1
|
Cimini V, Van Noorden S, Terlizzi C, Altobelli GG. Calcium/Calmodulin-Dependent Kinases in the Hypothalamus, Pituitary, and Pineal Gland: An Overview. Int J Endocrinol 2022; 2022:1103346. [PMID: 36601542 PMCID: PMC9807307 DOI: 10.1155/2022/1103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
We review the literature on the little-known roles of specific CaMKs in regulating endocrine functions of the pineal gland, the pituitary gland, and the hypothalamus. Melatonin activates hippocampal CaMKII, which then influences dendritogenesis. In the pituitary gland, the signal pathways activated by the CaMK in lower vertebrates, such as fishes, differ from those of mammals. In the teleost anterior pituitary, the activation of CaMKII induces the expression of somatolactin by glucagon b. In rats and humans, CaMKIVs have been associated with gonadotropes and thyrotropes and CaMKII with several types of human tumor cells and with a specific signaling pathway. Neuropeptides such as vasopressin and endothelin are also involved in the CaMKII signaling chain, as is the CaMKIIδ isoform which participates in generating the circadian rhythms of the suprachiasmatic nucleus. What arises from this review is that most of the hypothalamic CaMKs are involved in activities of the endocrine brain. Furthermore, among the CaMKs, type II occurs with the highest frequency followed by CaMKIV and CaMKI.
Collapse
Affiliation(s)
- Vincenzo Cimini
- Department of Advanced Biomedical Sciences, Medical School, “Federico II” University of Naples, Naples, Italy
| | - Susan Van Noorden
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, UK
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, Medical School, “Federico II” University of Naples, Naples, Italy
| | | |
Collapse
|
2
|
Central endothelin ET B receptor activation reduces blood pressure and catecholaminergic activity in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats. Eur J Pharmacol 2020; 885:173543. [PMID: 32896551 DOI: 10.1016/j.ejphar.2020.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022]
Abstract
Endothelins regulate catecholaminergic activity in the olfactory bulb (OB) in normotensive and hypertensive animals. Administration of an endothelin ETA receptor antagonist decreases blood pressure in deoxycorticosterone acetate-salt (DOCA-salt) rats along with a reduction in tyrosine hydroxylase (TH) activity and expression. In the present work, we sought to establish the role of brain endothelin ETB receptor on blood pressure regulation and its relationship with the catecholaminergic system within the OB of DOCA-Salt rats. Sprague-Dawley male rats were divided into control and DOCA-Salt groups. Blood pressure, heart rate and TH activity as well as neuronal nitric oxide synthase (nNOS) expression were assessed following IRL-1620 (selective endothelin ETB receptor agonist) applied to be brain. IRL-1620 significantly reduced systolic, diastolic, and mean arterial pressure in DOCA-Salt hypertensive rats. It also decreased TH activity, TH total and phosphorylated forms expression as well as its mRNA in the OB of hypertensive animals. The expression of phospho-Ser1417-nNOS, which reflects nNOS activation, was significantly decreased in the of OB of DOCA-salt rats, but it was enhanced by IRL-1620. These findings suggest that DOCA-Salt hypertension depends on endogenous central endothelin ETA receptor activity, rather than on ETB, and that low endothelin ETB stimulation is essential for blood pressure elevation in this animal model. The effect of endothelin ETA receptor antagonism may also result from endothelin ETB receptor overstimulation. The present study shows that endothelin receptors are involved in the regulation of TH in the OB and that such changes are likely implicated in the hemodynamic control and sympathetic outflow.
