1
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Wang Q, Tang Q, Zhao L, Zhang Q, Wu Y, Hu H, Liu L, Liu X, Zhu Y, Guo A, Yang X. Time serial transcriptome reveals Cyp2c29 as a key gene in hepatocellular carcinoma development. Cancer Biol Med 2020; 17:401-417. [PMID: 32587777 PMCID: PMC7309465 DOI: 10.20892/j.issn.2095-3941.2019.0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a severely lethal cancer that usually originates from chronic liver injury and inflammation. Although progress on diagnosis and treatment is obvious, the cause of HCC remains unclear. In this study, we sought to determine key genes in HCC development. Methods: To identify key regulators during HCC progression, we performed transcriptome sequencing to obtain time series gene expression data from a mouse model with diethylnitrosamine-induced liver tumors and further verified gene expression and function in vitro and in vivo. Results: Among the differentially expressed genes, Cyp2c29 was continuously downregulated during HCC progression. Overexpression of Cyp2c29 suppressed NF-κB activation and proinflammatory cytokine production by increasing the production of 14,15-epoxyeicosatrienoic acid in vitro. Furthermore, overexpression of Cyp2c29 in vivo protected against liver inflammation in mouse models of liver injury induced by both acetaminophen and CCl4. Two human homologs of mouse Cyp2c29, CYP2C8 and CYP2C9, were found to be downregulated in human HCC progression, and their expression was positively correlated with overall survival in patients with HCC (significance: P = 0.046 and 0.0097, respectively). Conclusions: Collectively, through systematic analysis and verification, we determined that Cyp2c29 is a novel gene involved in liver injury and inflammation, which may be a potential biomarker for HCC prevention and prognosis determination.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Tang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijun Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lanlan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Liu
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanhong Zhu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anyuan Guo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Huang A, Sun D. Sexually Dimorphic Regulation of EET Synthesis and Metabolism: Roles of Estrogen. Front Pharmacol 2018; 9:1222. [PMID: 30420806 PMCID: PMC6215857 DOI: 10.3389/fphar.2018.01222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 01/03/2023] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via cytochrome P450 (CYP)/epoxygenase and are hydrolyzed by soluble epoxide hydrolase (sEH). Circulating and tissue levels of EETs are controlled by CYP (EET synthesis) and sEH (EET degradation). Therefore, both increases in CYP activity and decreases in sEH expression potentiate EET bioavailability, responses that prevail in the female sex as a function of estrogen. This mini review, based on subtitles listed, briefly summarizes studies focusing specifically on (1) female-specific potentiation of CYP/epoxygenase activity to compensate for the endothelial dysfunction; and (2) estrogen-dependent downregulation of sEH expression, which yields divergent actions in both systemic and pulmonary circulation, respectively. Estrogen-Potentiating EET Synthesis in Response to Endothelial Dysfunction: This section summarizes the current understanding regarding the roles of estrogen in facilitating EET synthesis in response to endothelial dysfunction. In this regard, estrogen recruitment of EET-driven signaling serves as a back-up mechanism, which compensates for NO deficiency to preserve endothelium-dependent vasodilator responses and maintain normal blood pressure. Estrogen-Dependent Downregulation of Ephx2/sEH Expression: This section focuses on molecular mechanisms responsible for the female-specific downregulation of sEH expression. Roles of EETs in Systemic Circulation, as a Function of Estrogen-Dependent Downregulation of sEH: This section summarizes studies conducted on animals that are either deficient in the Ephx2 gene (sEH-KO) or have been treated with sEH inhibitors (sEHIs), and exhibit EET-mediated cardiovascular protections in the cerebral, coronary, skeletal, and splanchnic circulations. In particular, the