeostasis of arterial blood gases is ensured in healthy individuals regardless of sex. This convergence in function differs from the sex-based differences observed in many respiratory diseases. Sleep-disordered breathing (SDB) results mainly from episodes of upper airway closure. This complex and multifactorial respiratory disorder shows significant sexual dimorphism in its clinical manifestations and comorbidities. Guided by recent progress from basic research, this review discusses the hypothesis that stress is necessary to reveal the sexual dimorphism of SDB.
Collapse
Affiliation(s)
- Richard Kinkead
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada.
| | - Marianne Gagnon
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| | - Vincent Joseph
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| | - Frédéric Sériès
- Department of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Québec, Canada
| | - Danuzia Ambrozio-Marques
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| |
Collapse
|
8
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Kaymak E, Akin AT, Tufan E, Başaran KE, Taheri S, Özdamar S, Yakan B. The effect of chloroquine on the TRPC1, TRPC6, and CaSR in the pulmonary artery smooth muscle cells in hypoxia-induced experimental pulmonary artery hypertension. J Biochem Mol Toxicol 2020; 35:e22636. [PMID: 32956540 DOI: 10.1002/jbt.22636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a constant high pulmonary artery pressure and the remodeling of the vessel. Chloroquine (CLQ) has been observed to inhibit calcium influx. The aim of this study is to investigate the effect of CLQ on transient receptor cationic proteins (TRPC1 and TRPC6) and extracellular calcium-sensitive receptor (CaSR) in a hypoxic PAH model. In this study, 8- to 12-week-old 32 male Wistar albino rats, weighing 200 to 300 g, were used. The rats were studied in four groups, including normoxy control, n = 8; normoxy CLQ (50 mg/kg/28 d), n = 8; hypoxia (HX; 10% oxygen/28 d) control, n = 8; and HX (10% oxygen/28 d) + CLQ (50 mg/kg), N = 8. Pulmonary arterial medial wall thickness, pulmonary arteriole wall, TRPC1, TRPC6, and CaSR expressions were evaluated by immunohistochemistry, polymerase chain reaction, and enzyme-linked immunosorbent assay methods. At the end of the experiment, a statistically significant increase in the medial wall thickness was observed in the hypoxic group as compared with the control group. However, in the HX + CLQ group, there was a statistically significant decrease in the vessel medial wall as compared with the HX group. In the TRPC1-, TRPC6-, and CaSR-immunopositive cell numbers, messenger RNA expressions and biochemical results showed an increase in the HX group, whereas they were decreased in the HX + CLQ group. The inhibitory effect of CLQ on calcium receptors in arterioles was observed in PAH.
Collapse
Affiliation(s)
- Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Esra Tufan
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | | | - Serpil Taheri
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Joseph V, Laouafa S, Marcouiller F, Roussel D, Pialoux V, Bairam A. Progesterone decreases apnoea and reduces oxidative stress induced by chronic intermittent hypoxia in ovariectomized female rats. Exp Physiol 2020; 105:1025-1034. [PMID: 32196792 DOI: 10.1113/ep088430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does progesterone reduce the effect of chronic intermittent hypoxia (CIH) on arterial blood pressure, respiratory control and oxidative stress in the central nervous system in ovariectomized rats? What is the main finding and its importance? Progesterone does not prevent the elevation of arterial blood pressure in rats exposed to CIH, but normalizes respiratory control, and reduces cerebral oxidative stress. This study draws focus to a potential role of progesterone and the consequences of sleep apnoea in menopausal women. ABSTRACT We tested the hypothesis that progesterone (Prog) reduces the effect of chronic intermittent hypoxia (CIH) on arterial blood pressure, respiratory chemoreflexes and oxidative stress in the central nervous system. Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh) or Prog (4 mg kg-1 day-1 ). Two weeks following the surgery, rats were exposed to room air (Air) or CIH (7 days, 10% O2 , 10 cycles h-1 , 8 h day-1 ). We studied three groups: Veh-Air, Veh-CIH and Prog-CIH. After the CIH exposures, we measured the mean arterial pressure (MAP; tail cuff) and assessed the frequency of apnoeas at rest and ventilatory responses to hypoxia and hypercapnia (whole body plethysmography). The activities of the pro-oxidant enzyme NADPH oxidase (NOX) and antioxidant enzymes superoxide dismutase (SOD; in mitochondrial and cytosolic fractions) and glutathione peroxidase (GPx), as well as the concentration of malondialdehyde (MDA), a marker of lipid peroxidation, were measured in brain cortex and brainstem samples. CIH exposure increased the MAP, the frequency of apnoeas, and the respiratory frequency response to hypoxia and hypercapnia. Prog did not prevent the CIH-induced elevation in MAP, but it reduced the CIH-induced frequency of apnoeas and increased hypoxic and hypercapnic ventilatory responses. In the brain cortex, CIH increased NOX activity, and decreased the cytosolic and mitochondrial SOD activities. These effects were prevented by Prog. NOX activity was increased by CIH in the brainstem, and this was also blocked by Prog. The study draws focus to the links between ovarian hormones and the consequences of sleep apnoea in women.
