1
|
Schumann A, Gupta Y, Gerstorf D, Demuth I, Bär KJ. Sex differences in the age-related decrease of spontaneous baroreflex function in healthy individuals. Am J Physiol Heart Circ Physiol 2024; 326:H158-H165. [PMID: 37947436 DOI: 10.1152/ajpheart.00648.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The baroreflex is a powerful physiological mechanism for rapidly adjusting heart rate in response to changes in blood pressure. Spontaneous baroreflex sensitivity (BRS) has been shown to decrease with age. However, studies of sex differences in these age-related changes are rare. Here we investigated several markers of spontaneous baroreflex function in a large sample of healthy individuals. Cardiovascular signals were recorded in the supine position under carefully controlled resting conditions. After quality control, n = 980 subjects were divided into five age groups [age < 30 yr (n = 612), 30-39 yr (n = 140), 40-49 yr (n = 95), 50-59 yr (n = 61), and >60 yr (n = 72)]. Spontaneous baroreflex function was assessed in the time domain (bradycardic and tachycardic slope) and in the frequency domain in the low- and high-frequency band (LF-α, HF-α) applying the transfer function. General linear models showed a significant effect of factor age (P < 0.001) and an age × sex interaction effect (P < 0.05) on each indicator of the baroreflex function. Simple main effects showed a significantly higher BRS as indicated by tachycardic slope, LF-α and HF-α in middle-aged women compared with men (30-39 yr) and higher LF-α, bradycardic and tachycardic slope in men compared with women of the oldest age group (>60 yr). Changes in BRS over the lifespan suggest that baroreflex function declines more slowly but earlier in life in men than in women. Our findings could be linked to age-related changes in major sex hormone levels, suggesting significant implications for diverse cardiovascular outcomes and the implementation of targeted preventive strategies.NEW & NOTEWORTHY In this study, we demonstrate that the age-related decrease of spontaneous baroreflex sensitivity is different in men and women by analyzing resting state cardiovascular data of a large sample of healthy individuals.
Collapse
Affiliation(s)
- Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition, Department for Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Yubraj Gupta
- Lab for Autonomic Neuroscience, Imaging and Cognition, Department for Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Denis Gerstorf
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition, Department for Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
2
|
Cardiovascular fingolimod effects on rapid baroreceptor unloading are counterbalanced by baroreflex resetting. Neurol Sci 2021; 42:111-121. [PMID: 33443674 PMCID: PMC7819912 DOI: 10.1007/s10072-020-05004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Background and purpose Initial cardiovascular fingolimod effects might compromise baroreflex responses to rapid blood pressure (BP) changes during common Valsalva-like maneuvers. This study evaluated cardiovascular responses to Valsalva maneuver (VM)-induced baroreceptor unloading and loading upon fingolimod initiation. Patients and methods Twenty-one patients with relapsing-remitting multiple sclerosis performed VMs before and 0.5, 1, 2, 3, 4, 5, and 6 hours after fingolimod initiation. We recorded heart rate (HR) as RR intervals (RRI), systolic and diastolic BP (BPsys, BPdia) during VM phase 1, VM phase 2 early, VM phase 2 late, and VM phase 4. Using linear regression analysis between decreasing BPsys and RRI values during VM phase 2 early, we determined baroreflex gain (BRG) reflecting vagal withdrawal and sympathetic activation upon baroreceptor unloading. To assess cardiovagal activation upon baroreceptor loading, we calculated Valsalva ratios (VR) between maximal and minimal RRIs after strain release. Analysis of variance or Friedman tests with post hoc analysis compared corresponding parameters at the eight time points (significance: p < 0.05). Results RRIs at VM phase 1, VM phase 2 early, and VM phase 2 late were higher after than before fingolimod initiation, and maximal after 4 hours. Fingolimod did not affect the longest RRIs upon strain release, but after 3, 5, and 6 hours lowered the highest BPsys values during overshoot and all BPdia values, and thus reduced VRs. BRG was slightly higher after 3 and 5 hours, and significantly higher after 4 hours than before fingolimod initiation. Conclusions VR-decreases 3–6 hours after fingolimod initiation are physiologic results of fingolimod-associated attenuations of BP and HR increases at the end of strain and do not suggest impaired cardiovagal activation upon baroreceptor loading. Stable and at the time of HR nadir significantly increased BRGs indicate improved responses to baroreceptor unloading. Thus, cardiovascular fingolimod effects do not impair autonomic responses to sudden baroreceptor loading or unloading but seem to be mitigated by baroreflex resetting.