Collapse
|
3
|
Guil MJ, Schöller MI, Cassinotti LR, Biancardi VC, Pitra S, Bianciotti LG, Stern JE, Vatta MS. Role of endothelin receptor type A on catecholamine regulation in the olfactory bulb of DOCA-salt hypertensive rats: Hemodynamic implications. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165527. [PMID: 31398465 DOI: 10.1016/j.bbadis.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023]
Abstract
Increasing evidence shows that the olfactory bulb is involved in blood pressure regulation in health and disease. Enhanced noradrenergic transmission in the olfactory bulb was reported in hypertension. Given that endothelins modulate catecholamines and are involved in the pathogenesis of hypertension, in the present study we sought to establish the role of the endothelin receptor type A on tyrosine hydroxylase, the rate limiting enzyme in catecholamine biosynthesis, in the olfactory bulb of DOCA-salt hypertensive rats. Sprague-Dawley male rats, randomly divided into Control and DOCA-Salt hypertensive groups, were used to assess endothelin receptors by Western blot and confocal microscopy, and their co-localization with tyrosine hydroxylase in the olfactory bulb. Blood pressure and heart rate as well as tyrosine hydroxylase expression and activity were assessed following BQ610 (ETA antagonist) applied to the brain. DOCA-Salt hypertensive rats showed enhanced ETA and decreased ETB expression. ETA co-localized with tyrosine hydroxylase positive neurons. Acute ETA blockade reduced blood pressure and heart rate and decreased the expression of total tyrosine hydroxylase and its phosphorylated forms. Furthermore, it also diminished mRNA tyrosine hydroxylase expression and accelerated the enzyme degradation through the proteasome pathway as shown by pretreatment with MG132, (20s proteasome inhibitor) intracerebroventricularly applied. Present findings support that the brain endothelinergic system plays a major role through ETA activation in the increase of catecholaminergic activity in the olfactory bulb of DOCA-Salt hypertensive rats. They provide rationale evidence that this telencephalic structure contributes in a direct or indirect way to the hemodynamic regulation in salt dependent hypertension.
Collapse
Affiliation(s)
- María J Guil
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Mercedes I Schöller
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Luis R Cassinotti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | | | - Soledad Pitra
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Liliana G Bianciotti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiopatología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Javier E Stern
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Marcelo S Vatta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Chronic Blockade of Brain Endothelin Receptor Type-A (ET A) Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats. Int J Mol Sci 2018; 19:ijms19030660. [PMID: 29495426 PMCID: PMC5877521 DOI: 10.3390/ijms19030660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 01/06/2023] Open
Abstract
Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ETA) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ETA blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ETA blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ETA are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.
Collapse
|
5
|
SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions. PLoS One 2017; 12:e0184154. [PMID: 28880927 PMCID: PMC5589172 DOI: 10.1371/journal.pone.0184154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/19/2017] [Indexed: 01/11/2023] Open
Abstract
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.
Collapse
|
6
|
Vatta MS, Bianciotti LG, Guil MJ, Hope SI. Regulation of the Norepinephrine Transporter by Endothelins. HORMONES AND TRANSPORT SYSTEMS 2015; 98:371-405. [DOI: 10.1016/bs.vh.2014.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Endothelin-1 and -3 induce choleresis in the rat through ETB receptors coupled to nitric oxide and vagovagal reflexes. Clin Sci (Lond) 2013; 125:521-32. [PMID: 23642207 DOI: 10.1042/cs20120633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have reported previously that centrally applied ET (endothelin)-1 and ET-3 induce either choleresis or cholestasis depending on the dose. In the present study, we sought to establish the role of these endothelins in the short-term peripheral regulation of bile secretion in the rat. Intravenously infused endothelins induced significant choleresis in a dose-dependent fashion, ET-1 being more potent than ET-3. Endothelins (with the exception of a higher dose of ET-1) did not affect BP (blood pressure), portal venous pressure or portal blood flow. ET-1 and ET-3 augmented the biliary excretion of bile salts, glutathione and electrolytes, suggesting enhanced bile acid-dependent and -independent bile flows. ET-induced choleresis was mediated by ET(B) receptors coupled to NO and inhibited by truncal vagotomy, atropine administration and capsaicin perivagal application, supporting the participation of vagovagal reflexes. RT (reverse transcription)-PCR and Western blot analysis revealed ETA and ET(B) receptor expression in the vagus nerve. Endothelins, through ET(B) receptors, augmented the hepatocyte plasma membrane expression of Ntcp (Na⁺/taurocholate co-transporting polypeptide; Slc10a1), Bsep (bile-salt export pump; Abcb11), Mrp2 (multidrug resistance protein-2; Abcc2) and Aqp8 (aquaporin 8). Endothelins also increased the mRNAs of these transporters. ET-1 and ET-3 induced choleresis mediated by ET(B) receptors coupled to NO release and vagovagal reflexes without involving haemodynamic changes. Endothelin-induced choleresis seems to be caused by increased plasma membrane translocation and transcriptional expression of key bile transporters. These findings indicate that endothelins are able to elicit haemodynamic-independent biological effects in the liver and suggest that these peptides may play a beneficial role in pathophysiological situations where bile secretion is impaired.