Collapse
Affiliation(s)
- Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Damien Roussel
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Vincent Pialoux
- University of Lyon, Université Claude Bernard Lyon 1, LIBM EA 7424, Villeurbanne, 69622, France.,Institut Universitaire de France, Paris, France
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
11
|
Andrade DC, Haine L, Toledo C, Diaz HS, Quintanilla RA, Marcus NJ, Iturriaga R, Richalet JP, Voituron N, Del Rio R. Ventilatory and Autonomic Regulation in Sleep Apnea Syndrome: A Potential Protective Role for Erythropoietin? Front Physiol 2018; 9:1440. [PMID: 30374309 PMCID: PMC6196773 DOI: 10.3389/fphys.2018.01440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea (OSA) is the most common form of sleep disordered breathing and is associated with wide array of cardiovascular morbidities. It has been proposed that during OSA, the respiratory control center (RCC) is affected by exaggerated afferent signals coming from peripheral/central chemoreceptors which leads to ventilatory instability and may perpetuate apnea generation. Treatments focused on decreasing hyperactivity of peripheral/central chemoreceptors may be useful to improving ventilatory instability in OSA patients. Previous studies indicate that oxidative stress and inflammation are key players in the increased peripheral/central chemoreflex drive associated with OSA. Recent data suggest that erythropoietin (Epo) could also be involved in modulating chemoreflex activity as functional Epo receptors are constitutively expressed in peripheral and central chemoreceptors cells. Additionally, there is some evidence that Epo has anti-oxidant/anti-inflammatory effects. Accordingly, we propose that Epo treatment during OSA may reduce enhanced peripheral/central chemoreflex drive and normalize the activity of the RCC which in turn may help to abrogate ventilatory instability. In this perspective article we discuss the potential beneficial effects of Epo administration on ventilatory regulation in the setting of OSA.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Liasmine Haine
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Diaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jean-Paul Richalet
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Nicolas Voituron
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
12
|
Joseph V, Uppari N, Kouchi H, De Bruyn C, Boukari R, Bairam A. Respiratory regulation by steroids in newborn rats: a sex-specific balance between allopregnanolone and progesterone receptors. Exp Physiol 2018; 103:276-290. [DOI: 10.1113/ep086716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Vincent Joseph
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - NagaPraveena Uppari
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Hayet Kouchi
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Celia De Bruyn
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Ryma Boukari
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Aida Bairam
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| |
Collapse
|
13
|
Brockmann PE, Koren D, Kheirandish-Gozal L, Gozal D. Gender dimorphism in pediatric OSA: Is it for real? Respir Physiol Neurobiol 2017; 245:83-88. [DOI: 10.1016/j.resp.2016.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/19/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|
14
|
Jeton F, Soliz J, Marchant D, Joseph V, Richalet JP, Pichon A, Voituron N. Increased ventilation in female erythropoietin-deficient mouse line is not progesterone and estrous stage-dependent. Respir Physiol Neurobiol 2017; 245:98-104. [PMID: 28735074 DOI: 10.1016/j.resp.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023]
Abstract
Previous studies suggest that chronic erythropoietin (Epo) deficiency in male mice does not alter normoxic/hypoxic ventilation. As effects of Epo are sex specific and as progesterone could be a respiratory stimulant, we evaluated the impact of Epo deficiency and its possible interaction with progesterone in ventilatory control in female mice during estrous cycle phases. Compared to wild type (WT) animals, Epo-TAgh female mice exhibited higher ventilation in hypoxia. However, when data were separated into luteal and follicular phases of the estrous cycle, basal ventilation and hypoxic ventilation were not different in both mice strains. As progesterone is known to be a potent respiratory stimulant, additional experiments were performed to elucidate its role. Interestingly, after mifepristone treatment, HVR was not modified in WT and Epo-TAgh mice, showing that the ventilatory stimulation observed in females was not directly mediated by progesterone. We conclude that Epo-TAgh female mice show no estrous stage-dependent increase of ventilatory control and progesterone independent response to hypoxia.
Collapse
Affiliation(s)
- Florine Jeton
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire Hypoxie et poumons, EA 2363, 93017 Bobigny, France; Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, France
| | - Jorge Soliz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire Hypoxie et poumons, EA 2363, 93017 Bobigny, France
| | - Vincent Joseph
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Jean-Paul Richalet
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire Hypoxie et poumons, EA 2363, 93017 Bobigny, France; Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, France
| | - Aurélien Pichon
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire Hypoxie et poumons, EA 2363, 93017 Bobigny, France; Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, France
| | - Nicolas Voituron
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire Hypoxie et poumons, EA 2363, 93017 Bobigny, France; Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, France.
| |
Collapse
|
15
|
Marques DA, de Carvalho D, da Silva GSF, Szawka RE, Anselmo-Franci JA, Bícego KC, Gargaglioni LH. Influence of estrous cycle hormonal fluctuations and gonadal hormones on the ventilatory response to hypoxia in female rats. Pflugers Arch 2017; 469:1277-1286. [PMID: 28660294 DOI: 10.1007/s00424-017-2022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Sex hormones may influence many physiological processes. Recently, we demonstrated that hormonal fluctuations of cycling female rats do not affect respiratory parameters during hypercapnia. However, it is still unclear whether sex hormones and hormonal fluctuations that occur during the estrous cycle can affect breathing during a hypoxic challenge. Our study aimed to evaluate respiratory, metabolic, and thermal responses to hypoxia in female rats on different days of the estrous cycle (proestrus, estrus, metestrus, and diestrus) and in ovariectomized rats that received replacement with oil (OVX), estradiol (OVX + E2), or a combination of estradiol and progesterone (OVX + E2P). Ventilation (V E), tidal volume (V T), respiratory frequency (fR), oxygen consumption (VO2), and V E/VO2 were not different during the estrous cycle in normoxia or hypoxia. Body temperature (Tb) was higher during estrus, but decreased similarly in all groups during hypoxia. Compared with intact females in estrus, gonadectomized rats also had lower Tb in normoxia, but not in hypoxia. OVX rats experienced a significant drop in the ventilatory response to hypoxia, but hormonal replacement did not restore values to the levels of an intact animal. Our data demonstrate that the different phases of the estrous cycle do not alter ventilation during normoxia and hypoxia, but OVX animals display lower ventilatory responses to hypoxia compared with ovary-intact rats. Because estradiol and progesterone replacement did not cause significant differences in ventilation, our findings suggest that a yet-to-be-defined non-steroidal ovarian hormone is likely to stimulate the ventilatory responses to hypoxia in females.
Collapse
Affiliation(s)
- Danuzia A Marques
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil
| | | | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Janete A Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
16
|
Iturri P, Bairam A, Soliz J. Efficient breathing at neonatal ages: A sex and Epo-dependent issue. Respir Physiol Neurobiol 2016; 245:89-97. [PMID: 28041993 DOI: 10.1016/j.resp.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
During postnatal life, the respiratory control system undergoes intense development and is highly responsive to stimuli emerging from the environment. In fact, interruption of breathing prevents gas exchange and results in systemic hypoxia that, if prolonged, can lead to cardio-respiratory failure or sudden infant death. Moreover, in newborns and infants, respiratory disorders related to neural control dysfunction show significant sexual dimorphism with a higher prevalence in males. To this day, the therapeutic tools available to alleviate these respiratory disorders remain limited. Furthermore, the factors explaining the sexual dimorphism in newborns and during infancy remain unknown. Erythropoietin (Epo) was originally discovered as a cytokine able to increase the production of red blood cells upon conditions of reduced oxygen availability. We now know that Epo is a cytokine also secreted by neurons and astrocytes that protects the brain during trauma or hypoxic stress in a sex dependent manner. In this novel line of research, our previous studies demonstrated at adult ages that cerebral Epo acts as a respiratory stimulant in rodents and humans. These results provided a strong rationale for exploring the role of cerebral Epo in neuronal respiratory control during postnatal development. The objective of this review is to summarize our recent findings showing that cerebral Epo is a potent sex-specific respiratory stimulant at neonatal ages. Keeping in mind that Epo is routinely and safely administrated in newborn humans for anemia and neonatal asphyxia, we predict that our research provides the basis necessary to promote the clinical use of Epo against neonatal respiratory disorders related to neural control dysfunction.