Collapse
|
3
|
Stewart JM, Warsy IA, Visintainer P, Terilli C, Medow MS. Supine Parasympathetic Withdrawal and Upright Sympathetic Activation Underly Abnormalities of the Baroreflex in Postural Tachycardia Syndrome: Effects of Pyridostigmine and Digoxin. Hypertension 2021; 77:1234-1244. [PMID: 33423527 PMCID: PMC7946724 DOI: 10.1161/hypertensionaha.120.16113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julian M Stewart
- From the Department of Pediatrics (J.M.S., I.A.W., C.T., M.S.M.), New York Medical College, Valhalla.,Departments of Physiology (J.M.S., M.S.M.), New York Medical College, Valhalla
| | - Irfan A Warsy
- From the Department of Pediatrics (J.M.S., I.A.W., C.T., M.S.M.), New York Medical College, Valhalla
| | - Paul Visintainer
- Baystate Medical Center, University of Massachusetts School of Medicine, Worcester (P.V.)
| | - Courtney Terilli
- From the Department of Pediatrics (J.M.S., I.A.W., C.T., M.S.M.), New York Medical College, Valhalla
| | - Marvin S Medow
- From the Department of Pediatrics (J.M.S., I.A.W., C.T., M.S.M.), New York Medical College, Valhalla.,Departments of Physiology (J.M.S., M.S.M.), New York Medical College, Valhalla
| |
Collapse
|
4
|
Riglietti A, Fanfulla F, Pagani M, Lucini D, Malacarne M, Manconi M, Ferretti G, Esposito F, Cereda CW, Pons M. Obstructive and Central Sleep Apnea in First Ever Ischemic Stroke are Associated with Different Time Course and Autonomic Activation. Nat Sci Sleep 2021; 13:1167-1178. [PMID: 34295200 PMCID: PMC8291804 DOI: 10.2147/nss.s305850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Sleep-related breathing disorders are highly prevalent in patients with ischemic stroke. Among sleep-disordered breathing disorders, obstructive sleep apnea is the most represented one, but central sleep apnea, isolated or in the context of a periodic breathing/Cheyne-Stokes respiration, is frequently reported in these patients. Altered baroreflex responses have been reported in the acute phases of a cerebral event. METHODS We conducted, in a group of patients with ischemic stroke (n=60), a prospective 3-month follow-up physiological study to describe the breathing pattern during sleep and baroreflex sensitivity in the acute phase and in the recovery phase. RESULTS In the acute phase, within 10 days from the onset of symptoms, 22.4% of patients had a normal breathing pattern, 40.3% had an obstructive pattern, 16.4% had a central pattern, and 29.9% showed a mixed pattern. Smaller variations in the Apnea-Hypopnea Index were found in normal breathing and obstructive groups (ΔAHI 2.1±4.1 and -2.8±11.6, respectively) in comparison with central and mixed patterns (ΔAHI -6.9±15.1 and -12.5±13.1, respectively; ANOVA p=0.01). The obstructive pattern became the most frequent pattern, in 38.3% of patients at baseline and 61.7% of patients at follow-up. Modification of baroreflex sensitivity over time was influenced by the site of the lesion and by the sleep disorder pattern in the acute phase (MANOVA p=0.005). CONCLUSION We suggest that a down-regulation of autonomic activity, possibly related to reduced vagal modulation, may help the recovery after stroke, or a transitory disconnection from the cortical node that participates in the regulation of sympathetic outflow.
