1
|
Lucu Č, Turner LM. Ionic regulatory strategies of crabs: the transition from water to land. Front Physiol 2024; 15:1399194. [PMID: 39397859 PMCID: PMC11467477 DOI: 10.3389/fphys.2024.1399194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 10/15/2024] Open
Abstract
Terrestrial crabs (brachyurans and anomurans) have invaded land following a variety of pathways from marine and/or via freshwater environments. This transition from water to land requires physiological, ecological, and behavioral adaptations to allow the exploitation of these new environmental conditions. Arguably, the management of salt and water balance (e.g., osmoregulation) is integral for their survival and success in an environment where predominantly low-salinity aquatic (e.g., freshwater) water sources are found, sometimes in only minimal amounts. This requires a suite of morphological and biochemical modifications, especially at the branchial chamber of semi-terrestrial and terrestrial crabs to allow reprocessing of urine to maximize ion uptake. Using knowledge gained from electrophysiology, biochemistry, and more recent molecular biology techniques, we present summarized updated models for ion transport for all major taxonomic groups of terrestrial crabs. This is an exciting and fast-moving field of research, and we hope that this review will stimulate further study. Terrestrial crabs retain their crown as the ideal model group for studying the evolutionary pathways that facilitated terrestrial invasion.
Collapse
Affiliation(s)
- Čedomil Lucu
- Croatian Academy of Sciences and Arts, Department of Natural Sciences, Zagreb, Croatia
| | - Lucy M. Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
2
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
3
|
Zhu S, Yan X, Shen C, Wu L, Tang D, Wang Y, Wang Z. Transcriptome analysis of the gills of Eriocheir sinensis provide novel insights into the molecular mechanisms of the pH stress response. Gene 2022; 833:146588. [PMID: 35598683 DOI: 10.1016/j.gene.2022.146588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Eriocheir sinensis is an important economic species in China, which is easily affected by pH changes. However, the molecular mechanism of the pH stress response in E. sinensis is still unclear. Therefore, this study aimed to examine the molecular response mechanism of E. sinensis based on pH variation surveillance, histopathological evaluation and transcriptomic analyses. Firstly, pH variation surveillance showed that E. sinensis could actively regulate the pH of its environment. Meanwhile, the histopathological evaluation suggested that pH stress seriously damaged the gills, especially at high pH. Finally, transcriptome analysis showed that the expression of genes related to ion transport, immune stress, and energy metabolism significantly changed. Many genes played an important role in the pH response of E. sinensis, such as carbonic anhydrase (CA), mitochondrial proton/calcium exchanger protein (LETM1), recombinant sodium/hydrogen exchanger 3 (SLC9A3/NHE3), heat shock protein 90 alpha family class a member (HSP90A), alkylglycerone phosphate synthase (AGPS), succinate-CoA ligase ADP-forming subunit beta (LSC2), and superoxide dismutase (SOD). Our study revealed the molecular response mechanism of E. sinensis in response to pH stress, thus providing a basis for further research on the molecular mechanism of response to pH stress in aquatic animals.
Collapse
Affiliation(s)
- Shang Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Xinyao Yan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Lv Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu Province, China
| | - Yue Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China.
| |
Collapse
|
4
|
Salmerón C, Harter TS, Kwan GT, Roa JN, Blair SD, Rummer JL, Shiels HA, Goss GG, Wilson RW, Tresguerres M. Molecular and biochemical characterization of the bicarbonate-sensing soluble adenylyl cyclase from a bony fish, the rainbow trout Oncorhynchus mykiss. Interface Focus 2021; 11:20200026. [PMID: 33633829 DOI: 10.1098/rsfs.2020.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Soluble adenylyl cyclase (sAC) is a HC O 3 - -stimulated enzyme that produces the ubiquitous signalling molecule cAMP, and deemed an evolutionarily conserved acid-base sensor. However, its presence is not yet confirmed in bony fishes, the most abundant and diverse of vertebrates. Here, we identified sAC genes in various cartilaginous, ray-finned and lobe-finned fish species. Next, we focused on rainbow trout sAC (rtsAC) and identified 20 potential alternative spliced mRNAs coding for protein isoforms ranging in size from 28 to 186 kDa. Biochemical and kinetic analyses on purified recombinant rtsAC protein determined stimulation by HC O 3 - at physiologically relevant levels for fish internal fluids (EC50 ∼ 7 mM). rtsAC activity was sensitive to KH7, LRE1, and DIDS (established inhibitors of sAC from other organisms), and insensitive to forskolin and 2,5-dideoxyadenosine (modulators of transmembrane adenylyl cyclases). Western blot and immunocytochemistry revealed high rtsAC expression in gill ion-transporting cells, hepatocytes, red blood cells, myocytes and cardiomyocytes. Analyses in the cell line RTgill-W1 suggested that some of the longer rtsAC isoforms may be preferentially localized in the nucleus, the Golgi apparatus and podosomes. These results indicate that sAC is poised to mediate multiple acid-base homeostatic responses in bony fishes, and provide cues about potential novel functions in mammals.