Collapse
Affiliation(s)
- Pablo Iturri
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Molecular Biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Aida Bairam
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Jorge Soliz
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Molecular Biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia.
| |
Collapse
|
17
|
Boukari R, Rossignol O, Baldy C, Marcouiller F, Bairam A, Joseph V. Membrane progesterone receptor-β, but not -α, in dorsal brain stem establishes sex-specific chemoreflex responses and reduces apnea frequency in adult mice. J Appl Physiol (1985) 2016; 121:781-791. [DOI: 10.1152/japplphysiol.00397.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/22/2016] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that membrane progesterone receptors (mPR) contribute to respiratory control in adult male and female mice. Mice were implanted with osmotic minipumps for continuous infusion of small interfering RNA (siRNA) directed against mPRα, mPRβ, or a control solution in the fourth ventricle (to target brain stem respiratory areas) for 14 days. We then performed respiratory and metabolic recordings by whole body plethysmography at rest and in response to hypoxia (12% O2) or hypercapnia (5% CO2, 5 min each). For each treatment, we have verified with immunohistochemistry that the staining intensity of mPRα or mPRβ in the brain stem is decreased. At rest, the siRNA against mPRα and mPRβ increased respiratory frequency in males only. The siRNA against mPRβ almost tripled the frequency of apneas in male and in female mice, while the siRNA against mPRα had no effect. Regarding respiratory chemoreflex, the siRNA against mPRβ suppressed the response to hypoxia in male and female mice and reduced by ∼50% the response to hypercapnia, while the siRNA against mPRα had more limited effects. Interestingly, control females had higher ventilatory response to hypoxia and hypercapnia than males, and these sex-specific effects were suppressed by the siRNA against mPRβ, whereas they were still present after treatment with the siRNA against mPRα. We conclude that mPRβ reduces apnea frequency in male and female mice and establishes sex-specific ventilatory chemoreflex.
Collapse
Affiliation(s)
- Ryma Boukari
- Unité de Recherche en Périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| | - Orlane Rossignol
- Unité de Recherche en Périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| | - Cécile Baldy
- Unité de Recherche en Périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| | - François Marcouiller
- Unité de Recherche en Périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| | - Aida Bairam
- Unité de Recherche en Périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| | - Vincent Joseph
- Unité de Recherche en Périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| |
Collapse
|
18
|
Stevenson JL, Krishnan S, Inigo MM, Stamatikos AD, Gonzales JU, Cooper JA. Echinacea-Based Dietary Supplement Does Not Increase Maximal Aerobic Capacity in Endurance-Trained Men and Women. J Diet Suppl 2015; 13:324-38. [PMID: 26317662 DOI: 10.3109/19390211.2015.1036189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To determine if an echinacea-based dietary supplement (EBS) provided at two different doses (a regular dose (RD), 8,000 mg/day, vs. a double dose (DD), 16,000 mg/day) would increase erythropoietin (EPO) and other blood markers involved in improving aerobic capacity and maximal oxygen consumption (VO2max) in endurance-trained men. Secondly, to determine if any sex differences exist between male and female endurance-trained athletes. METHODS Forty-five endurance athletes completed three visits during a 35-day intervention. Participants were randomized into placebo (PLA; n = 8 men, n = 7 women), RD of EBS (n = 7 men, n = 8 women), or DD of EBS (n = 15 men) for the 35-day intervention period. At baseline, weight, body composition, and VO2max were measured. Blood was drawn to measure EPO, ferritin, red blood cells, white blood cells, hemoglobin, and hematocrit. At the mid-intervention visit, blood was collected. At the post-intervention visit, all measurements from the baseline visit were obtained once again. RESULTS There was a significant increase in VO2max for endurance-trained men in PLA (increase of 2.8 ± 1.5 ml kg(-1) min(-1), p = .01) and RD of EBS (increase of 2.6 ± 1.8 ml kg(-1) min(-1), p = .04), but not in DD of EBS (p = .96). Importantly, there was no difference in the change in VO2max between PLA and RD of EBS. For endurance-trained women, VO2max did not change in either treatment (PLA: -0.7 ± 1.7 ml kg(-1) min(-1), p = .31; RD of EBS: -0.2 ± 2.4 ml kg(-1) min(-1), p = .80). There were no significant changes in any blood parameter across visits for any treatment group. CONCLUSIONS This EBS should not be recommended as a means to improve performance in endurance athletes.
Collapse
Affiliation(s)
- Jada L Stevenson
- a Department of Nutritional Sciences , Texas Tech University , Lubbock , Texas , USA
| | - Sridevi Krishnan
- a Department of Nutritional Sciences , Texas Tech University , Lubbock , Texas , USA
| | - Melissa M Inigo
- b Department of Exercise and Sports Sciences , Texas Tech University , Lubbock , Texas , USA
| | - Alexis D Stamatikos
- a Department of Nutritional Sciences , Texas Tech University , Lubbock , Texas , USA
| | - Joaquin U Gonzales
- b Department of Exercise and Sports Sciences , Texas Tech University , Lubbock , Texas , USA
| | - Jamie A Cooper
- a Department of Nutritional Sciences , Texas Tech University , Lubbock , Texas , USA
| |
Collapse
|
19
|
Relative Contribution of Nuclear and Membrane Progesterone Receptors in Respiratory Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:261-7. [DOI: 10.1007/978-3-319-18440-1_30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Ivy CM, Scott GR. Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:66-74. [PMID: 25446936 DOI: 10.1016/j.cbpa.2014.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 01/07/2023]
Abstract
Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Marcouiller F, Boukari R, Laouafa S, Lavoie R, Joseph V. The nuclear progesterone receptor reduces post-sigh apneas during sleep and increases the ventilatory response to hypercapnia in adult female mice. PLoS One 2014; 9:e100421. [PMID: 24945655 PMCID: PMC4063764 DOI: 10.1371/journal.pone.0100421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/27/2014] [Indexed: 01/25/2023] Open
Abstract
We tested the hypothesis that the nuclear progesterone receptor (nPR) is involved in respiratory control and mediates the respiratory stimulant effect of progesterone. Adult female mice carrying a mutation in the nPR gene (PRKO mice) and wild-type controls (WT) were implanted with an osmotic pump delivering vehicle or progesterone (4 mg/kg/day). The mice were instrumented with EEG and neck EMG electrodes connected to a telemetry transmitter. The animals were placed in a whole body plethysmograph 7 days after surgery to record ventilation, metabolic rate, EEG and neck EMGs for 4 consecutive hours. The animals were exposed to hypercapnia (5% CO2), hypoxia (12% O2) and hypoxic-hypercapnia (5% CO2+12% O2–5 min each) to assess chemoreflex responses. EEG and EMG signals were used to characterize vigilance states (e.g., wake, non-REM, and REM sleep). PRKO mice exhibited similar levels of minute ventilation during non-REM and REM sleep, and higher frequencies of sighs and post-sigh apneas during non-REM sleep compared to WT. Progesterone treatment increased minute ventilation and metabolic rate in WT and PRKO mice during non-REM sleep. In WT mice, but not in PRKO mice, the ventilation under hypercapnia and hypoxic hypercapnia was enhanced after progesterone treatment. We conclude that the nPR reduces apnea frequency during non-REM sleep and enhances chemoreflex responses to hypercapnia after progesterone treatment. These results also suggest that mechanisms other than nPR activation increase metabolic rate in response to progesterone treatment in adult female mice.
