1
|
Rutherford MM, Akerman AP, Meade RD, Notley SR, Schmidt MD, Kenny GP. The effect of extracellular hyperosmolality on sweat rate during metaboreflex activation in passively heated young men. Am J Physiol Regul Integr Comp Physiol 2021; 322:R1-R13. [PMID: 34786980 DOI: 10.1152/ajpregu.00161.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metaboreflex activation augments sweating during mild-to-moderate hyperthermia in euhydrated (isosmotic isovolemic) individuals. Recent work indicates that extracellular hyperosmolality may augment metaboreflex-mediated elevations in sympathetic nervous activity. Our primary objective was therefore to test the hypothesis that extracellular hyperosmolality would exacerbate metaboreflex-mediated increases in sweat rate. On two separate occasions, 12 young men (mean (SD): 25 (5) years) received a 90-min intravenous infusion of either 0.9% saline (isosmotic condition, ISO) or 3.0% saline (hyperosmotic condition, HYP), resulting in a post-infusion serum osmolality of 290 (3) and 301 (7) mOsm/kg, respectively. A whole-body water perfusion suit was then used to increase esophageal temperature by 0.8°C above resting. Participants then performed a metaboreflex activation protocol consisting of 90 s isometric handgrip exercise (40% of their pre-determined maximum voluntary contraction), followed by 150 s of brachial occlusion (trapping produced metabolites within the limb). Metaboreflex-induced sweating was quantified as the change in global sweat rate (from pre-isometric handgrip exercise to brachial occlusion), estimated as the surface area-weighted average of local sweat rate on the abdomen, axilla, chest, bicep, quadriceps, and calf, measured using ventilated capsules (3.8 cm2). We also explored whether this response differed between body regions. The change in global sweat rate due to metaboreflex activation was significantly greater in HYP compared to ISO (0.03 mg/min/cm2 [95% confidence interval: 0.00, 0.06]; p=0.047), but was not modulated by body region (site*condition interaction: p=0.679). These findings indicate that extracellular hyperosmolality augments metaboreflex-induced increases in global sweat rate, with no evidence for region-specific differences.
Collapse
Affiliation(s)
- Maura M Rutherford
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Madison D Schmidt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Okamoto Y, Amano T. Effects of sex and menstrual cycle on sweating during isometric handgrip exercise and postexercise forearm occlusion. Exp Physiol 2021; 106:1508-1523. [PMID: 33899281 DOI: 10.1113/ep089464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do sex and menstrual cycle modulate sweating during isometric handgrip exercise and muscle metaboreceptor stimulation? What is the main finding and its importance? Sex modulates sweating during isometric handgrip exercise, as indicated by the lower sweat output per gland in women than in men, but not during muscle metaboreceptor stimulation. Sweat output per gland during isometric handgrip exercise and muscle metaboreceptor stimulation were lower in the mid-luteal phase than in the early follicular phase in women. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response. Our results provide new insights regarding sex- and menstrual cycle-related modulation of the sweating response. ABSTRACT We investigated whether sex and menstrual cycle could modulate sweating during isometric handgrip (IH) exercise and muscle metaboreceptor stimulation. Twelve young, healthy women in the early follicular (EF) and mid-luteal (ML) phases and 14 men underwent two experimental sessions consisting of a 1.5 min IH exercise at 25 and 50% of maximal voluntary contraction (MVC) in a hot environment (35°C, relative humidity 50%) followed by 2 min forearm occlusion to stimulate muscle metaboreceptors. Sweat rates, the number of activated sweat glands and the sweat output per gland (SGO) on the forearm and chest were assessed. Pilocarpine-induced sweating was also assessed via transdermal iontophoresis to compare the responses with those of IH exercise and muscle metaboreceptor stimulation, based on correlation analysis. Sweat rates on the forearm and chest during IH exercise and muscle metaboreceptor stimulation did not differ between men and women in either menstrual cycle phase (all P ≥ 0.144). However, women in both phases showed lower SGO on the forearm and/or chest compared with men during IH exercise at 50% of MVC, with no differences in muscle metaboreceptor stimulation. Women in the ML phase had a lower forearm sweat rate during IH exercise at 50% of MVC (P = 0.015) and SGO during exercise and muscle metaboreceptor stimulation (main effect, both P ≤ 0.003) compared with those in the EF phase. Overall, sweat rate and SGO during IH exercise and muscle metaboreceptor stimulation were correlated with pilocarpine-induced responses (all P ≤ 0.064, r ≥ 0.303). We showed that sex and menstrual cycle modulate sudomotor activity during IH exercise and/or muscle metaboreceptor stimulation. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response.