Collapse
Affiliation(s)
- Cristina Salmerón
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Till S Harter
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Jinae N Roa
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Salvatore D Blair
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Biology, Winthrop University, Rock Hill, SC, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rod W Wilson
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Yamaguchi M, Soga K. Hemolymph composition, gene expressions in the gills, and thus the survival of euryhaline crabs are controlled by ambient minor cations according to osmotic condition-dependent manner. Ecol Evol 2020; 10:12183-12199. [PMID: 33209280 PMCID: PMC7664001 DOI: 10.1002/ece3.6846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
Na+ and Cl- are the most abundant dissolved ions in seawater, constituting ~ 85% of total ions. They significantly affect the osmolality of body fluids of marine invertebrates. Seawater also contains minor ions such as Mg2+, Ca2+, K+, and SO4 2- , but their effects on marine organisms are unclear. This study analyzed the effects of Mg2+, Ca2+, and K+ (ambient minor cations) on survival, hemolymph ionic composition, and gene expression in the gills of three euryhaline crabs: Helice tridens, Macrophthalmus japonicus, and Chiromantes dehaani. Ambient minor cations were required for survival of H. tridens and M. japonicus under isosmotic conditions with seawater. The ambient minor cations also affected the osmolality and ionic composition of hemolymph by regulating expressions of specific genes in the gills required for Na+ uptake, such as Na+/K+ ATPase, cytoplasmic carbonic anhydrase, and Na+/H+ exchanger. Administration of carbonic anhydrase and Na+/H+ exchanger inhibitors increased the survival rate even if ambient minor cations did not exist. In contrast, under hypo-osmotic conditions, ambient minor cations had different effects on crabs, a lethal effect on M. japonicus, and an increase of the hemolymph K+ concentration in H. tridens and M. japonicus. It is thus concluded that the effects of ambient minor cations are osmolality-dependent. In contrast, in C. dehaani, the hemolymph ionic composition and survival rate were hardly affected by ambient minor cations, probably reflecting the habitat of this species. These results strongly indicated that C. dehaani is less susceptive to ambient minor cations compared to H. tridens and M. japonicus.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Chemistry and BiochemistryNational Institute of TechnologySuzuka CollegeSuzukaJapan
| | - Kouichi Soga
- Department of BiologyGraduate School of ScienceOsaka City UniversityOsakaJapan
| |
Collapse
|
6
|
Allen GJP, Kuan PL, Tseng YC, Hwang PP, Quijada-Rodriguez AR, Weihrauch D. Specialized adaptations allow vent-endemic crabs (Xenograpsus testudinatus) to thrive under extreme environmental hypercapnia. Sci Rep 2020; 10:11720. [PMID: 32678186 PMCID: PMC7367285 DOI: 10.1038/s41598-020-68656-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Shallow hydrothermal vent environments are typically very warm and acidic due to the mixing of ambient seawater with volcanic gasses (> 92% CO2) released through the seafloor making them potential ‘natural laboratories’ to study long-term adaptations to extreme hypercapnic conditions. Xenograpsus testudinatus, the shallow hydrothermal vent crab, is the sole metazoan inhabitant endemic to vents surrounding Kueishantao Island, Taiwan, where it inhabits waters that are generally pH 6.50 with maximum acidities reported as pH 5.50. This study assessed the acid–base regulatory capacity and the compensatory response of X. testudinatus to investigate its remarkable physiological adaptations. Hemolymph parameters (pH, [HCO3−], \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2, [NH4+], and major ion compositions) and the whole animal’s rates of oxygen consumption and ammonia excretion were measured throughout a 14-day acclimation to pH 6.5 and 5.5. Data revealed that vent crabs are exceptionally strong acid–base regulators capable of maintaining homeostatic pH against extreme hypercapnia (pH 5.50, 24.6 kPa \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2) via HCO3−/Cl− exchange, retention and utilization of extracellular ammonia. Intact crabs as well as their isolated perfused gills maintained \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2tensions below environmental levels suggesting the gills can excrete CO2 against a hemolymph-directed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2 gradient. These specialized physiological mechanisms may be amongst the adaptations required by vent-endemic animals surviving in extreme conditions.