Collapse
Affiliation(s)
- François Marcouiller
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Ryma Boukari
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Sofien Laouafa
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Raphaël Lavoie
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Vincent Joseph
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
- * E-mail:
| |
Collapse
|
22
|
Using plethysmography to determine erythropoietin's impact on neural control of ventilation. Methods Mol Biol 2013. [PMID: 23456876 DOI: 10.1007/978-1-62703-308-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The evaluation of respiratory parameters often requires the use of anesthetics (that depress the neural -network controlling respiration), and/or ways to restrain the animal's mobility (that produces a stress-dependent increase of respiration). Consequently, the establishment of plethysmography represented an invaluable technique in respiratory physiology. Plethysmography, indeed, allows the assessment of ventilatory parameters on living, unanesthetized, and unrestrained animals. The conception of the barometric plethysmography relies on the fact that an animal placed inside a hermetically closed chamber generates through its breathing a fluctuation of pressure in the chamber than can be recorded. Thus, the respiratory frequency and the tidal volume can be directly measured, while the animal's ventilation is calculated indirectly by the multiplication of these two parameters. In our hands, plethysmography was a key tool to investigate the impact of erythropoietin (Epo) on the neural control of hypoxic ventilation in mice.
Collapse
|
23
|
Bairam A, Lumbroso D, Joseph V. Effect of progesterone on respiratory response to moderate hypoxia and apnea frequency in developing rats. Respir Physiol Neurobiol 2013; 185:515-25. [DOI: 10.1016/j.resp.2012.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 01/18/2023]
|
24
|
Soliz J. Erythropoietin and respiratory control at adulthood and during early postnatal life. Respir Physiol Neurobiol 2013; 185:87-93. [DOI: 10.1016/j.resp.2012.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 01/10/2023]
|
25
|
Palmer LA, May WJ, deRonde K, Brown-Steinke K, Gaston B, Lewis SJ. Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation. Respir Physiol Neurobiol 2012. [PMID: 23183420 DOI: 10.1016/j.resp.2012.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to compare the ventilatory responses of C57BL6 female and male mice during a 15 min exposure to a hypoxic-hypercapnic (H-H) or a hypoxic (10% O(2), 90% N(2)) challenge and subsequent return to room air. The ventilatory responses to H-H were similar in males and females whereas there were pronounced gender differences in the ventilatory responses during and following hypoxic challenge. In males, the hypoxic response included initial increases in minute volume via increases in tidal volume and frequency of breathing. These responses declined substantially (roll-off) during hypoxic exposure. Upon return to room-air, relatively sustained increases in these ventilatory parameters (short-term potentiation) were observed. In females, the initial responses to hypoxia were similar to those in males whereas roll-off was greater and post-hypoxia facilitation was smaller than in males. The marked differences in ventilatory roll-off and post-hypoxia facilitation between female and male C57BL6 mice provide evidence that gender is of vital importance to ventilatory control.
Collapse
Affiliation(s)
- Lisa A Palmer
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
26
|
Joseph V, Niane LM, Bairam A. Antagonism of progesterone receptor suppresses carotid body responses to hypoxia and nicotine in rat pups. Neuroscience 2012; 207:103-9. [PMID: 22326965 PMCID: PMC3782486 DOI: 10.1016/j.neuroscience.2012.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between postnatal days 3 and 15. In 11-14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in vitro, 10% O2 in vivo) and to nicotinic receptor agonists (as an excitatory modulator of carotid body activity-nicotine 100 μM for in vitro studies, and epibatidine 5 μg/kg, i.p., which mainly acts on peripheral nicotinic receptors, for in vivo studies). The carotid body responses to hypoxia and nicotine were drastically reduced by mifepristone. Compared with vehicle, mifepristone-treated rats had a reduced body weight. The ventilatory response to epibatidine was attenuated; however, the hypoxic ventilatory response was similar between vehicle and mifepristone-treated pups. Immunohistochemical staining revealed that mifepristone treatment did not change carotid body morphology. We conclude that PR activity is a critical factor ensuring proper carotid body function in newborn rats.
Collapse
Affiliation(s)
- V Joseph
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St.-François d'Assise, 10 rue de l'Espinay, QC, G1L 3L5, Canada.
| | | | | |
Collapse
|
27
|
Fournier S, Kinkead R, Joseph V. Influence of housing conditions from weaning to adulthood on the ventilatory, thermoregulatory, and endocrine responses to hypoxia of adult female rats. J Appl Physiol (1985) 2012; 112:1474-81. [PMID: 22323657 DOI: 10.1152/japplphysiol.01477.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Housing conditions affect animal physiology. We previously showed that the hypoxic ventilatory and thermoregulatory responses to hypoxia of adult male rats housed in triads during the juvenile period (postnatal day 21 to adulthood) were significantly reduced compared with animals housed in pairs. Because sex hormones influence development and responsiveness to environmental stressors, this study investigated the impact of housing on the respiratory and thermoregulatory physiology of female rats. Since neonatal stress attenuates the hypoxic ventilatory response (HVR) of female rats at adulthood, experiments were performed both on "control" (undisturbed) animals and rats subjected to neonatal maternal separation (NMS; 3 h/day, postnatal days 3-12). At adulthood, ventilatory activity was measured by whole body plethysmography under normoxic and hypoxic conditions [fraction of inspired oxygen (Fi(O(2))) = 0.12; 20 min]. The ventilatory and body temperature responses to hypoxia of female rats raised in triads were reduced compared with rats housed in pairs. Housing female rats in triads did not affect basal or hypoxic plasma corticosterone levels but did increase levels of estradiol significantly. We conclude that modest changes in housing conditions (pairs vs. triads) from weaning to adulthood does influence basic homeostatic functions such as temperature and respiratory regulation. Triad housing can reverse the manifestations of respiratory instability at adulthood induced by stressful neonatal treatments. This should raise awareness of the benefits of increasing social interactions in clinical settings but also caution researchers of the potential impact of such subtle changes on experimental protocols and interpretation of results.
Collapse
Affiliation(s)
- Sébastien Fournier
- Department of Pediatrics, Centre de Recherche Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada.
| | | | | |
Collapse
|
28
|
Holley HS, Behan M, Wenninger JM. Age and sex differences in the ventilatory response to hypoxia and hypercapnia in awake neonatal, pre-pubertal and young adult rats. Respir Physiol Neurobiol 2011; 180:79-87. [PMID: 22067556 DOI: 10.1016/j.resp.2011.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/16/2022]
Abstract
There is evidence for a "sensitive period" in respiratory development in rats around postnatal age (P) 12-13d. Little is known about sex differences during that time. The purpose of this study was to assess the effect of sex on breathing development, specifically around the "sensitive period". We used whole-body plethysmography to study breathing in normoxic, hypoxic and hypercapnic gases in non-anesthetized male and female neonatal rats from P10 to P15, juvenile (P30) and young adult (P90) rats. Compared to other neonatal ages, P12-13 male rats had significantly lower ventilation during normoxia, hypoxia, and hypercapnia. Compared to age-matched females, P12-13 male rats had lower ventilation in normoxia and hypoxia and a lower O(2) saturation during hypoxia. Circulating estradiol was greater in P12-13 male vs. female rats. Estradiol and ventilatory responses to hypoxia and hypercapnia were negatively correlated in neonatal male, but not female rats. Our results suggest that P10-15 includes a critical developmental period in male but not female rats.