estrogen-inherent silencing of the Ephx2 gene duplicates the action of sEH deficiency, yielding comparable adaptations in attenuated myogenic vasoconstriction, enhanced shear stress-induced vasodilation, and improved cardiac contractility among female WT mice, male sEH-KO and sEHI-treated mice. Roles of Estrogen-Driven EET Production in Pulmonary Circulation: This section reviews epidemiological and clinical studies that provide the correlation between the polymorphism, or mutation of gene(s) involving estrogen metabolism and female predisposition to pulmonary hypertension, and specifically addresses an intrinsic causation between the estrogen-dependent downregulation of Ephx2 gene/sEH expression and female-susceptibility of being pulmonary hypertensive, a topic that has never been explored before. Additionally, the issue of the “estrogen paradox” in the incidence and prognosis of pulmonary hypertension is discussed.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
5
|
Grant MKO, Seelig DM, Sharkey LC, Zordoky BN. Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice. Biol Sex Differ 2017; 8:1. [PMID: 28078076 PMCID: PMC5219702 DOI: 10.1186/s13293-016-0124-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/16/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND There is inconclusive evidence about the role of sex as a risk factor for doxorubicin (DOX)-induced cardiotoxicity. Recent experimental studies have shown that adult female rats are protected against DOX-induced cardiotoxicity. However, the mechanisms of this sexual dimorphism are not fully elucidated. We have previously demonstrated that DOX alters the expression of several cytochrome P450 (CYP) enzymes in the hearts of male rats. Nevertheless, the sex-dependent effect of DOX on the expression of CYP enzymes is still not known. Therefore, in the present study, we determined the effect of acute DOX exposure on the expression of CYP genes in the hearts of both male and female C57Bl/6 mice. METHODS Acute DOX cardiotoxicity was induced by a single intraperitoneal injection of 20 mg/kg DOX in male and female adult C57Bl/6 mice. Cardiac function was assessed 5 days after DOX exposure by trans-thoracic echocardiography. Mice were euthanized 1 day or 6 days after DOX or saline injection. Thereafter, the hearts were harvested and weighed. Heart sections were evaluated for pathological lesions. Total RNA was extracted and expression of natriuretic peptides, inflammatory and apoptotic markers, and CYP genes was measured by real-time PCR. RESULTS Adult female C57Bl/6 mice were protected from acute DOX-induced cardiotoxicity as they show milder pathological lesions, less inflammation, and faster recovery from DOX-induced apoptosis and DOX-mediated inhibition of beta-type natriuretic peptide. Acute DOX exposure altered the gene expression of multiple CYP genes in a sex-dependent manner. In 24 h, DOX exposure caused male-specific induction of Cyp1b1 and female-specific induction of Cyp2c29 and Cyp2e1. CONCLUSIONS Acute DOX exposure causes sex-dependent alteration of cardiac CYP gene expression. Since cardiac CYP enzymes metabolize several endogenous compounds to biologically active metabolites, sex-dependent alteration of CYP genes may play a role in the sexual dimorphism of acute DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 308 Harvard St S.E, Minneapolis, MN 55455 USA
| | - Davis M Seelig
- Veterinary Clinical Sciences Department, University of Minnesota, 1352 Boyd Ave, St. Paul, MN 55108 USA
| | - Leslie C Sharkey
- Veterinary Clinical Sciences Department, University of Minnesota, 1352 Boyd Ave, St. Paul, MN 55108 USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 308 Harvard St S.E, Minneapolis, MN 55455 USA
| |
Collapse
|
6
|