Collapse
Affiliation(s)
- Alessia Riglietti
- Department of Pulmonology, Regional Hospital of Lugano (EOC), Lugano, 6900, Switzerland
| | - Francesco Fanfulla
- Respiratory Function and Sleep Unit - Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Massimo Pagani
- Exercise Medicine Unit, Istituto Auxologico Italiano, MIlan, 20133, Italy
| | - Daniela Lucini
- Exercise Medicine Unit, Istituto Auxologico Italiano, MIlan, 20133, Italy.,University of Milan, BIOMETRA Department, Milan, Italy
| | - Mara Malacarne
- Exercise Medicine Unit, Istituto Auxologico Italiano, MIlan, 20133, Italy.,University of Milan, BIOMETRA Department, Milan, Italy
| | - Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of the Southern Switzerland, Regional Hospital (EOC) of Lugano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| | - Guido Ferretti
- Department APSI, University of Geneva, Geneva, Switzerland.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Carlo W Cereda
- Stroke Center EOC, Department of Neurology, Neurocenter of Southern Switzerland Regional Hospital (EOC) of Lugano, Lugano, Switzerland
| | - Marco Pons
- Department of Pulmonology, Regional Hospital of Lugano (EOC), Lugano, 6900, Switzerland
| |
Collapse
|
5
|
Borovik AS, Orlova EA, Tomilovskaya ES, Tarasova OS, Vinogradova OL. Phase Coupling Between Baroreflex Oscillations of Blood Pressure and Heart Rate Changes in 21-Day Dry Immersion. Front Physiol 2020; 11:455. [PMID: 32508675 PMCID: PMC7253653 DOI: 10.3389/fphys.2020.00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Dry immersion (DI) is a ground-based experimental model which reproduces the effects of microgravity on the cardiovascular system and, therefore, can be used to study the mechanisms of post-flight orthostatic intolerance in cosmonauts. However, the effects of long-duration DI on cardiovascular system have not been studied yet. The aim of this work was to study the effects of 21-day DI on systemic hemodynamics and its baroreflex control at rest and during head-up tilt test (HUTT). Methods Ten healthy young men were exposed to DI for 21 days. The day before, on the 7th, 14th, and 19th day of DI, as well as on the 1st and 5th days of recovery they were subjected to HUTT: 15 min in supine position and then 15 min of orthostasis (60°). ECG, arterial pressure, stroke volume and respiration rate were continuously recorded during the test. Phase synchronization index (PSI) of beat-to-beat mean arterial pressure (MAP) and heart rate (HR) in the frequency band of baroreflex waves (∼0.1 Hz) was used as a quantitative measure of baroreflex activity. Results During DI, strong tachycardia and the reduction of stroke volume were observed both in supine position and during HUTT, these indicators did not recover on post-immersion day 5. In contrast, systolic arterial pressure and MAP decreased during HUTT on 14th day of DI, but then restored to pre-immersion values. Before DI and on day 5 of recovery, a transition from supine position to orthostasis was accompanied by an increase in PSI at the baroreflex frequency. However, PSI did not change in HUTT performed during DI and on post-immersion day 1. The amplitude of MAP oscillations at this frequency were increased by HUTT at all time points, while an increase of respective HR oscillations was absent during DI. Conclusion 21-day DI drastically changed the hemodynamic response to HUTT, while its effect on blood pressure was reduced between days 14 and 19, which speaks in favor of the adaptation to the conditions of DI. The lack of increase in phase synchronization of baroreflex MAP and HR oscillations during HUTT indicates disorders of baroreflex cardiac control during DI.
Collapse
Affiliation(s)
- Anatoly S Borovik
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeniya A Orlova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena S Tomilovskaya
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga S Tarasova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga L Vinogradova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Assessment of Baroreflex Sensitivity Using Time-Frequency Analysis during Postural Change and Hypercapnia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:4875231. [PMID: 30863454 PMCID: PMC6377966 DOI: 10.1155/2019/4875231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/16/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
Baroreflex is a mechanism of short-term neural control responsible for maintaining stable levels of arterial blood pressure (ABP) in an ABP-heart rate negative feedback loop. Its function is assessed by baroreflex sensitivity (BRS)—a parameter which quantifies the relationship between changes in ABP and corresponding changes in heart rate (HR). The effect of postural change as well as the effect of changes in blood O2 and CO2 have been the focus of multiple previous studies on BRS. However, little is known about the influence of the combination of these two factors on dynamic baroreflex response. Furthermore, classical methods used for BRS assessment are based on the assumption of stationarity that may lead to unreliable results in the case of mostly nonstationary cardiovascular signals. Therefore, we aimed to investigate BRS during repeated transitions between squatting and standing in normal end-tidal CO2 (EtCO2) conditions (normocapnia) and conditions of progressively increasing EtCO2 with a decreasing level of O2 (hypercapnia with hypoxia) using joint time and frequency domain (TF) approach to BRS estimation that overcomes the limitation of classical methods. Noninvasive continuous measurements of ABP and EtCO2 were conducted in a group of 40 healthy young volunteers. The time course of BRS was estimated from TF representations of pulse interval variability and systolic pressure variability, their coherence, and phase spectra. The relationship between time-variant BRS and indices of ABP and HR was analyzed during postural change in normocapnia and hypercapnia with hypoxia. In normocapnia, observed trends in all measures were in accordance with previous studies, supporting the validity of presented TF method. Similar but slightly attenuated response to postural change was observed in hypercapnia with hypoxia. Our results show the merits of the nonstationary methods as a tool to study the cardiovascular system during short-term hemodynamic changes.