Collapse
Affiliation(s)
- Heidi S Holley
- University of Wisconsin - Madison School of Veterinary Medicine, Department of Comparative Biosciences, 2015 Linden Drive, Madison, WI 53706, United States
| | | | | |
Collapse
|
29
|
Lumbroso D, Lemoine A, Gonzales M, Villalpando G, Seaborn T, Joseph V. Life-long consequences of postnatal normoxia exposure in rats raised at high altitude. J Appl Physiol (1985) 2011; 112:33-41. [PMID: 21998271 DOI: 10.1152/japplphysiol.01043.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that exposure of high-altitude (HA) rats to a period of postnatal normoxia has long-term consequences on the ventilatory and hematological acclimatization in adults. Male and female HA rats (3,600 m, Po(2) ≃ 100 Torr; La Paz, Bolivia) were exposed to normal room air [HA control (HACont)] or enriched oxygen (32% O(2); Po(2) ≃ 160 Torr) from 1 day before to 15 days after birth [HA postnatal normoxia (HApNorm)]. Hematocrit and hemoglobin values were assessed at 2, 12, and 32 wk of age. Cardiac and lung morphology were assessed at 12 wk by measuring right ventricular hypertrophy (pulmonary hypertension index) and lung air space-to-tissue ratio (indicative of alveolarization). Respiratory parameters under baseline conditions and in response to 32% O(2) for 10 min (relieving the ambient hypoxic stimulus) were measured by whole body plethysmography at 12 wk. Finally, we performed a survival analysis up to 600 days of age. Compared with HACont, HApNorm rats had reduced hematocrit and hemoglobin levels at all ages (both sexes); reduced right ventricular hypertrophy (both sexes); lower air space-to-tissue ratio in the lungs (males only); reduced CO(2) production rate, but higher oxygen uptake (males only); and similar respiratory frequency, tidal volume, and minute ventilation. When breathing 32% O(2), HApNorm male rats had a stronger decrease of minute ventilation than HACont. HApNorm rats had a marked tendency toward longer survival throughout the study. We conclude that exposure to ambient hypoxia during postnatal development in HA rats has deleterious consequences on acclimatization to hypoxia as adults.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Department of Pediatrics, Laval University, Centre de Recherche Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Julien CA, Joseph V, Bairam A. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups. Respir Physiol Neurobiol 2011; 177:301-12. [DOI: 10.1016/j.resp.2011.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 01/01/2023]
|
31
|
Gassmann M, Pfistner C, Doan VD, Vogel J, Soliz J. Impaired ventilatory acclimatization to hypoxia in female mice overexpressing erythropoietin: unexpected deleterious effect of estradiol in carotid bodies. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1511-20. [DOI: 10.1152/ajpregu.00205.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apart from enhancing the production of red blood cells, erythropoietin (Epo) alters the ventilatory response when oxygen supply is reduced. We recently demonstrated that Epo's beneficial effect on the ventilatory response to acute hypoxia is sex dependent, with female mice being better able to cope with reduced oxygenation. In the present work, we hypothesized that ventilatory acclimatization to chronic hypoxia (VAH) in transgenic female mice (Tg6) harboring high levels of Epo in the brain and blood will also be improved compared with wild-type (WT) animals. Surprisingly, VAH was blunted in Tg6 female mice. To define whether this phenomenon had a central (brain stem respiratory centers) and/or peripheral (carotid bodies) origin, a bilateral transection of carotid sinus nerve (chemodenervation) was performed. This procedure allowed the analysis of the central response in the absence of carotid body information. Interestingly, chemodenervation restored the VAH in Tg6 mice, suggesting that carotid bodies were responsible for the blunted response. Coherently with this observation, the sensitivity to oxygen alteration in arterial blood (Dejour test) after chronic hypoxia was lower in transgenic carotid bodies compared with the WT control. As blunted VAH occurred in female but not male transgenic mice, the involvement of sex female steroids was obvious. Indeed, measurement of sexual female hormones revealed that the estradiol serum level was 4 times higher in transgenic mice Tg6 than in WT animals. While ovariectomy decreased VAH in WT females, this treatment restored VAH in Tg6 female mice. In line with this observation, injections of estradiol in ovariectomized Tg6 females dramatically reduced the VAH. We concluded that during chronic hypoxia, estradiol in carotid bodies suppresses the Epo-mediated elevation of ventilation. Considering the increased application of recombinant Epo for a variety of disorders, our data imply the need to take the patient's hormonal status into consideration.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Christine Pfistner
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Van Diep Doan
- Unité de Recherche en Périnatalogie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| | - Johannes Vogel
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Jorge Soliz
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| |
Collapse
|
32
|
Kinkead R, Gulemetova R. Neonatal maternal separation and neuroendocrine programming of the respiratory control system in rats. Biol Psychol 2010; 84:26-38. [DOI: 10.1016/j.biopsycho.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
33
|
Abstract
Acclimatization to long-term hypoxia takes place at high altitude and allows gradual improvement of the ability to tolerate the hypoxic environment. An important component of this process is the hypoxic ventilatory acclimatization (HVA) that develops over several days. HVA reveals profound cellular and neurochemical re-organization occurring both in the peripheral chemoreceptors and in the central nervous system (in brainstem respiratory groups). These changes lead to an enhanced activity of peripheral chemoreceptor and re-inforce the central translation of peripheral inputs to efficient respiratory motor activity under the steady low O(2) pressure. We will review the cellular processes underlying these changes with a particular emphasis on changes of neurotransmitter function and ion channel properties in peripheral chemoreceptors, and present evidence that low O(2) level acts directly on brainstem nuclei to induce cellular changes contributing to maintain a high tonic respiratory drive under chronic hypoxia.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St-François d'Assise, 10 rue de l'Espinay, Quebec, QC, G1L 3L5, Canada.
| | | |
Collapse
|
34
|
Gassmann M, Soliz J. Erythropoietin modulates the neural control of hypoxic ventilation. Cell Mol Life Sci 2009; 66:3575-82. [PMID: 19756385 PMCID: PMC11115915 DOI: 10.1007/s00018-009-0142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Numerous factors involved in general homeostasis are able to modulate ventilation. Classically, this comprises several kind of molecules, including neurotransmitters and steroids that are necessary for fine tuning ventilation under different conditions such as sleep, exercise, and acclimatization to high altitude. Recently, however, we have found that erythropoietin (Epo), the main regulator of red blood cell production, influences both central (brainstem) and peripheral (carotid bodies) respiratory centers when the organism is exposed to hypoxic conditions. Here, we summarize the effect of Epo on the respiratory control in mammals and highlight the potential implication of Epo in the ventilatory acclimatization to high altitude, as well as in the several respiratory sickness and syndromes occurring at low and high altitude.