Collapse
Affiliation(s)
- Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Amano T, Igarashi A, Fujii N, Hiramatsu D, Inoue Y, Kondo N. β-Adrenergic receptor blockade does not modify non-thermal sweating during static exercise and following muscle ischemia in habitually trained individuals. Eur J Appl Physiol 2018; 118:2669-2677. [DOI: 10.1007/s00421-018-3993-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 11/29/2022]
|
4
|
Abstract
In humans, sweating is the most powerful autonomic thermoeffector. The evaporation of sweat provides by far the greatest potential for heat loss and it represents the only means of heat loss when air temperature exceeds skin temperature. Sweat production results from the integration of afferent neural information from peripheral and central thermoreceptors which leads to an increase in skin sympathetic nerve activity. At the neuroglandular junction, acetylcholine is released and binds to muscarinic receptors which stimulate the secretion of a primary fluid by the secretory coil of eccrine glands. The primary fluid subsequently travels through a duct where ions are reabsorbed. The end result is the expulsion of hypotonic sweat on to the skin surface. Sweating increases in proportion with the intensity of the thermal challenge in an attempt of the body to attain heat balance and maintain a stable internal body temperature. The control of sweating can be modified by biophysical factors, heat acclimation, dehydration, and nonthermal factors. The purpose of this article is to review the role of sweating as a heat loss thermoeffector in humans.
Collapse
|
5
|
McDermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, Kenney WL, O'Connor FG, Roberts WO. National Athletic Trainers' Association Position Statement: Fluid Replacement for the Physically Active. J Athl Train 2017; 52:877-895. [PMID: 28985128 PMCID: PMC5634236 DOI: 10.4085/1062-6050-52.9.02] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To present evidence-based recommendations that promote optimized fluid-maintenance practices for physically active individuals. BACKGROUND Both a lack of adequate fluid replacement (hypohydration) and excessive intake (hyperhydration) can compromise athletic performance and increase health risks. Athletes need access to water to prevent hypohydration during physical activity but must be aware of the risks of overdrinking and hyponatremia. Drinking behavior can be modified by education, accessibility, experience, and palatability. This statement updates practical recommendations regarding fluid-replacement strategies for physically active individuals. RECOMMENDATIONS Educate physically active people regarding the benefits of fluid replacement to promote performance and safety and the potential risks of both hypohydration and hyperhydration on health and physical performance. Quantify sweat rates for physically active individuals during exercise in various environments. Work with individuals to develop fluid-replacement practices that promote sufficient but not excessive hydration before, during, and after physical activity.
Collapse
|
6
|
Haqani B, Fujii N, Kondo N, Kenny GP. The mechanisms underlying the muscle metaboreflex modulation of sweating and cutaneous blood flow in passively heated humans. Physiol Rep 2017; 5:5/3/e13123. [PMID: 28183862 PMCID: PMC5309575 DOI: 10.14814/phy2.13123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 11/24/2022] Open
Abstract
Metaboreceptors can modulate cutaneous blood flow and sweating during heat stress but the mechanisms remain unknown. Fourteen participants (31 ± 13 years) performed 1‐min bout of isometric handgrip (IHG) exercise at 60% of their maximal voluntary contraction followed by a 3‐min occlusion (OCC), each separated by 10 min, initially under low (LHS, to activate sweating without changes in core temperature) and high (HHS, whole‐body heating to a core temperature increase of 1.0°C) heat stress conditions. Cutaneous vascular conductance (CVC) and sweat rate were measured continuously at four forearm skin sites perfused with 1) lactated Ringer's solution (Control), 2) 10 mmol L‐NAME [inhibits nitric oxide synthase (NOS)], 3) 10 mmol Ketorolac [inhibits cyclooxygenase (COX)], or 4) 4 mmol theophylline (THEO; inhibits adenosine receptors). Relative to pre‐IHG levels with Control, NOS inhibition attenuated the metaboreceptor‐mediated increase in sweating under LHS and HHS (P ≤ 0.05), albeit the attenuation was greater under LHS (P ≤ 0.05). In addition, a reduction from baseline was observed with THEO under LHS during OCC (P ≤ 0.05), but not HHS (both P > 0.05). In contrast, CVC was lower than Control with L‐NAME during OCC in HHS (P ≤ 0.05), but not LHS (P > 0.05). We show that metaboreceptor activation modulates CVC via the stimulation of NOS and adenosine receptors, whereas NOS, but not COX or adenosine receptors, contributes to sweating at all levels of heating.