Joshi SR, Lakhkar A, Dhagia V, Zias AL, Soldatos V, Oshima K, Jiang H, Gotlinger K, Capdevila JH, Schwartzman ML, McMurtry IF, Gupte SA. Cyp2c44 gene disruption exacerbated pulmonary hypertension and heart failure in female but not male mice. Pulm Circ 2016; 6:360-8. [PMID: 27683613 DOI: 10.1086/688060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epoxyeicosatrienoicacids (EETs), synthesized from arachidonic acid by epoxygenases of the CYP2C and CYP2J gene subfamilies, contribute to hypoxic pulmonary vasoconstriction (HPV) in mice. Despite their roles in HPV, it is controversial whether EETs mediate or ameliorate pulmonary hypertension (PH). A recent study showed that deficiency of Cyp2j did not protect male and female mice from hypoxia-induced PH. Since CYP2C44 is a functionally important epoxygenase, we hypothesized that knockout of the Cyp2c44 gene would protect both sexes of mice from hypoxia-induced PH. We tested this hypothesis in wild-type (WT) and Cyp2c44 knockout (Cyp2c44 (-/-)) mice exposed to normoxia (room air) and hypoxia (10% O2) for 5 weeks. Exposure of WT and Cyp2c44 (-/-) mice to hypoxia resulted in pulmonary vascular remodeling, increased pulmonary artery resistance, and decreased cardiac function in both sexes. However, in female Cyp2c44 (-/-) mice, compared with WT mice, (1) pulmonary artery resistance and right ventricular hypertrophy were greater, (2) cardiac index was lower, (3) left ventricular and arterial stiffness were higher, and (4) plasma aldosterone levels were higher, but (5) there was no difference in levels of EET in lungs and heart. Paradoxically and unexpectedly, we found that Cyp2c44 disruption exacerbated hypoxia-induced PH in female but not male mice. We attribute exacerbated PH in female Cyp2c44 (-/-) mice to elevated aldosterone and as-yet-unknown systemic factors. Therefore, we suggest a role for the human CYP2C genes in protecting women from severe PH and that this could be one of the underlying causes for a better 5-year survival rate in women than in men.
Collapse
Affiliation(s)
- Sachindra Raj Joshi
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Anand Lakhkar
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vidhi Dhagia
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ariadne L Zias
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vasiliki Soldatos
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Kaori Oshima
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Houli Jiang
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Katherine Gotlinger
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michal L Schwartzman
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ivan F McMurtry
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Sachin A Gupte
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
7
|
Kandhi S, Froogh G, Qin J, Luo M, Wolin MS, Huang A, Sun D. EETs Elicit Direct Increases in Pulmonary Arterial Pressure in Mice. Am J Hypertens 2016; 29:598-604. [PMID: 26304959 DOI: 10.1093/ajh/hpv148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The biological role of epoxyeicosatrienoic acids (EETs) in the regulation of pulmonary circulation is currently under debate. We hypothesized that EETs initiate increases in right ventricular systolic pressure (RVSP) via perhaps, pulmonary vasoconstriction. METHODS Mice were anesthetized with isoflurane. Three catheters, inserted into the left jugular vein, the left carotid artery, and the right jugular vein, were used for infusing EETs, monitoring blood pressure (BP), and RVSP respectively. BP and RVSP were continuously recorded at basal conditions, in response to administration of 4 regioisomeric EETs (5,6-EET; 8,9-EET; 11,12-EET, and 14,15-EET; 1, 2, 5 and 10 ng/g body weight (BW) for each EET), and during exposure of mice to hypoxia. RESULTS All 4 EETs initiated dose-dependent increases in RVSP, though reduced BP. 11,12-EET elicited the greatest increment in RVSP among all EET isoforms. To clarify the direct elevation of RVSP in a systemic BP-independent manner, equivalent amounts of 14,15-EET were injected over 1 and 2 minutes respectively. One-minute injection of 14,15-EET elicited significantly faster and greater increases in RVSP than the 2-minute injection, whereas their BP changes were comparable. Additionally, direct injection of low doses of 14,15-EET (0.1, 0.2, 0.5, and 1 ng/g BW) into the right ventricle caused significant increases in RVSP without effects on BP, confirming that systemic vasodilation-induced increases in venous return are not the main cause for the increased RVSP. Acute exposure of mice to hypoxia significantly elevated RVSP, as well as 14,15-EET-induced increases in RVSP. CONCLUSIONS EETs directly elevate RVSP, a response that may play an important role in the development of hypoxia-induced pulmonary hypertension (PH).