Collapse
Affiliation(s)
- Max Gassmann
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
35
|
Gassmann M, Tissot van Patot M, Soliz J. The Neuronal Control of Hypoxic Ventilation. Ann N Y Acad Sci 2009; 1177:151-61. [DOI: 10.1111/j.1749-6632.2009.05028.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 2009; 168:109-18. [DOI: 10.1016/j.resp.2009.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 12/21/2022]
|
37
|
Pichon A, Zhenzhong B, Favret F, Jin G, Shufeng H, Marchant D, Richalet JP, Ge RL. Long-term ventilatory adaptation and ventilatory response to hypoxia in plateau pika (Ochotona curzoniae): role of nNOS and dopamine. Am J Physiol Regul Integr Comp Physiol 2009; 297:R978-87. [PMID: 19641133 DOI: 10.1152/ajpregu.00108.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed ventilatory patterns and ventilatory responses to hypoxia (HVR) in high-altitude (HA) plateau pikas, repetitively exposed to hypoxic burrows, and control rats. We evaluated the role of neuronal nitric oxide synthase (nNOS) and dopamine by using S-methyl-l-thiocitrulline (SMTC) inhibitor and haloperidol antagonist, respectively. Ventilation (Vi) was measured using a whole body plethysmograph in conscious pikas (n = 9) and low-altitude (LA) rats (n = 7) at different Pi(O(2)) (56, 80, 111, 150, and 186 mmHg) and in HA acclimatized rats (n = 9, 8 days at 4,600 m) at two different Pi(O(2)) (56 and 80 mmHg). The effects of NaCl, SMTC, and haloperidol on ventilatory patterns were assessed in pikas at Pi(O(2)) = 56 and 80 mmHg. We observed a main species effect with larger Vi, tidal volume (VT), inspiratory time/total time (T(i)/T(tot)), and a lower expiratory time in pikas than in LA rats. Pikas had also a larger VT and lower respiratory frequency compared with HA rats in hypoxia. HVR of pikas and rats were not statistically different. In pikas, SMTC induced a significant increase in Vi and VT for a Pi(O(2)) of 56 mmHg, but had no effect for a PiO(2) of 80 mmHg, i.e., the living altitude of pikas. In pikas, haloperidol injection had no effect on any ventilatory parameter. Long-term ventilatory adaptation in pikas is mainly due to an improvement in respiratory pattern (VT and T(i)/T(tot)) with no significant improvement in HVR. The sensitivity to severe acute hypoxia in pikas seems to be regulated by a peripheral nNOS mechanism.
Collapse
Affiliation(s)
- Aurélien Pichon
- Laboratoire Réponses Cellulaires et Fonctionnelles à l'Hypoxie, Université Paris 13, Bobigny, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lumbroso D, Joseph V. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia. Am J Physiol Regul Integr Comp Physiol 2009; 297:R421-7. [PMID: 19494172 DOI: 10.1152/ajpregu.00068.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Department of Pediatrics, Laval University, Centre de Recherche, Hôpital St-François d'Assise, Quebec, Canada
| | | |
Collapse
|
39
|
Sex steroidal hormones and respiratory control. Respir Physiol Neurobiol 2009; 164:213-21. [PMID: 18599386 DOI: 10.1016/j.resp.2008.06.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/06/2008] [Accepted: 06/07/2008] [Indexed: 12/26/2022]
Abstract
There is a growing public awareness that sex hormones can have an impact on a variety of physiological processes. Yet, despite almost a century of research, we still do not have a clear picture as to the effects of sex hormones on the regulation of breathing. Considerable data has accumulated showing that estrogen, progesterone and testosterone can influence respiratory function in animals and humans. Several disorders of breathing such as obstructive sleep apnea (OSA) and sudden infant death syndrome (SIDS) show clear sex differences in their prevalence, lending weight to the importance of sex hormones in respiratory control. This review focuses on questions such as: how early do sex hormones influence breathing? Which is the most effective? Where do sex hormones exert their effects? What mechanisms are involved? Are there age-associated changes? A clearer understanding of how sex hormones influence the control of breathing could enable sex- and age-specific therapeutic interventions for diseases of the respiratory control system.
Collapse
|
40
|
Soliz J, Thomsen JJ, Soulage C, Lundby C, Gassmann M. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1837-46. [PMID: 19321698 DOI: 10.1152/ajpregu.90967.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acclimatization to hypoxic exposure relies on an elevated ventilation and erythropoietic activity. We recently proposed that erythropoietin (Epo) links both responses: apart from red blood cell production, cerebral and plasma Epo interact with the central and peripheral respiratory centers. Knowing that women cope better than men with reduced oxygen supply (as observed at high altitude), we analyzed the hypoxic ventilatory response in Epo-overexpressing transgenic male and female mice with high Epo levels in brain and plasma (Tg6) or in wild-type animals injected with recombinant human Epo (rhEpo). Exposure to moderate and severe hypoxia as well as to hyperoxia and injection of domperidone, a potent peripheral ventilatory stimulant, revealed that the presence of transgenic or rhEpo extensively increased the hypoxic ventilatory response in female mice compared with their corresponding male siblings. Alterations of catecholamines in the brain stem's respiratory centers were also sex dependent. In a proof-of-concept study, human volunteers were intravenously injected with 5,000 units rhEpo and subsequently exposed to 10% oxygen. Compared with men, the hypoxic ventilatory response was significantly increased in women. We conclude that Epo exerts a sex-dependent impact on hypoxic ventilation improving the response in female mice and in women that most probably involves sexual hormones. Our data provides an explanation as to why women are less susceptible to hypoxia-associated syndromes than men.
Collapse
Affiliation(s)
- Jorge Soliz
- nstitute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Enhancement of the breathing frequency response to hypoxia by neonatal caffeine treatment in adult male rats: the role of testosterone. Respir Physiol Neurobiol 2008; 165:261-5. [PMID: 19041735 DOI: 10.1016/j.resp.2008.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/24/2022]
Abstract
Caffeine is a common treatment for apnea of prematurity. Although relatively safe, little is known about the potential long-term effects of this treatment on respiratory control development. We previously showed that adult male (but not female) rats previously subjected to neonatal caffeine treatment (NCT; 15 mg/kg/day, postnatal days 3-12) show a higher breathing frequency response during the early phase of hypoxic exposure. To address the role of sexual hormones in this sexual dimorphism, the present study tested the hypothesis that in adult male rats, circulating testosterone contributes to NCT-related augmentation of the acute breathing frequency response to hypoxia. Whole body plethysmography was used to compare the acute ventilatory response to moderate hypoxia (FIO2=0.12; 20 min) between rats previously subjected to NCT or neonatal water treatment (NWT; same treatment as NCT but using water). In each group, rats were either sham-operated or gonadectomized (GDX) 14 days prior to ventilatory measurements. In sham-operated rats, the increase in breathing frequency measured during the first 8 min of hypoxia was greater in NCT rats versus NWT. The hypoxic ventilatory response measured at the end of the hypoxia was not affected by treatment, thus indicating that NCT mainly affected the peripheral component of the chemoreflex. Gonadectomy had no effect on NCT but augmented the frequency response of NWT rats to the same level of NCT, thus eliminating the between-group difference. NCT may interfere with the inhibitory effect of circulating testosterone on carotid body function. Although appealing, additional experiments are necessary to substantiate this interpretation.