Collapse
Affiliation(s)
- Baies Haqani
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa, Ottawa, Canada
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment Kobe University, Kobe, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Amano T, Kai S, Nakajima M, Ichinose-Kuwahara T, Gerrett N, Kondo N, Inoue Y. Sweating responses to isometric hand-grip exercise and forearm muscle metaboreflex in prepubertal children and elderly. Exp Physiol 2016; 102:214-227. [DOI: 10.1113/ep085908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/09/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment; Kobe University; Kobe Japan
- Laboratory for Exercise and Environmental Physiology, Faculty of Education; Niigata University; Niigata Japan
| | - Seiko Kai
- Laboratory for Human Performance Research; Osaka International University; Osaka Japan
| | - Michi Nakajima
- Laboratory for Human Performance Research; Osaka International University; Osaka Japan
| | | | - Nicola Gerrett
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment; Kobe University; Kobe Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment; Kobe University; Kobe Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research; Osaka International University; Osaka Japan
| |
Collapse
|
8
|
Amano T, Ichinose M, Inoue Y, Nishiyasu T, Koga S, Kenny GP, Kondo N. Influence of forearm muscle metaboreceptor activation on sweating and cutaneous vascular responses during dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1332-9. [PMID: 27053652 DOI: 10.1152/ajpregu.00545.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/30/2016] [Indexed: 11/22/2022]
Abstract
We examined whether the sustained activation of metaboreceptor in forearm during cycling exercise can modulate sweating and cutaneous vasodilation. On separate days, 12 young participants performed a 1.5-min isometric handgrip exercise at 40% maximal voluntary contraction followed by 1) 9-min forearm ischemia (Occlusion, to activate metaboreceptor) or 2) no ischemia (Control) in thermoneutral conditions (27°C, 50%) with mean skin temperature clamped at 34°C. Thirty seconds after the handgrip exercise, participants cycled for 13.5 min at 40% V̇o2 max For Occlusion, forearm ischemia was maintained for 9 min followed by no ischemia thereafter. Local sweat rate (SR, ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) on the contralateral nonischemic arm as well as esophageal and skin temperatures were measured continuously. The period of ischemia in the early stages of exercise increased SR (+0.03 mg·cm(-2)·min(-1), P < 0.05) but not CVC (P > 0.05) above Control levels. No differences were measured in the esophageal temperature at which onset of sweating (Control 37.19 ± 0.09 vs. Occlusion 37.07 ± 0.09°C) or CVC (Control 37.21 ± 0.08 vs. Occlusion 37.08 ± 0.10°C) as well as slopes for these responses (all P > 0.05). However, a greater elevation in SR occurred thereafter such that SR was significantly elevated at the end of the ischemic period relative to Control (0.37 ± 0.05 vs. 0.23 ± 0.05 mg·cm(-2)·min(-1), respectively, P < 0.05) despite no differences in esophageal temperature. We conclude that the activation of forearm muscle metaboreceptor can modulate sweating, but not CVC, during cycling exercise without affecting the core temperature-SR relationship.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan;
| |
Collapse
|
9
|
Paull G, Dervis S, McGinn R, Haqani B, Flouris AD, Kondo N, Kenny GP. Muscle metaboreceptors modulate postexercise sweating, but not cutaneous blood flow, independent of baroreceptor loading status. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1415-24. [PMID: 26377560 DOI: 10.1152/ajpregu.00287.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022]
Abstract
We examined whether sustained changes in baroreceptor loading status during prolonged postexercise recovery can alter the metaboreceptors' influence on heat loss. Thirteen young males performed a 1-min isometric handgrip exercise (IHG) at 60% maximal voluntary contraction followed by 2 min of forearm ischemia (to activate metaboreceptors) before and 15, 30, 45, and 60 min after a 15-min intense treadmill running exercise (>90% maximal heart rate) in the heat (35°C). This was repeated on three separate days with continuous lower body positive (LBPP, +40 mmHg), negative (LBNP, -20 mmHg), or no pressure (Control) from 13- to 65-min postexercise. Sweat rate (ventilated capsule; forearm, chest, upper back) and cutaneous vascular conductance (CVC; forearm, upper back) were measured. Relative to pre-IHG levels, sweating at all sites increased during IHG and remained elevated during ischemia at baseline and similarly at 30, 45, and 60 min postexercise (site average sweat rate increase during ischemia: Control, 0.13 ± 0.02; LBPP, 0.12 ± 0.02; LBNP, 0.15 ± 0.02 mg·min(-1)·cm(-2); all P < 0.01), but not at 15 min (all P > 0.10). LBPP and LBNP did not modulate the pattern of sweating to IHG and ischemia (all P > 0.05). At 15-min postexercise, forearm CVC was reduced from pre-IHG levels during both IHG and ischemia under LBNP only (ischemia: 3.9 ± 0.8% CVCmax; P < 0.02). Therefore, we show metaboreceptors increase postexercise sweating in the middle to late stages of recovery (30-60 min), independent of baroreceptor loading status and similarly between skin sites. In contrast, metaboreflex modulation of forearm but not upper back CVC occurs only in the early stages of recovery (15 min) and is dependent upon baroreceptor unloading.