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/toxicity
- Animals
- Arterial Pressure/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Hypoxia/physiopathology
- Infusions, Intravenous
- Male
- Mice, Inbred C57BL
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Time Factors
- Ventricular Function, Right/drug effects
- Ventricular Pressure/drug effects
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA; Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Meng Luo
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA;
| |
Collapse
|
8
|
Kandhi S, Qin J, Froogh G, Jiang H, Luo M, Wolin MS, Huang A, Sun D. EET-dependent potentiation of pulmonary arterial pressure: sex-different regulation of soluble epoxide hydrolase. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1478-86. [PMID: 26498250 DOI: 10.1152/ajplung.00208.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/17/2015] [Indexed: 01/24/2023] Open
Abstract
We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild-type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control and in response to in vivo administration of U46619 (thromboxane analog), 14,15-EET, and 14,15-EEZE [14,15-epoxyeicosa-5(z)-enoic acid; antagonist of EETs] were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice and further reduced predominantly in F-KO compared with M-KO mice. U46619 dose dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared with M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than in M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared with M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner.
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and Shanghai 9th Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
9
|
Qin J, Kandhi S, Froogh G, Jiang H, Luo M, Sun D, Huang A. Sexually dimorphic phenotype of arteriolar responsiveness to shear stress in soluble epoxide hydrolase-knockout mice. Am J Physiol Heart Circ Physiol 2015; 309:H1860-6. [PMID: 26453332 DOI: 10.1152/ajpheart.00568.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023]
Abstract
We hypothesized that potentiating the bioavailability of endothelial epoxyeicosatrienoic acids (EETs) via deletion of the gene for soluble epoxide hydrolase (sEH), or downregulation of sEH expression, enhances flow/shear stress-induced dilator responses (FID) of arterioles. With the use of male (M) and female (F) wild-type (WT) and sEH-knockout (KO) mice, isolated gracilis muscle arterioles were cannulated and pressurized at 80 mmHg. Basal tone and increases in diameter of arterioles as a function of perfusate flow (5, 10, 15, 20, and 25 μl/min) were recorded. The magnitude of FID was significantly smaller and associated with a greater arteriolar tone in M-WT than F-WT mice, revealing a sex difference in FID. This sex difference was abolished by deletion of the sEH gene, as evidenced by an enhanced FID in M-KO mice to a level comparable with those observed in F-KO and F-WT mice. These three groups of mice coincidentally exhibited an increased endothelial sensitivity to shear stress (smaller WSS50) and were hypotensive. Endothelial EETs participated in the mediation of enhanced FID in M-KO, F-KO, and F-WT mice, without effects on FID of M-WT mice. Protein expression of sEH was downregulated by approximately fourfold in vessels of F-WT compared with M-WT mice, paralleled with greater vascular EET levels that were statistically comparable with those observed in both male and female sEH-KO mice. In conclusion, sex-different regulation of sEH accounts for sex differences in flow-mediated dilation of microvessels in gonadally intact mice.
Collapse
Affiliation(s)
- Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
10
|
Qin J, Sun D, Jiang H, Kandhi S, Froogh G, Hwang SH, Hammock BD, Wolin MS, Thompson CI, Hintze TH, Huang A. Inhibition of soluble epoxide hydrolase increases coronary perfusion in mice. Physiol Rep 2015; 3:3/6/e12427. [PMID: 26071213 PMCID: PMC4510629 DOI: 10.14814/phy2.12427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Roles of soluble epoxide hydrolase (sEH), the enzyme responsible for hydrolysis of epoxyeicosatrienoic acids (EETs) to their diols (DHETs), in the coronary circulation and cardiac function remain unknown. We tested the hypothesis that compromising EET hydrolysis/degradation, via sEH deficiency, lowers the coronary resistance to promote cardiac perfusion and function. Hearts were isolated from wild type (WT), sEH knockout (KO) mice and WT mice chronically treated with t-TUCB (sEH inhibitor), and perfused with constant flow at different pre-loads. Compared to WT controls, sEH-deficient hearts required significantly greater basal coronary flow to maintain the perfusion pressure at 100 mmHg and exhibited a greater reduction in vascular resistance during tension-induced heart work, implying a better coronary perfusion during cardiac performance. Cardiac contractility, characterized by developed tension in response to changes in preload, was potentially increased in sEH-KO hearts, manifested by an enlarged magnitude at each step-wise increase in end-diastolic to peak-systolic tension. 14,15-EEZE (EET antagonist) prevented the adaptation of coronary circulation in sEH null hearts whereas responses in WT hearts were sensitive to the inhibition of NO. Cardiac expression of EET synthases (CYP2J2/2C29) was comparable in both genotypic mice whereas, levels of 14,15-, 11,12- and 8,9-EETs were significantly higher in sEH-KO hearts, accompanied with lower levels of DHETs. In conclusion, the elevation of cardiac EETs, as a function of sEH deficiency, plays key roles in the adaptation of coronary flow and cardiac function.