Collapse
Affiliation(s)
- Garett J P Allen
- Biological Sciences, University of Manitoba, 190 Dysart Rd., Winnipeg, MB, R3T 2M8, Canada
| | - Pou-Long Kuan
- Institute of Cellular and Organismal Biology's Marine Research Station, Academia Sinica, No. 23-10 Dawen Rd., Jiaoxi, 262, Yilan County, Taiwan
| | - Yung-Che Tseng
- Institute of Cellular and Organismal Biology's Marine Research Station, Academia Sinica, No. 23-10 Dawen Rd., Jiaoxi, 262, Yilan County, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismal Biology, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang District, Taipei City, 11529, Taiwan
| | | | - Dirk Weihrauch
- Biological Sciences, University of Manitoba, 190 Dysart Rd., Winnipeg, MB, R3T 2M8, Canada.
| |
Collapse
|
7
|
Lin W, Ren Z, Mu C, Ye Y, Wang C. Effects of Elevated pCO 2 on the Survival and Growth of Portunus trituberculatus. Front Physiol 2020; 11:750. [PMID: 32754046 PMCID: PMC7367060 DOI: 10.3389/fphys.2020.00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Identifying the response of Portunus trituberculatus to ocean acidification (OA) is critical to understanding the future development of this commercially important Chinese crab species. Recent studies have reported negative effects of OA on crustaceans. Here, we subjected swimming crabs to projected oceanic CO2 levels (current: 380 μatm; 2100: 750 μatm; 2200: 1500 μatm) for 4 weeks and analyzed the effects on survival, growth, digestion, antioxidant capacity, immune function, tissue metabolites, and gut bacteria of the crabs and on seawater bacteria. We integrated these findings to construct a structural equation model to evaluate the contribution of these variables to the survival and growth of swimming crabs. Reduced crab growth shown under OA is significantly correlated with changes in gut, muscle, and hepatopancreas metabolites whereas enhanced crab survival is significantly associated with changes in the carbonate system, seawater and gut bacteria, and activities of antioxidative and digestive enzymes. In addition, seawater bacteria appear to play a central role in the digestion, stress response, immune response, and metabolism of swimming crabs and their gut bacteria. We predict that if anthropogenic CO2 emissions continue to rise, future OA could lead to severe alterations in antioxidative, immune, and metabolic functions and gut bacterial community composition in the swimming crabs through direct oxidative stress and/or indirect seawater bacterial roles. These effects appear to mediate improved survival, but at the cost of growth of the swimming crabs.