Collapse
Affiliation(s)
- Gabrielle Paull
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Sheila Dervis
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Baies Haqani
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Andreas D Flouris
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada; FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; and
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
10
|
Amano T, Ichinose M, Inoue Y, Nishiyasu T, Koga S, Kondo N. Modulation of muscle metaboreceptor activation upon sweating and cutaneous vascular responses to rising core temperature in humans. Am J Physiol Regul Integr Comp Physiol 2015; 308:R990-7. [PMID: 25855304 DOI: 10.1152/ajpregu.00005.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 11/22/2022]
Abstract
The present study investigated the role of muscle metaboreceptor activation on human thermoregulation by measuring core temperature thresholds and slopes for sweating and cutaneous vascular responses during passive heating associated with central and peripheral mechanisms. Six male and eight female subjects inserted their lower legs into hot water (43°C) while wearing a water perfusion suit on the upper body (34°C). One minute after immersion, an isometric handgrip exercise--40% of maximum voluntary contraction-was conducted for 1.5 min in both control and experimental conditions, while postexercise occlusion was performed in the experimental condition only for 9 min. The postexercise forearm occlusion during passive heating consistently stimulated muscle metaboreceptors, as implicated by significantly elevated mean arterial blood pressure throughout the experimental period (P <0.05). Stimulation of the forearm muscle metaboreceptors increased sweating and cutaneous vascular responses during passive heating, and was associated with significant reductions in esophageal temperature threshold of sweating and cutaneous vasodilation (Δ threshold, sweating: 0.33 ± 0.05 and 0.16 ± 0.04°C, cutaneous vascular conductance: 0.38 ± 0.08 and 0.16 ± 0.05°C for control and experimental groups, respectively, P < 0.05). The slopes of these responses were not different between the conditions. These results suggest that muscle metaboreceptor activation in the forearm accelerates sweating and cutaneous vasodilation during passive heating associated with a reduction in core temperature thresholds and may be related to central mechanisms controlling heat loss responses.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan;
| |
Collapse
|
11
|
Schlader ZJ, Gagnon D, Lucas RAI, Pearson J, Crandall CG. Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress. J Appl Physiol (1985) 2015; 118:449-54. [PMID: 25525210 DOI: 10.1152/japplphysiol.00800.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study tested the hypothesis that sweat rate during passive heat stress is limited by baroreceptor unloading associated with heat stress. Two protocols were performed in which healthy subjects underwent passive heat stress that elicited an increase in intestinal temperature of ∼1.8°C. Upon attaining this level of hyperthermia, in protocol 1 (n = 10, 3 females) a bolus (19 ml/kg) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to elevate central venous pressure (CVP), while in protocol 2 (n = 11, 5 females) phenylephrine was infused intravenously (60-120 μg/min) to return mean arterial pressure (MAP) to normothermic levels. In protocol 1, heat stress reduced CVP from 3.9 ± 1.9 mmHg (normothermia) to -0.6 ± 1.4 mmHg (P < 0.001), while saline infusion returned CVP to normothermic levels (5.1 ± 1.7 mmHg; P > 0.999). Sweat rate was elevated by heat stress (1.21 ± 0.44 mg·cm(-2)·min(-1)) but remained unchanged during rapid saline infusion (1.26 ± 0.47 mg·cm(-2)·min(-1), P = 0.5), whereas cutaneous vascular conductance increased from 77 ± 10 to 101 ± 20% of local heating max (P = 0.029). In protocol 2, MAP was reduced with heat stress from 85 ± 7 mmHg to 76 ± 8 mmHg (P = 0.048). Although phenylephrine infusion returned MAP to normothermic levels (88 ± 7 mmHg; P > 0.999), sweat rate remained unchanged during phenylephrine infusion (1.39 ± 0.22 vs. 1.41 ± 0.24 mg·cm(-2)·min(-1); P > 0.999). These data indicate that both cardiopulmonary and arterial baroreceptor unloading do not limit increases in sweat rate during passive heat stress.