Collapse
|
8
|
Nabhen SL, Guil MJ, Saffioti N, Morales VP, Bianciotti LG, Vatta MS. Calcium-dependent mechanisms involved in the modulation of tyrosine hydroxylase by endothelins in the olfactory bulb of normotensive rats. Neurochem Int 2013; 62:389-98. [PMID: 23357475 DOI: 10.1016/j.neuint.2013.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/11/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
Endothelins (ETs) are widely expressed in the olfactory bulb (OB) and other brain areas where they function as neuropeptides. In a previous study we reported that in the OB ET-1 and ET-3 participate in the long-term regulation of tyrosine hydroxylase (TH), the key enzyme in catecholamine biosynthesis. ETs stimulate TH activity by increasing total and phosphorylated enzyme levels as well as its mRNA. ET-1 response is mediated by a super high affinity ETA receptor coupled to adenylyl cyclase/protein kinase A and Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) activation whereas that of ET-3 through an atypical receptor coupled not only to these signaling pathways but also to phospholipase C (PLC)/protein kinase C pathway. Given the participation of PLC and CaMKII in the regulation of TH by ETs in the OB we sought to establish the contribution of calcium to ETs response. Present findings show that calcium released from ryanodine-sensitive channels and extracellular calcium were necessary to stimulate TH by ETs through CaMK-II. On the other hand, intracellular calcium released by the endoplasmic reticulum partially mediated ETs-evoked increase in TH mRNA but calcium influx and CaMK-II inhibition abolished the response. However calcium mechanisms were not involved in ETs-evoked increase in TH protein content. Present findings support that different sources of calcium contribute to the long-term modulation of TH activity and expression mediated by ETs in the rat OB.
Collapse
Affiliation(s)
- Sabrina L Nabhen
- Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
9
|
Filosa JA, Naskar K, Perfume G, Iddings JA, Biancardi VC, Vatta MS, Stern JE. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity. J Neuroendocrinol 2012; 24:378-92. [PMID: 22007724 DOI: 10.1111/j.1365-2826.2011.02243.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.
Collapse
Affiliation(s)
- J A Filosa
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Nabhen SL, Morales VP, Guil MJ, Höcht C, Bianciotti LG, Vatta MS. Mechanisms involved in the long-term modulation of tyrosine hydroxylase by endothelins in the olfactory bulb of normotensive rats. Neurochem Int 2010; 58:196-205. [PMID: 21129429 DOI: 10.1016/j.neuint.2010.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 11/15/2022]
Abstract
The olfactory bulbs play a relevant role in the interaction between the animal and its environment. The existence of endothelin-1 and -3 in the rat olfactory bulbs suggests their role in the control of diverse functions regulated at this level. Tyrosine hydroxylase, a crucial enzyme in catecholamine biosynthesis, is tightly regulated by short- and long-term mechanisms. We have previously reported that in the olfactory bulbs endothelins participate in the short-term tyrosine hydroxylase regulation involving complex mechanisms. In the present work we studied the effect of long-term stimulation by endothelins on tyrosine hydroxylase in the rat olfactory bulbs. Our findings show that endothelin-1 and -3 modulated catecholaminergic transmission by increasing enzymatic activity. However, these peptides acted through different receptors and intracellular pathways. Endothelin-1 enhanced tyrosine hydroxylase activity through a super high affinity ET(A) receptor and cAMP/PKA and CaMK-II pathways, whereas, endothelin-3 through a super high affinity atypical receptor coupled to cAMP/PKA, PLC/PKC and CaMK-II pathways. Endothelins also increased tyrosine hydroxylase mRNA and the enzyme total level as well as the phosphorylation of Ser 19, 31 and 40 sites. Furthermore, both peptides stimulated dopamine turnover and reduced its endogenous content. These findings support that endothelins are involved in the long-term regulation of tyrosine hydroxylase, leading to an increase in the catecholaminergic activity which might be implicated in the development and/or maintenance of diverse pathologies involving the olfactory bulbs.