Collapse
Affiliation(s)
- Weichuan Lin
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Zhiming Ren
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| |
Collapse
|
8
|
Hu MY, Sung PH, Guh YJ, Lee JR, Hwang PP, Weihrauch D, Tseng YC. Perfused Gills Reveal Fundamental Principles of pH Regulation and Ammonia Homeostasis in the Cephalopod Octopus vulgaris. Front Physiol 2017; 8:162. [PMID: 28373845 PMCID: PMC5357659 DOI: 10.3389/fphys.2017.00162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
In contrast to terrestrial animals most aquatic species can be characterized by relatively higher blood [Formula: see text] concentrations despite its potential toxicity to the central nervous system. Although many aquatic species excrete [Formula: see text] via specialized epithelia little information is available regarding the mechanistic basis for NH3/[Formula: see text] homeostasis in molluscs. Using perfused gills of Octopus vulgaris we studied acid-base regulation and ammonia excretion pathways in this cephalopod species. The octopus gill is capable of regulating ammonia (NH3/[Formula: see text]) homeostasis by the accumulation of ammonia at low blood levels (<260 μM) and secretion at blood ammonia concentrations exceeding in vivo levels of 300 μM. [Formula: see text] transport is sensitive to the adenylyl cyclase inhibitor KH7 indicating that this process is mediated through cAMP-dependent pathways. The perfused octopus gill has substantial pH regulatory abilities during an acidosis, accompanied by an increased secretion of [Formula: see text]. Immunohistochemical and qPCR analyses revealed tissue specific expression and localization of Na+/K+-ATPase, V-type H+-ATPase, Na+/H+-exchanger 3, and Rhesus protein in the gill. Using the octopus gill as a molluscan model, our results highlight the coupling of acid-base regulation and nitrogen excretion, which may represent a conserved pH regulatory mechanism across many marine taxa.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Physiology, University of KielKiel, Germany; Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan
| | - Po-Hsuan Sung
- Department of Life Science, National Taiwan University Taipei, Taiwan
| | - Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | - Yung-Che Tseng
- Lab of Marine Organismic Physiology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| |
Collapse
|
9
|
Tresguerres M. Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms. J Exp Biol 2016; 219:2088-97. [DOI: 10.1242/jeb.128389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
The vacuolar-type H+-ATPase (VHA) is a multi-subunit enzyme that uses the energy from ATP hydrolysis to transport H+ across biological membranes. VHA plays a universal role in essential cellular functions, such as the acidification of lysosomes and endosomes. In addition, the VHA-generated H+-motive force can drive the transport of diverse molecules across cell membranes and epithelia for specialized physiological functions. Here, I discuss diverse physiological functions of VHA in marine animals, focusing on recent discoveries about base secretion in shark gills, potential bone dissolution by Osedax bone-eating worms and its participation in a carbon-concentrating mechanism that promotes coral photosynthesis. Because VHA is evolutionarily conserved among eukaryotes, it is likely to play many other essential physiological roles in diverse marine organisms. Elucidating and characterizing basic VHA-dependent mechanisms could help to determine species responses to environmental stress, including (but not limited to) that resulting from climate change.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, SIO mail code 0202, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Fehsenfeld S, Weihrauch D. Mechanisms of acid–base regulation in seawater-acclimated green crabs (Carcinus maenas). CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated acid–base regulatory mechanisms in seawater-acclimated green crabs (Carcinus maenas (L., 1758)). In full-strength seawater, green crabs are osmoconformers so that the majority of the observed responses were attributed to ion fluxes based on acid–base compensatory responses alone. Similar to observations in brackish-water-acclimated C. maenas, seawater-acclimated green crabs exposed to hypercapnia rapidly accumulated HCO3− in their hemolymph, compensating for the respiratory acidosis caused by excess hemolymph pCO2. A full recovery from the decreased hemolymph pH after 48 h, however, was not observed. Gill perfusion experiments on anterior gill No. 5 indicated the involvement of all investigated genes (i.e., bicarbonate transporters, V-(H+)-ATPase, Na+/K+-ATPase, K+-channels, Na+/H+-exchanger, and carbonic anhydrase) in the excretion of acid–base equivalents. The most significant effects were observed when targeting a potentially cytoplasmic and (or) basolaterally localized V-(H+)-ATPase, as well as potentially basolaterally localized bicarbonate transporter (likely a Na+/HCO3−-cotransporter). In both cases, H+ accumulated in the hemolymph and CO2 excretion across the gill epithelium was significantly reduced or even reversed when blocking bicarbonate transporters. Based on the findings in this study, a working model for acid–base regulatory mechanisms and their link to ammonia excretion in the gill epithelium of C. maenas has been developed.