Collapse
Affiliation(s)
- Zachary J Schlader
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, and the University of Texas Southwestern Medical Center, Dallas, Texas; Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Daniel Gagnon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, and the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rebekah A I Lucas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, and the University of Texas Southwestern Medical Center, Dallas, Texas; Department of Public Health and Clinical Medicine, Umeå University, Umeå Sweden; and
| | - James Pearson
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, and the University of Texas Southwestern Medical Center, Dallas, Texas; Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, Colorado
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, and the University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
12
|
Fujii N, Honda Y, Komura K, Tsuji B, Sugihara A, Watanabe K, Kondo N, Nishiyasu T. Effect of voluntary hypocapnic hyperventilation on the relationship between core temperature and heat loss responses in exercising humans. J Appl Physiol (1985) 2014; 117:1317-24. [PMID: 25257867 DOI: 10.1152/japplphysiol.00334.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two thermolytic thermoregulatory responses, cutaneous vasodilation and sweating, begin when core temperature reaches a critical threshold, after which response magnitudes increase linearly with increasing core temperature; thus the slope indicates response sensitivity. We evaluated the influence of hypocapnia induced by voluntary hyperventilation on the core temperature threshold and sensitivity of thermoregulatory responses. Ten healthy males performed 15 min of cycling at 117 W (29.5°C, 50% RH) under three breathing conditions: 1) spontaneous ventilation, 2) voluntary normocapnic hyperventilation, and 3) voluntary hypocapnic hyperventilation. In the hypocapnic hyperventilation trial, end-tidal CO2 pressure was reduced throughout the exercise, whereas it was maintained around the normocapnic level in the other two trials. Cutaneous vascular conductances at the forearm and forehead were evaluated as laser-Doppler signal/mean arterial blood pressure, and the forearm sweat rate was measured using the ventilated capsule method. Esophageal temperature threshold was higher for the increase in cutaneous vascular conductance in the hypocapnic than normocapnic hyperventilation trial at the forearm (36.88 ± 0.36 vs. 36.68 ± 0.34°C, P < 0.05) and forehead (36.89 ± 0.31 vs. 36.75 ± 0.31°C, P < 0.05). The slope relating esophageal temperature to cutaneous vascular conductance was decreased in the hypocapnic than normocapnic hyperventilation trial at the forearm (302 ± 177 vs. 420 ± 178% baseline/°C, P < 0.05) and forehead (236 ± 164 vs. 358 ± 221% baseline/°C, P < 0.05). Neither the threshold nor the slope for the forearm sweat rate differed significantly between the hypocapnic or normocapnic hyperventilation trials. These findings indicate that in exercising humans, hypocapnia induced by voluntary hyperventilation does not influence sweating, but it attenuates the cutaneous vasodilatory response by increasing its threshold and reducing its sensitivity.
Collapse
Affiliation(s)
- Naoto Fujii
- Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan; and
| | - Yasushi Honda
- Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan; and
| | - Ken Komura
- Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan; and
| | - Bun Tsuji
- Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan; and
| | - Akira Sugihara
- Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan; and
| | - Kazuhito Watanabe
- Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan; and
| | - Narihiko Kondo
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan; and
| |
Collapse
|
13
|
Kenny GP, Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol 2014; 3:1689-719. [PMID: 24265242 DOI: 10.1002/cphy.c130011] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.