Collapse
Affiliation(s)
- Sabrina L Nabhen
- Instituto de Química y Metabolismo del Fármaco-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Ventimiglia MS, Rodriguez MR, Morales VP, Elverdin JC, Perazzo JC, Castañeda MM, Davio CA, Vatta MS, Bianciotti LG. Endothelins participate in the central and peripheral regulation of submandibular gland secretion in the rat. Am J Physiol Regul Integr Comp Physiol 2010; 300:R109-20. [PMID: 20943854 DOI: 10.1152/ajpregu.00041.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that endothelins (ETs) are involved in the rat central and peripheral regulation of bile secretion. In this study we sought to establish whether ET-1 and ET-3 modulated submandibular gland secretion when locally or centrally applied. Animals were prepared with gland duct cannulation to collect saliva samples and jugular cannulation to administer sialogogues. ETs were given either into the submandibular gland or brain lateral ventricle. Intraglandularly administered ETs failed to elicit salivation per se. However, ET-1, but not ET-3, potentiated both cholinergic- and adrenergic-evoked salivation through ET(A) receptors. ET-1 decreased cAMP content but increased phosphoinositide hydrolysis, whereas ET-3 attenuated both intracellular pathways. The expression of ET(A) and ET(B) receptor mRNAs as well as that of ETs was revealed in the submandibular gland by RT-PCR. Immunohistochemical studies showed that ET(A) receptor staining was localized around the interlobular ducts and acini, compatible with the myoepithelial cells' location, whereas ET(B) receptor staining was restricted to small blood vessels. When applied to the brain, both ETs induced no salivation but enhanced cholinergic- and adrenergic-evoked salivary secretion through parasympathetic pathways. ET-1 response was mediated by brain ET(A) receptors, whereas that of ET-3 was presumably through nonconventional ET receptors. Present findings show that ETs are involved in the brain regulation of cholinergic- and adrenergic-stimulated submandibular gland secretion through the activation of distinct brain ET receptors and parasympathetic pathways. However, when ETs were administered into the gland, only ET-1 enhanced cholinergic and adrenergic salivation likely through myopithelial cell contraction by activating ET(A) receptors coupled to phospholipase C. The presence of ETs and ET receptors suggests the existence of an endothelinergic system in the submandibular gland.
Collapse
|
12
|
Short-term Effects of Endothelins on Tyrosine Hydroxylase Activity and Expression in the Olfactory Bulb of Normotensive Rats. Neurochem Res 2008; 34:953-63. [DOI: 10.1007/s11064-008-9859-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
|
13
|
Hope SI, Schmipp J, Rossi AH, Bianciotti LG, Vatta MS. Regulation of the neuronal norepinephrine transporter by endothelin-1 and -3 in the rat anterior and posterior hypothalamus. Neurochem Int 2008; 53:207-13. [PMID: 18682267 DOI: 10.1016/j.neuint.2008.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/27/2008] [Accepted: 07/10/2008] [Indexed: 11/18/2022]
Abstract
We previously reported that endothelin-1 and endothelin-3 modulate norepinephrine neuronal release and tyrosine hydroxylase activity and expression in the hypothalamus. In the present study we sought to establish the role of endothelin-1 and -3 in the regulation of norepinephrine uptake in the anterior and posterior hypothalamus. Results showed that in the anterior hypothalamus endothelin-3 increased neuronal norepinephrine uptake whereas endothelin-1 decreased it. Conversely, in the posterior hypothalamic region both endothelins diminished the neuronal uptake of the amine. Endothelins response was concentration dependent and maintained at all studied times. Endothelins also modified the kinetic and internalization of the NE neuronal transporter. In the anterior hypothalamic region endothelin-3 increased the V(max) and the B(max) whereas endothelin-1 decreased them. However, in the posterior hypothalamic region both endothelins diminished the V(max) as well as B(max). Neither endothelin-1 nor endothelin-3 modified neuronal norepinephrine transporter K(d) in the studied hypothalamic regions. These findings support that in the posterior hypothalamic region both endothelins diminished neuronal norepinephrine transporter activity by reducing the amine transporter expression on the plasmatic membrane. Conversely, in the anterior hypothalamic region endothelin-3 enhanced neuronal norepinephrine transporter activity by increasing the expression of the transporter on the presynaptic membrane, whereas endothelin-1 induced the opposite effect. Present results permit us to conclude that both endothelins play an important role in the regulation of norepinephrine neurotransmission at the presynaptic nerve endings in the hypothalamus.
Collapse
Affiliation(s)
- Sandra I Hope
- Cátedra de Fisiología e Instituto de Química y Metabolismo del Fármaco, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|