Collapse
Affiliation(s)
- S. Fehsenfeld
- Department of Biological Sciences, University of Manitoba, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada
- Department of Biological Sciences, University of Manitoba, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - D. Weihrauch
- Department of Biological Sciences, University of Manitoba, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada
- Department of Biological Sciences, University of Manitoba, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Hu MY, Guh YJ, Shao YT, Kuan PL, Chen GL, Lee JR, Jeng MS, Tseng YC. Strong Ion Regulatory Abilities Enable the Crab Xenograpsus testudinatus to Inhabit Highly Acidified Marine Vent Systems. Front Physiol 2016; 7:14. [PMID: 26869933 PMCID: PMC4734175 DOI: 10.3389/fphys.2016.00014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood HCO3- levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na+/K+-ATPase (NKA) and V-type H+-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan; Institute of Physiology, Christian-Albrechts University KielKiel, Germany
| | - Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Yi-Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University Keelung, Taiwan
| | - Pou-Long Kuan
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Guan-Lin Chen
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Yung-Che Tseng
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
12
|
Hu MY, Guh YJ, Stumpp M, Lee JR, Chen RD, Sung PH, Chen YC, Hwang PP, Tseng YC. Branchial NH4+-dependent acid–base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Front Zool 2014. [DOI: 10.1186/s12983-014-0055-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
13
|
Tresguerres M. sAC from aquatic organisms as a model to study the evolution of acid/base sensing. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2629-35. [PMID: 24971688 DOI: 10.1016/j.bbadis.2014.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/17/2014] [Indexed: 12/26/2022]
Abstract
Soluble adenylyl cyclase (sAC) is poised to play multiple physiological roles as an acid/base (A/B) sensor in aquatic organisms. Many of these roles are probably similar to those in mammals; a striking example is the evolutionary conservation of a mechanism involving sAC, carbonic anhydrase and vacuolar H⁺-ATPase that acts as a sensor system and regulator of extracellular A/B in shark gills and mammalian epididymis and kidney. Additionally, the aquatic environment presents unique A/B and physiological challenges; therefore, sACs from aquatic organisms have likely evolved distinct kinetic properties as well as distinct physiological roles. sACs from aquatic organisms offer an excellent opportunity for studying the evolution of A/B sensing at both the molecular and whole organism levels. Moreover, this information could help understand and predict organismal responses to environmental stress based on mechanistic models.This article is part of a Special Issue entitled "The Role of Soluble Adenylyl Cyclase in Health and Disease," guest edited by J. Buck and L. R. Levin.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Henry RP, Lucu Č, Onken H, Weihrauch D. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 2012; 3:431. [PMID: 23162474 PMCID: PMC3498741 DOI: 10.3389/fphys.2012.00431] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail.
Collapse
Affiliation(s)
- Raymond P. Henry
- Department of Biological Sciences, Auburn UniversityAuburn, AL, USA
| | - Čedomil Lucu
- Center for Marine Research Rovinj, Institute Ruđder Bošković ZagrebRovinj, Croatia
- Department of Aquaculture, University of DubrovnikDubrovnik, Croatia
| | - Horst Onken
- Department of Biological Sciences, Wagner CollegeStaten Island, NY, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
16
|
Tresguerres M, Levin LR, Buck J, Grosell M. Modulation of NaCl absorption by [HCO(3)(-)] in the marine teleost intestine is mediated by soluble adenylyl cyclase. Am J Physiol Regul Integr Comp Physiol 2010; 299:R62-71. [PMID: 20410468 DOI: 10.1152/ajpregu.00761.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal HCO(3)(-) secretion and NaCl absorption are essential for counteracting dehydration in marine teleost fish. We investigated how these two processes are coordinated in toadfish. HCO(3)(-) stimulated a luminal positive short-circuit current (I(sc)) in intestine mounted in Ussing chamber, bathed with the same saline solution on the external and internal sides of the epithelium. The I(sc) increased proportionally to the [HCO(3)(-)] in the bath up to 80 mM NaHCO(3), and it did not occur when NaHCO(3) was replaced with Na(+)-gluconate or with NaHCO(3) in Cl(-)-free saline. HCO(3)(-) (20 mM) induced a approximately 2.5-fold stimulation of I(sc), and this [HCO(3)(-)] was used in all subsequent experiments. The HCO(3)(-)-stimulated I(sc) was prevented or abolished by apical application of 10 muM bumetanide (a specific inhibitor of NKCC) and by 30 microM 4-catechol estrogen [CE; an inhibitor of soluble adenylyl cyclase (sAC)]. The inhibitory effects of bumetanide and CE were not additive. The HCO(3)(-)-stimulated I(sc) was prevented by apical bafilomycin (1 microM) and etoxolamide (1 mM), indicating involvement of V-H(+)-ATPase and carbonic anhydrases, respectively. Immunohistochemistry and Western blot analysis confirmed the presence of an NKCC2-like protein in the apical membrane and subapical area of epithelial intestinal cells, of Na(+)/K(+)-ATPase in basolateral membranes, and of an sAC-like protein in the cytoplasm. We propose that sAC regulates NKCC activity in response to luminal HCO(3)(-), and that V-H(+)-ATPase and intracellular carbonic anhydrase are essential for transducing luminal HCO(3)(-) into the cell by CO(2)/HCO(3)(-) hydration/dehydration. This mechanism putatively coordinates HCO(3)(-) secretion with NaCl and water absorption in toadfish intestine.