Collapse
Affiliation(s)
- Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
14
|
Amano T, Ichinose M, Nishiyasu T, Inoue Y, Koga S, Miwa M, Kondo N. Sweating response to passive stretch of the calf muscle during activation of forearm muscle metaboreceptors in heated humans. Am J Physiol Regul Integr Comp Physiol 2014; 306:R728-34. [PMID: 24598460 DOI: 10.1152/ajpregu.00515.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of muscle metaboreceptors and mechanoreceptors has been shown to independently influence the sweating response, while their integrative control effects remain unclear. We examined the sweating response when the two muscle receptors are concurrently activated in different limbs, as well as the blood pressure response. In total, 27 young males performed passive calf muscle stretches (muscle mechanoreceptor activation) for 30 s in a semisupine position with and without postisometric handgrip exercise muscle ischemia (PEMI, muscle metaboreceptor activation) at exercise intensities of 35 and 50% of maximum voluntary contraction (MVC) under hot conditions (ambient temperature, 35°C, relative humidity, 50%). Passive calf muscle stretching alone increased the mean sweating rate significantly on the forehead, chest, and thigh (SRmean) and mean arterial blood pressure (MAP), but not the heart rate (HR), from prestretching levels by 0.04 ± 0.01 mg·cm(2)·min(-1), 4.0 ± 1.3 mmHg (P < 0.05), and -1.0 ± 0.5 beats/min (P > 0.05), respectively. The SRmean and MAP during PEMI were significantly higher than those at rest. The passive calf muscle stretch during PEMI increased MAP significantly by 3.4 ± 1.0 and 2.0 ± 0.7 mmHg for 35 and 50% of MVC, respectively (P < 0.05), but not that of SRmean or HR at either exercise intensity. These results suggest that sweating and blood pressure responses to concurrent activation of the two muscle receptors in different limbs differ and that the influence of calf muscle mechanoreceptor activation alone on the sweating response disappears during forearm muscle metaboreceptor activation.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan; and
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Mikio Miwa
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan;
| |
Collapse
|
15
|
McGinn R, Swift B, Binder K, Gagnon D, Kenny GP. Do metaboreceptors alter heat loss responses following dynamic exercise? Am J Physiol Regul Integr Comp Physiol 2014; 306:R82-9. [DOI: 10.1152/ajpregu.00364.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metaboreceptor activation during passive heating is known to influence cutaneous vascular conductance (CVC) and sweat rate (SR). However, whether metaboreceptors modulate the suppression of heat loss following dynamic exercise remains unclear. On separate days, before and after 15 min of high-intensity treadmill running in the heat (35°C), eight males underwent either 1) no isometric handgrip exercise (IHG) or ischemia (CON), 2) 1 min IHG (60% of maximum, IHG), 3) 1 min IHG followed by 2 min of ischemia (IHG+OCC), 4) 2 min of ischemia (OCC), or 5) 1 min IHG followed by 2 min of ischemia with application of lower body negative pressure (IHG+LBNP). SR (ventilated capsule), cutaneous blood flow (Laser-Doppler), and mean arterial pressure (Finometer) were measured continuously before and after dynamic exercise. Following dynamic exercise, CVC was reduced with IHG exercise ( P < 0.05) and remained attenuated with post-IHG ischemia during IHG+OCC relative to CON (39 ± 2 vs. 47 ± 6%, P < 0.05). Furthermore, the reduction in CVC was exacerbated by application of LBNP during post-IHG ischemia (35 ± 3%, P < 0.05) relative to IHG+OCC. SR increased during IHG exercise ( P < 0.05) and remained elevated during post-IHG ischemia relative to CON following dynamic exercise (0.94 ± 0.15 vs. 0.53 ± 0.09 mg·min−1·cm−2, P < 0.05). In contrast, application of LBNP during post-IHG ischemia had no effect on SR (0.93 ± 0.09 mg·min−1·cm−2, P > 0.05) relative to post-IHG ischemia during IHG+OCC. We show that CVC is reduced and that SR is increased by metaboreceptor activation following dynamic exercise. In addition, we show that the metaboreflex-induced loading of the baroreceptors can influence the CVC response, but not the sweating response.
Collapse
Affiliation(s)
- Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brendan Swift
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Konrad Binder
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Gagnon
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|