Collapse
Affiliation(s)
- Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York Department of GI Surgery, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sung Hee Hwang
- Department of Entomology, University of California Davis Comprehensive Cancer Center University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology, University of California Davis Comprehensive Cancer Center University of California, Davis, California
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
11
|
Sun D, Cuevas AJ, Gotlinger K, Hwang SH, Hammock BD, Schwartzman ML, Huang A. Soluble epoxide hydrolase-dependent regulation of myogenic response and blood pressure. Am J Physiol Heart Circ Physiol 2014; 306:H1146-53. [PMID: 24561863 DOI: 10.1152/ajpheart.00920.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via cytochrome P450 (CYP)/epoxygenases. EETs possess cardioprotective properties and are catalyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs) that lack vasoactive property. To date, the role of sEH in the regulation of myogenic response of resistant arteries, a key player in the control of blood pressure, remains unknown. To this end, experiments were conducted on sEH-knockout (KO) mice, wild-type (WT) mice, and endothelial nitric oxide synthase (eNOS)-KO mice treated with t-TUCB, a sEH inhibitor, for 4 wk. sEH-KO and t-TUCB-treated mice displayed significantly lower blood pressure, associated with significantly increased vascular EETs and ratio of EETs/DHETs. Pressure-diameter relationships were assessed in isolated and cannulated gracilis muscle arterioles. All arterioles constricted in response to increases in transmural pressure from 60 to 140 mmHg. The myogenic constriction was significantly reduced, expressed as an upward shift of pressure-diameter curve, in arterioles of sEH-KO and t-TUCB-treated eNOS-KO mice compared with their controls. Removal of the endothelium, or treatment of the vessels with PPOH, an inhibitor of EET synthase, restored the attenuated pressure-induced constriction to the levels similar to those observed in their controls but had no effects on control vessels. No difference was observed in the myogenic index, or in the vascular expression of eNOS, CYP2C29 (EET synthase), and CYP4A (20-HETE synthase) among these groups of mice. In conclusion, the increased EET bioavailability, as a function of deficiency/inhibition of sEH, potentiates vasodilator responses that counteract pressure-induced vasoconstriction to lower blood pressure.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | | | | | | | | | | |
Collapse
|
12
|
Sun D, Ojaimi C, Wu H, Kaley G, Huang A. CYP2C29 produces superoxide in response to shear stress. Microcirculation 2013; 19:696-704. [PMID: 22708815 DOI: 10.1111/j.1549-8719.2012.00202.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Activation of CYP2C29 releases superoxide during shear stress-induced dilation (SSID). METHODS Mesenteric arteries isolated from female eNOS-KO and WT mice were cannulated and pressurized. Vasodilation and superoxide production in response to shear stress were assessed. RESULTS Shear stress-induced dilation was significantly attenuated in vessels of eNOS-KO compared with WT mice, which was normalized by tempol and PEG-Catalase, in a PPOH (inhibitor of CYP2C29)-sensitive manner, but remained unaffected by VAS2870 and allopurinol, inhibitors of NADPH oxidase and xanthine oxidase, respectively. NaNO(2)-induced dilation was comparable in both strains of mice. Confocal microscopy shows that SS-stimulated superoxide was increased particularly in the endothelium of eNOS-KO mice. HPLC analysis of 2-EOH indicated an increase in SS-stimulated superoxide in vessels of eNOS-KO mice, a response that was sensitive to PPOH. Inhibition of soluble epoxide hydrolase significantly enhanced SSID without affecting SS-stimulated superoxide production. CYP2C29 and catalase were upregulated, and exogenous H(2)O(2) caused vasoconstriction in vessels of eNOS-KO mice. CONCLUSIONS CYP2C29 synthesizes EETs to mediate SSID, and simultaneously releases superoxide and sequential H(2)O(2), which in turn impair SSID.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|