Collapse
Affiliation(s)
- Martin Tresguerres
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
17
|
Parks SK, Tresguerres M, Goss GG. Theoretical considerations underlying Na(+) uptake mechanisms in freshwater fishes. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:411-8. [PMID: 18420463 DOI: 10.1016/j.cbpc.2008.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022]
Abstract
Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.
Collapse
Affiliation(s)
- Scott K Parks
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T5G 2E9
| | | | | |
Collapse
|
18
|
Liao CH, Lin SZ, Tseng CP, Day YJ, Chang CS, Chang YH, Kuo SC. A benzodiazepines derived compound, 4-(3-chlorophenyl)-1,3-dihydronaphtho [2,3-b][1,4]diazepin-2-one (ND700C), inhibits fMLP-induced superoxide anion release by activating protein phosphatase 2A in human neutrophils. Biochem Pharmacol 2008; 76:1728-39. [PMID: 18823951 DOI: 10.1016/j.bcp.2008.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 01/11/2023]
Abstract
UNLABELLED We studied the mechanism underlying the inhibitory effect of a benzodiazepines derivative, 4-(3-chlorophenyl)-1,3-dihydronaphtho [2,3-b][1,4]diazepin-2-one (ND700C), on superoxide anion production induced by formly-methionyl-leucyl-phenylalanine (fMLP) in human neutrophils. ND700C inhibited the fMLP-induced superoxide anion production and cathepsin G release in a concentration-dependent manner with respective IC50 values of 5.0+/-0.5 and 8.7+/-0.8muM. In addition, ND700C was found to suppress fMLP-induced intracellular calcium mobilization and the phosphorylation of ERK and Akt. In another study, ND700C was observed to cause a rapid increase in intracellular cAMP level by up to threefold. Furthermore, when H89 was used to inhibit cAMP-dependent protein kinase A (PKA), we discovered that ND700C's suppressive effects on calcium mobilization, phosphorylation, and superoxide anion production were abrogated. ND700C demonstrated additive effect on the PGE1-induced increase in cAMP. However, this additive effect was not demonstrated with the IBMX-induced rise in cAMP. Our results indicated that ND700C did not directly inhibit the activity of phosphodiesterase 4. In another set of experiments, calyculin A and okadaic acid (both protein phosphatase 2A inhibitors) were found to reverse ND700C's positive effect on cAMP level. This observation suggested the involvement of protein phosphatase 2A in ND700C's cAMP-elevating mechanism. We found that the activity of protein phosphatase 2A was activated by ND700C. Furthermore, protein phosphatase 2A was co-immunoprecipitated with phosphodiesterase 4 after ND700C treatment in human neutrophils. CONCLUSION ND700C inhibited fMLP-induced superoxide anion production through a PKA-dependent pathway. ND700C increased cAMP by activating protein phosphatase 2A, which subsequently inhibited phosphodiesterase 4.
Collapse
Affiliation(s)
- Chang-Hui Liao
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|