Collapse
|
42
|
Soliz J, Soulage C, Borter E, van Patot MT, Gassmann M. Ventilatory responses to acute and chronic hypoxia are altered in female but not male Paskin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2008; 295:R649-58. [DOI: 10.1152/ajpregu.00876.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins harboring a Per-Arnt-Sim (PAS) domain are versatile and allow archaea, bacteria, and plants to sense oxygen partial pressure, as well as light intensity and redox potential. A PAS domain associated with a histidine kinase domain is found in FixL, the oxygen sensor molecule of Rhizobium species. PASKIN is the mammalian homolog of FixL, but its function is far from being understood. Using whole body plethysmography, we evaluated the ventilatory response to acute and chronic hypoxia of homozygous deficient male and female PASKIN mice ( Paskin −/−). Although only slight ventilatory differences were found in males, female Paskin −/− mice increased ventilatory response to acute hypoxia. Unexpectedly, females had an impaired ability to reach ventilatory acclimatization in response to chronic hypoxia. Central control of ventilation occurs in the brain stem respiratory centers and is modulated by catecholamines via tyrosine hydroxylase (TH) activity. We observed that TH activity was altered in male and female Paskin −/− mice. Peripheral chemoreceptor effects on ventilation were evaluated by exposing animals to hyperoxia (Dejours test) and domperidone, a peripheral ventilatory stimulant drug directly affecting the carotid sinus nerve discharge. Male and female Paskin −/− had normal peripheral chemosensory (carotid bodies) responses. In summary, our observations suggest that PASKIN is involved in the central control of hypoxic ventilation, modulating ventilation in a gender-dependent manner.
Collapse
|
43
|
Soliz J, Soulage C, Hermann DM, Gassmann M. Acute and chronic exposure to hypoxia alters ventilatory pattern but not minute ventilation of mice overexpressing erythropoietin. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1702-10. [PMID: 17652365 DOI: 10.1152/ajpregu.00350.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apart from enhancing red blood cell production, erythropoietin (Epo) has been shown to modulate the ventilatory response to reduced oxygen supply. Both functions are crucial for the organism to cope with increased oxygen demand. In the present work, we analyzed the impact of Epo and the resulting excessive erythrocytosis in the neural control of normoxic and hypoxic ventilation. To this end, we used our transgenic mouse line (Tg6) that shows high levels of human Epo in brain and plasma, the latter leading to a hematocrit of ∼80%. Interestingly, while normoxic and hypoxic ventilation in Tg6 mice was similar to WT mice, Tg6 mice showed an increased respiratory frequency but a decreased tidal volume. Knowing that Epo modulates catecholaminergic activity, the altered catecholaminergic metabolism measured in brain stem suggested that the increased respiratory frequency in Tg6 mice was related to the overexpression of Epo in brain. In the periphery, higher response to hyperoxia (Dejours test), as well as reduced tyrosine hydroxylase activity in carotid bodies, revealed a higher chemosensitivity to oxygen in transgenic mice. Moreover, in line with the decreased activity of the rate-limiting enzyme for dopamine synthesis, the intraperitoneal injection of a highly specific peripheral ventilatory stimulant, domperidone, did not stimulate hypoxic ventilatory response in Tg6 mice. These results suggest that high Epo plasma levels modulate the carotid body's chemotransduction. All together, these findings are relevant for understanding the cross-talk between the ventilatory and erythropoietic systems exposed to hypoxia.
Collapse
Affiliation(s)
- Jorge Soliz
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
44
|
Soliz J, Gassmann M, Joseph V. Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia. J Physiol 2007; 583:329-36. [PMID: 17584830 PMCID: PMC2277219 DOI: 10.1113/jphysiol.2007.133454] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While erythropoietin (Epo) and its receptor (EpoR) have been widely investigated in brain, the expression and function of the soluble Epo receptor (sEpoR) remain unknown. Here we demonstrate that sEpoR, a negative regulator of Epo's binding to the EpoR, is present in the mouse brain and is down-regulated by 62% after exposure to normobaric chronic hypoxia (10% O2 for 3 days). Furthermore, while normoxic minute ventilation increased by 58% in control mice following hypoxic acclimatization, sEpoR infusion in brain during the hypoxic challenge efficiently reduced brain Epo concentration and abolished the ventilatory acclimatization to hypoxia (VAH). These observations imply that hypoxic downregulation of sEpoR is required for adequate ventilatory acclimatization to hypoxia, thereby underlying the function of Epo as a key factor regulating oxygen delivery not only by its classical activity on red blood cell production, but also by regulating ventilation.
Collapse
Affiliation(s)
- Jorge Soliz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland, and Center de Recherché, Hôpital St-Francois d'Assise, Quebec, Canada.
| | | | | |
Collapse
|
45
|
Lefter R, Morency CE, Joseph V. Progesterone increases hypoxic ventilatory response and reduces apneas in newborn rats. Respir Physiol Neurobiol 2007; 156:9-16. [PMID: 17010680 DOI: 10.1016/j.resp.2006.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 11/26/2022]
Abstract
We hypothesized that progesterone may enhance the hypoxic ventilatory response and reduce the occurrence of apneas in newborn male rats. We studied 10-day-old rats chronically exposed to progesterone (Prog) or vehicle through the milk of lactating mothers. Respiratory and metabolic recordings were performed using whole body plethysmography under normoxia and during hypoxic exposure (10% O(2)--30 min). While progesterone did not alter baseline breathing and metabolic rate, it increased hypoxic ventilatory response particularly by limiting the magnitude of the ventilatory roll-off during the second phase of the hypoxic ventilatory response (i.e. following 5 min of exposure). In parallel, progesterone lowered the number of spontaneous apneas and drastically reduced the occurrence of post-sigh apneas during hypoxic exposure by limiting the time of the post-sigh expiratory pause. Following domperidone injection (used to block peripheral D2 dopamine receptor), minute ventilation increased in Veh pups and the number of spontaneous apneas decreased. These responses were not observed in Prog pups, suggesting that progesterone reduces peripheral dopaminergic inhibition on breathing. We conclude that progesterone is a potent stimulant of hypoxic ventilatory response in newborn rats and effectively reduces the occurrence of apneas.
Collapse
Affiliation(s)
- Raluca Lefter
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St.-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | | | | |
Collapse
|
46
|
Baig MS, Joseph V. Activation of NMDA receptors prevents excessive metabolic decrease in hypoxic rat pups. Respir Physiol Neurobiol 2006; 152:61-71. [PMID: 16040283 DOI: 10.1016/j.resp.2005.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/17/2005] [Accepted: 06/18/2005] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that glutamate NMDA receptors may help maintain metabolic rate and body temperature during acute or chronic hypoxic exposure in newborn rats. We recorded ventilation, metabolism ((.)V(O(2)) -- ((.)V(CO(2)) and rectal temperature, under normoxia, acute hypoxia (30 min -- 12% O(2)), or following 10 days of chronic hypoxia, in 10 days old male and female rats, receiving saline i.p. injection or the NMDA receptor antagonist MK-801. Acute hypoxia decreased rectal temperature and metabolism, and increased ventilation, and (.)V(E)/((.)V(O(2) and (.)V(E)/((.)V(CO(2) to the same extent in males and females. MK-801 injection amplified the metabolic decrease under acute (in males and females) and chronic (in males) hypoxia, prevented the increase of minute ventilation, while (.)V(E)/((.)V(O(2) or (.)V(E)/((.)V(CO(2)remained constant. Hence, NMDA glutamate receptors help to maintain metabolic rate, minute ventilation and body temperature at a determined level in acute (males and females) and chronic hypoxia (males only).