Collapse
|
7
|
Castardo-de-Paula JC, de Campos BH, de Jager L, Amorim EDT, Zanluqui NG, de Farias CC, Higachi L, Pinge-Filho P, Barbosa DS, Martins-Pinge MC. Effects of Inducible Nitric Oxide Synthase Inhibition on Cardiovascular Risk of Adult Endotoxemic Female Rats: Role of Estrogen. Front Physiol 2018; 9:1020. [PMID: 30108513 PMCID: PMC6079304 DOI: 10.3389/fphys.2018.01020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 01/23/2023] Open
Abstract
Aim: Autonomic modulation responds to ovarian hormones and estrogen increases nitric oxide bioavailability. Also, females have minor susceptibility to sepsis and a higher survival rate. However, few studies have evaluated the role of estrogen in cardiovascular, autonomic, and oxidative parameters during initial endotoxemia and under inducible nitric oxide synthase (iNOS) inhibition in female rats. Methods: Female wistar rats were subjected to ovariectomy and divided into three groups: OVX (ovariectomized), OVX+E (OVX plus daily estradiol) and SHAM (false surgery). After 8 weeks, mean arterial pressure (MAP) and heart rate (HR) were recorded in non-anesthetized catheterized rats, before and after intravenous LPS injection, preceded by S-methylisothiourea sulfate (SMT) injection, or sterile saline. Cardiovascular recordings underwent spectral analysis for evaluation of autonomic modulation. Two hours after LPS, plasma was collected to assess total radical-trapping antioxidant (TRAP), nitrite levels (NO2), lipoperoxidation (LOOH), and paraoxonase 1 (PON1) activity. Results: Two hours after LPS, females treated with SMT presented a decrease of MAP, when compared to saline-LPS groups. At this same time, all SMT+LPS groups presented an increase of sympathetic and a decrease of parasympathetic modulation of HR. Two hours after saline+LPS, OVX presented decreased total radical-trapping antioxidant (TRAP) compared to SHAM. When treated with SMT+LPS, OVX did not altered TRAP, while estradiol reduced LOOH levels. Conclusion: iNOS would be responsible for sympathetic inhibition and consumption of antioxidant reserves of females during endotoxemia, since iNOS is inhibited, treatment with estradiol could be protective in inflammatory challenges.
Collapse
Affiliation(s)
| | - Blenda H de Campos
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Lorena de Jager
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eric D T Amorim
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Nágela G Zanluqui
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Carine C de Farias
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital, State University of Londrina, Londrina, Brazil
| | - Luciana Higachi
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital, State University of Londrina, Londrina, Brazil
| | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Décio S Barbosa
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital, State University of Londrina, Londrina, Brazil
| | - Marli C Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
8
|
Oliveira R, Barker AR, Debras F, O'Doherty A, Williams CA. Mechanisms of blood pressure control following acute exercise in adolescents: Effects of exercise intensity on haemodynamics and baroreflex sensitivity. Exp Physiol 2018; 103:1056-1066. [DOI: 10.1113/ep086999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ricardo Oliveira
- Children's Health and Exercise Research Centre; Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter EX1 2LU UK
| | - Alan R. Barker
- Children's Health and Exercise Research Centre; Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter EX1 2LU UK
| | - Florian Debras
- School of Physics and Astronomy; University of Exeter; Exeter EX4 4QL UK
- Ecole Normale Supérieure de Lyon; Lyon Cedex 07 69364 France
| | - Alexandra O'Doherty
- Children's Health and Exercise Research Centre; Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter EX1 2LU UK
| | - Craig A. Williams
- Children's Health and Exercise Research Centre; Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter EX1 2LU UK
| |
Collapse
|
9
|
Zamir M, Badrov MB, Olver TD, Shoemaker JK. Cardiac Baroreflex Variability and Resetting during Sustained Mild Effort. Front Physiol 2017; 8:246. [PMID: 28529487 PMCID: PMC5418217 DOI: 10.3389/fphys.2017.00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