13
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
14
|
Sun D, Jiang H, Wu H, Yang Y, Kaley G, Huang A. A novel vascular EET synthase: role of CYP2C7. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1723-30. [PMID: 21940400 DOI: 10.1152/ajpregu.00382.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated previously that cytochrome P-450 (CYP) 2C29 is the epoxyeicosatrienoic acid (EET) synthase responsible for the EET-mediated flow/shear stress-induced dilation of vessels of female nitric oxide (NO)-deficient mice (Sun D, Yang YM, Jiang H, Wu H, Ojami C, Kaley G, Huang A. Am J Physiol Regul Integr Comp Physiol 298: R862-R869, 2010). In the present study, we aimed to identify which specific CYP isoform(s) is the source of the synthesis and release of EETs in response to stimulation by shear stress in vessels of rats. Cannulated mesenteric arteries isolated from both sexes of N(G)-nitro-L-arginine methyl ester (L-NAME)-treated rats were perfused with 2 and 10 dyn/cm(2) shear stress, followed by collection of the perfusate to determine EET concentrations and isoforms. Shear stress stimulated release of EETs in the perfusate of female (but not male) NO-deficient vessels, associated with an EET-mediated vasodilation, in which 11,12- and 14,15-EET contributed predominantly to the responses. Rat CYP cDNA array screened a total of 32 CYP genes of mesenteric arteries, indicating a significant upregulation of CYP2C7 in female L-NAME-treated rats. Endothelial RNA and protein were extracted from intact single vessels. Expression of CYP2C7 mRNA and protein in pooled extractions of endothelial lysate was identified by PCR and Western blot analyses. Transfection of the vessels with CYP2C7 short interfering RNA eliminated the release of EETs, consequently abolishing the EET-mediated flow-induced dilation; these responses, however, were maintained in vessels transfected with nonsilencing short interfering RNA. Knockdown of endothelial CYP2C7 was confirmed by PCR and Western blot analyses. In conclusion, CYP2C7 is an endothelial EET synthase in the female rat vasculature, by which, in NO deficiency, shear stress stimulates the release of EETs to initiate vasodilation.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
15
|
Estrogens and selective estrogen receptor modulators regulate gene and protein expression in the mesenteric arteries. Vascul Pharmacol 2011; 55:42-9. [PMID: 21658471 DOI: 10.1016/j.vph.2011.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/10/2011] [Accepted: 05/26/2011] [Indexed: 12/24/2022]
Abstract
Estrogen has both beneficial and detrimental effects on the cardiovascular system. Selective estrogen receptor modulators (SERMs) exhibit partial estrogen agonist/antagonist activity in estrogen target tissues. Gene targets of estrogen and SERMs in the vasculature are not well-known. Thus, the present study tested the hypothesis that estrogens (ethinyl estradiol, estradiol benzoate, and equilin) and SERMs (tamoxifen and raloxifene) cause differential gene and protein expression in the vasculature. DNA microarray and real-time RT-PCR were used to investigate gene expression in the mesenteric arteries of estrogen and SERM treated ovariectomized rats. The genes shown to be differentially expressed included stearoyl-CoA desaturase (SCD), soluble epoxide hydrolase (sEH), secreted frizzled related protein-4 (SFRP-4), insulin-like growth factor-1 (IGF-1), phospholipase A2 group 1B (PLA2-G1B), and fatty acid synthase (FAS). Western blot further confirmed the differential expression of sEH, SFRP-4, FAS, and SCD protein. These results reveal that estrogens and SERMs cause differential gene and protein expression in the mesenteric artery. Consequently, the use of these agents may be associated with a unique profile of functional and structural changes in the mesenteric arterial circulation.
Collapse
|