Collapse
Affiliation(s)
- Mirza Shafiulla Baig
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St-François d'Assise, 10 rue de l'Espinay, Que. (QC), Canada G1L 3L5
| | | |
Collapse
|
47
|
Joseph V, Doan VD, Morency CE, Lajeunesse Y, Bairam A. Expression of sex-steroid receptors and steroidogenic enzymes in the carotid body of adult and newborn male rats. Brain Res 2006; 1073-1074:71-82. [PMID: 16443195 DOI: 10.1016/j.brainres.2005.12.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/12/2005] [Accepted: 12/15/2005] [Indexed: 02/04/2023]
Abstract
This study describes the localization and pattern of expression of estradiol and progesterone receptors as well as key enzymes for steroid synthesis (i.e. P450 side-chain-cleavage--P450scc, and P450 aromatase--P450Aro) in the carotid body (CB) and superior cervical ganglion (SCG) of adult, newborn and late fetal male rats, using immunohistochemistry, Western blot and real-time RT-PCR. Our results show a constitutive expression of the beta estradiol receptor (Erbeta) and the 80 kDa and 60 kDa progesterone receptors (PR-A and PR-C) isoforms in the CB, while in the SCG Eralpha, Erbeta, PR-A and PR-C are expressed. While P450Aro staining was negative, P450scc staining was strong both in the SCG and CB. In late fetal and newborn rats, Eralpha was not detected in the CB or SCG, but a slight staining appeared for P450 aromatase in the CB, and to a lesser extent in SCG. P450scc was strongly expressed in CB and SCG of late fetal and newborn rats. We conclude that the carotid body shows a constitutive expression of Erbeta and PR and may be able to synthesize steroids, including estradiol during late fetal life.
Collapse
MESH Headings
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Aromatase/metabolism
- Blotting, Western/methods
- Carotid Body/growth & development
- Carotid Body/metabolism
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Cytochrome P-450 Enzyme System/metabolism
- Gene Expression Regulation, Developmental/physiology
- Immunohistochemistry/methods
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Estradiol/genetics
- Receptors, Estradiol/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St-François d'Assise, 10 rue de l'Espinay, Quebec (QC), Canada G1L 3L5.
| | | | | | | | | |
Collapse
|
48
|
Soliz J, Joseph V. Perinatal steroid exposure and respiratory control during early postnatal life. Respir Physiol Neurobiol 2005; 149:111-22. [PMID: 16203215 DOI: 10.1016/j.resp.2005.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/20/2005] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Numerous factors involved in general homeostasis are able to modulate respiratory motor output. These include placental-derived steroids, which are necessary for maternal physiological adjustments during gestation, including respiratory stimulation. Despite the fact that these hormones exert potent effects on neural development in the fetus, the hypothesis of a developmental control of the neural respiratory network by placental-derived steroids has been approached experimentally only recently. The objective of this review is to summarize the role and mode of action of placental steroids on respiratory control in adult mammals and highlight the potential pathways by which such steroids are supplied to the developing fetus. Additionally, we present recent results showing that the beta estradiol and progesterone receptors are expressed in the carotid body of newborn male rats, thus supporting the hypothesis of receptor-mediated effect of estradiol and progesterone on carotid bodies.
Collapse
Affiliation(s)
- J Soliz
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse, 260 CH-8057 Zürich, Switzerland
| | | |
Collapse
|
49
|
Kinkead R, Genest SE, Gulemetova R, Lajeunesse Y, Laforest S, Drolet G, Bairam A. Neonatal maternal separation and early life programming of the hypoxic ventilatory response in rats. Respir Physiol Neurobiol 2005; 149:313-24. [PMID: 15894516 DOI: 10.1016/j.resp.2005.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 11/29/2022]
Abstract
The neonatal period is critical for central nervous system (CNS) development. Recent studies have shown that this basic neurobiological principle also applies to the neural circuits regulating respiratory activity as exposure to excessive or insufficient chemosensory stimuli during early life can have long-lasting consequences on the performance of this vital system. Although the tactile, olfactory, and auditory stimuli that the mother provides to her offspring during the neonatal period are not directly relevant to respiratory homeostasis, they likely contribute to respiratory control development. This review outlines the rationale for the link between maternal stimuli and programming of the hypoxic ventilatory response during early life, and presents recent results obtained in rats indicating that experimental disruption of mother-pup interaction during this critical period elicits significant phenotypic plasticity of the hypoxic ventilatory response.
Collapse
Affiliation(s)
- Richard Kinkead
- Pediatrics, Centre de Recherche Hospitalier Universitaire de Québec, Université Laval, Québec, Qué., Canada.
| | | | | | | | | | | | | |
Collapse
|
50
|
Soliz J, Joseph V, Soulage C, Becskei C, Vogel J, Pequignot JM, Ogunshola O, Gassmann M. Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol 2005; 568:559-71. [PMID: 16051624 PMCID: PMC1474739 DOI: 10.1113/jphysiol.2005.093328] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Apart from its role in elevating red blood cell number, erythropoietin (Epo) exerts protective functions in brain, retina and heart upon ischaemic injury. However, the physiological non-erythroid functions of Epo remain unclear. Here we use a transgenic mouse line (Tg21) constitutively overexpressing human Epo in brain to investigate Epo's impact on ventilation upon hypoxic exposure. Tg21 mice showed improved ventilatory response to severe acute hypoxia and moreover improved ventilatory acclimatization to chronic hypoxic exposure. Furthermore, following bilateral transection of carotid sinus nerves that uncouples the brain from the carotid body, Tg21 mice adapted their ventilation to acute severe hypoxia while chemodenervated wild-type (WT) animals developed a life-threatening apnoea. These results imply that Epo in brain modulates ventilation. Additional analysis revealed that the Epo receptor (EpoR) is expressed in the main brainstem respiratory centres and suggested that Epo stimulates breathing control by alteration of catecholaminergic metabolism in brainstem. The modulation of hypoxic pattern of ventilation after i.v. injection of recombinant human Epo in WT mice and the dense EpoR immunosignal observed in carotid bodies showed that these chemoreceptors are sensitive to plasma levels of Epo. In summary, our results suggest that Epo controls ventilation at the central (brainstem) and peripheral (carotid body) levels. These novel findings are relevant to understanding better respiratory disorders including those occurring at high altitude.
Collapse
Affiliation(s)
- Jorge Soliz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|