This exploratory study assessed the pattern of closed-loop baroreflex resetting using multi-logistic-curve analysis. Operating point gain and ranges of RR-interval (RRI) and systolic blood pressure (SBP) are derived to examine how these relate to sympathetic activation. Sustained low-intensity isometric handgrip exercise, with a period of post-exercise circulatory occlusion (PECO), provided a model to study baroreflex resetting because the progression toward fatigue at constant tension induces a continuous increase in volitional contribution to neuro-cardiovascular control. Continuous measurements of muscle sympathetic nerve activity (MSNA), blood pressure, and RRI were made simultaneously throughout the experimental session. Spontaneous sequence analysis was used to detect episodes of baroreflex “engagements”, but the results are examined with a view to the fundamental difference between experimental conditions that isolate the carotid sinus (open-loop) and intact physiological conditions (closed-loop). While baroreflex function under open-loop conditions can be described in terms of a single logistic curve, intact physiologic conditions require a family of logistic curves. The results suggest that the baroreflex is in a “floating” state whereby it is continuously resetting during the timeline of the experiment but with minute-by-minute average values that mimic the less complex step-wise resetting pattern reported under open-loop conditions. Furthermore, the results indicate that baroreflex function and resetting of the operating point gain is reflected not in terms of change in the values of blood pressure or RR-interval but in terms of change in the range of values of these variables prevailing under different experimental conditions.
Collapse
Affiliation(s)
- Mair Zamir
- Department of Applied Mathematics, Western UniversityLondon, ON, Canada.,Department of Medical Biophysics, Western UniversityLondon, ON, Canada
| | - Mark B Badrov
- School of Kinesiology, Western UniversityLondon, ON, Canada
| | - T Dylan Olver
- School of Kinesiology, Western UniversityLondon, ON, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western UniversityLondon, ON, Canada.,Department of Physiology and Pharmacology, Western UniversityLondon, ON, Canada
| |
Collapse
|
10
|
Silvani A, Calandra-Buonaura G, Johnson BD, van Helmond N, Barletta G, Cecere AG, Joyner MJ, Cortelli P. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans. Front Physiol 2017; 8:163. [PMID: 28396638 PMCID: PMC5366337 DOI: 10.3389/fphys.2017.00163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/03/2017] [Indexed: 11/15/2022] Open
Abstract
The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions (n = 8), and during progressive loss of 1 L blood (n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result from enhanced fluctuations of vascular resistance specific to the upright posture, and not be driven by the accompanying central hypovolemia.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy; IRCCS Bologna Institute of Neurological SciencesBologna, Italy
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo Buffalo, NY, USA
| | | | | | - Anna G Cecere
- IRCCS Bologna Institute of Neurological Sciences Bologna, Italy
| | | | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy; IRCCS Bologna Institute of Neurological SciencesBologna, Italy
| |
Collapse
|
11
|
Bringard A, Adami A, Fagoni N, Fontolliet T, Lador F, Moia C, Tam E, Ferretti G. Dynamics of the RR-interval versus blood pressure relationship at exercise onset in humans. Eur J Appl Physiol 2017; 117:619-630. [PMID: 28238048 DOI: 10.1007/s00421-017-3564-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE The dynamics of the postulated phenomenon of exercise baroreflex resetting is poorly understood, but can be investigated using closed-loop procedures. To shed light on some mechanisms and temporal relationships participating in the resetting process, we studied the time course of the relationship between the R-R interval (RRi) and arterial pressure with a closed-loop approach. METHODS On ten young volunteers at rest and during light exercise in supine and upright position, we continuously determined, on single-beat basis, RRi (electrocardiography), and arterial pressure (non-invasive finger pressure cuff). From pulse pressure profiles, we determined cardiac output (CO) by Modelflow, computed mean arterial pressure (MAP), and calculated total peripheral resistance (TPR). RESULTS At exercise start, RRi was lower than in quiet rest. As exercise started, MAP fell to a minimum (MAPm) of 72.8 ± 9.6 mmHg upright and 73.9 ± 6.2 supine, while RRi dropped. The initial RRi versus MAP relationship was linear, with flatter slope than resting baroreflex sensitivity, in both postures. TPR fell and CO increased. After MAPm, RRi and MAP varied in opposite direction toward exercise steady state, with further CO increase. CONCLUSION These results suggest that, initially, the MAP fall was corrected by a RRi reduction along a baroreflex curve, with lower sensitivity than at rest, but eventually in the same pressure range as at rest. After attainment of MAPm, a second phase started, where the postulated baroreflex resetting might have occurred. In conclusion, the change in baroreflex sensitivity and the resetting process are distinct phenomena, under different control systems.
Collapse
Affiliation(s)
- Aurélien Bringard
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Hôpitaux Universitaires de Genève, 4 rue Gabrielle-Perret-Gentil, CH-1211, Genève 4, Switzerland.,Département des Neurosciences Fondamentales, Université de Genève, 1 rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Alessandra Adami
- Département des Neurosciences Fondamentales, Université de Genève, 1 rue Michel Servet, CH-1211, Genève 4, Switzerland.,Division of Respiratory and Critical Care Physiology and Medicine, Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W Carson St, Torrance, CA, 90502, USA
| | - Nazzareno Fagoni
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Timothée Fontolliet
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Hôpitaux Universitaires de Genève, 4 rue Gabrielle-Perret-Gentil, CH-1211, Genève 4, Switzerland.,Département des Neurosciences Fondamentales, Université de Genève, 1 rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Frédéric Lador
- Service de Pneumologie, Programme Hypertension Pulmonaire, Département des Spécialités de Médecine, Hôpitaux Universitaires de Genève, 4 rue Gabrielle-Perret-Gentil, CH-1211, Genève, Switzerland
| | - Christian Moia
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Hôpitaux Universitaires de Genève, 4 rue Gabrielle-Perret-Gentil, CH-1211, Genève 4, Switzerland.,Département des Neurosciences Fondamentales, Université de Genève, 1 rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Enrico Tam
- Dipartimento di Scienze Neurologiche, Biomediche e del Movimento, Università di Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Guido Ferretti
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Hôpitaux Universitaires de Genève, 4 rue Gabrielle-Perret-Gentil, CH-1211, Genève 4, Switzerland. .,Département des Neurosciences Fondamentales, Université de Genève, 1 rue Michel Servet, CH-1211, Genève 4, Switzerland. .,Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
12
|
Yadav K, Akanksha, Jaryal AK, Coshic P, Chatterjee K, Deepak KK. Effect of hypovolemia on efficacy of reflex maintenance of blood pressure on orthostatic challenge. High Blood Press Cardiovasc Prev 2016; 23:25-30. [DOI: 10.1007/s40292-016-0130-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
|
13
|
Chirico D, Liu J, Klentrou P, Shoemaker JK, O'Leary DD. The Effects of Sex and Pubertal Maturation on Cardiovagal Baroreflex Sensitivity. J Pediatr 2015; 167:1067-73. [PMID: 26340872 DOI: 10.1016/j.jpeds.2015.07.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To examine baroreflex sensitivity (BRS) across different stages of pubertal maturation in healthy children and adolescents. STUDY DESIGN This study was cross-sectional and included 104 participants (53 males and 51 females) aged 8-18 years old. Participants were organized into 5 pubertal groups based on the criteria of Tanner; prepubertal (Tanner 1, n = 19), early-pubertal (Tanner 2, n = 16), peripubertal (Tanner 3, n = 24), late-pubertal (Tanner 4, n = 23), and postpubertal (Tanner 5 and 6, n = 22). Adiposity (fat-free mass, fat mass, and body fat%), body mass index, and demographic variables were collected. Beat-by-beat blood pressure and R-R interval were collected during supine rest to determine BRS. BRS was assessed by transfer function analysis in the low frequency range (0.05-0.15 Hz). RESULTS The results demonstrated a sex-by-maturation interaction [F(4, 94) = 3.202, P = .019]. BRS decreased from early-to postpuberty in males (30 [7.1] vs 13.2 [7.8] ms/mm Hg), and remained unchanged in females. This led to significantly greater BRS in females compared with males, postpuberty (27 [7.3] vs 13.2 [7.8] ms/mm Hg). CONCLUSIONS Controlling for both sex and maturation when examining BRS in children and adolescents with cardiovascular disease risk factors will aid in interpreting abnormally high or low BRS values.
Collapse
Affiliation(s)
- Daniele Chirico
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Jian Liu
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
14
|
Onizuka C, Niimi Y, Sato M, Sugenoya J. Arterial blood pressure response to head-up tilt test and orthostatic tolerance in nurses. Environ Health Prev Med 2015; 20:262-70. [PMID: 25894388 DOI: 10.1007/s12199-015-0455-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/02/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES High tolerance to postural changes was examined in nurses. METHODS Twelve female nurses and 12 healthy controls underwent a 70° head-up tilt (HUT) test for 10 min. Blood pressure (BP), heart rate (HR), pulse pressure, and hormone levels were measured. Baroreceptor sensitivity (BRS) was calculated using a sequence technique. RESULTS HR increased during HUT in both subject groups, with no difference between groups. Systolic BP was rapidly increased by HUT in both subject groups, and was higher in the nurse group than in the control group during the first 2 min of HUT. Pulse pressure decreased during 1-2.5 min of HUT in the control group, but there was no decrease in the nurse group. BRS was decreased by HUT in the nurse group, while it tended to be decreased in the control group. Both during baseline and HUT, BRS was lower in the nurse group than in the control group. Plasma noradrenaline increased with HUT, and the increase was greater in the nurse group than in the control group. CONCLUSIONS Although nurse subjects had a lower BRS during HUT than control subjects, they were able to effectively maintain BP during HUT, suggesting that nurse subjects had higher orthostatic tolerance. The better maintenance of BP in nurse subjects appeared to be associated with a compensatory mechanism other than the arterial baroreflex and/or a hemodynamic mechanism.
Collapse
Affiliation(s)
- Chisato Onizuka
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan,
| | | | | | | |
Collapse
|
15
|
Ariza D, Sisdeli L, Crestani CC, Fazan R, Martins-Pinge MC. Dysautonomias in Parkinson's disease: cardiovascular changes and autonomic modulation in conscious rats after infusion of bilateral 6-OHDA in substantia nigra. Am J Physiol Heart Circ Physiol 2014; 308:H250-7. [PMID: 25416189 DOI: 10.1152/ajpheart.00406.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is important to elucidate the mechanism of dysautonomias in patients with Parkinson's disease; therefore, this study aimed to investigate the cardiovascular and autonomic changes that occur in an animal model of Parkinsonism. Adult male Wistar rats were anesthetized before bilateral microinfusions of 6-hydroxydopamine (6-OHDA) into the substantia nigra. The sham group underwent the same surgical procedure but received vehicle. After 7 days, the mean arterial pressure (MAP) and heart rate (HR) were measured, and various drugs were injected into conscious rats through cannulas previously implanted in the femoral artery and vein. Spectral analyses of systolic arterial pressure (SAP) and pulse interval (PI) were conducted with the CardioSeries software as the spontaneous baroreflex gain and effectivity. The animals were subjected to α-, β-adrenergic, or muscarinic receptor antagonism. For confirmation of the lesion, the levels of dopamine in the striatum were quantified by high-performance liquid chromatography. Animals that underwent 6-OHDA microinfusion had lower MAP and HR compared with those in the sham group. Spectral analysis of SAP showed that 6-OHDA animals exhibited a decrease in the sympathetic component. The PI values did not differ between groups. After the administration of muscarinic and β-adrenergic antagonists, the cardiovascular measures did not differ between the groups. However, upon administration of the α-adrenergic antagonist, the 6-OHDA animals exhibited a lower decrease in the MAP. We report cardiovascular impairments in 6-OHDA animals, possibly due to decreased sympathetic activity. Determination of the origin of these changes (central or peripheral) requires further investigation.
Collapse
Affiliation(s)
- D Ariza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - L Sisdeli
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - C C Crestani
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, State University Paulista-UNESP, Araraquara, SP, Brazil; and
| | - R Fazan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - M C Martins-Pinge
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil;
| |
Collapse
|
16
|
Paraventricular nucleus of hypothalamus participates in the sympathetic modulation and spontaneous fluctuation of baroreflex during head up tilt in unanesthetized rats. Neurosci Lett 2014; 558:1-7. [DOI: 10.1016/j.neulet.2013.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 11/22/2022]
|