1
|
Wang L, Li Z, Song Y, Li N, Liu XH, Wang D. Divergent Photoperiodic Responses in Hypothalamic Dio3 Expression and Gonadal Activity Between Offspring and Paternal Brandt's Voles. Animals (Basel) 2025; 15:469. [PMID: 40002951 PMCID: PMC11851783 DOI: 10.3390/ani15040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The postnatal development of gonadal glands in seasonal breeders, particularly small rodent species, is influenced by photoperiodic patterns. However, little research has been conducted on the effects of pattern similarity and age differentiation especially in molecular features. This study compares the postnatal development of gonadal glands and the expression of hypothalamic genes related to reproductive regulation in male offspring of Brandt's voles (Lasiopodomys brandtii) born under three types of changing photoperiodic patterns: increasing long photoperiod (ILP, 12 h + 3 min/day), natural increasing long photoperiods (NLPs), and decreasing short photoperiods (DSPs, 12 h - 3 min/day), as well as in their paternal voles exposed to these patterns at the same period. Results indicate that over the course of 12 postnatal weeks, gonadal development, including organ masses and serum testosterone levels, exhibited similar profiles between the ILP and NLP groups, which were significantly higher than those observed in DSP offspring. Hypothalamic type 3 iodothyronine deiodinase (Dio3) exhibited significantly higher expression in the DSP group from postnatal week 4 to 8 compared to the other two groups. These physiological and molecular differences gradually decreased with age in offspring, but were never observed in the paternal voles, indicating divergent photoperiodic responses between the two ages. The synchronous profiles observed between hypothalamic Dio3 expression and gonadal activities underscore its crucial role in interpreting photoperiodic signals and regulating gonadal development in Brandt's voles.
Collapse
Affiliation(s)
- Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Zhengguang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Xiao-Hui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
2
|
Yokoya M, Higuchi Y. Stationarity of the Special Relationship Between the Geographical Distribution of Body Size and Day Length in Japanese Adolescents: Spatial and Temporal Analysis Using a GTWR Model. Am J Hum Biol 2025; 37:e24180. [PMID: 39503173 DOI: 10.1002/ajhb.24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES Northern Japanese children tend to have larger physiques; however, the underlying cause remains unknown. Previous geographical correlation analyses revealed an unusual trend; effective day length was negatively correlated with height and positively correlated with weight (adjusted for height). This paradoxical relationship suggests a thyroid hormone-like effect and possible photoperiodic response. This study aimed to determine whether this phenomenon remains consistent over time and across different regions of Japan. METHODS We used geographically and temporally weighted regression (GTWR) to examine whether the relationship between height and effective day length, which differs from the relationship between weight and effective day length, varies by location and time. GTWR models each observation point separately, allowing for spatial and temporal variations. The analysis included the average height and weight data of children and adolescents by prefecture from 1989 to 2019, along with effective day length considering illuminance above 5000 lx derived from the agrometeorological grid square data. RESULTS Height was used as the dependent variable, whereas weight and effective day length were used as independent variables. For height estimation, the coefficients of weight and effective day length were consistently positive and negative, respectively, although the regression coefficients showed minor geographical and temporal variations. CONCLUSION The opposite correlation between height and effective day length and that between weight and effective day length were consistent. This suggests that the phenomenon is more likely driven by environmental factors than by economic or genetic influences.
Collapse
Affiliation(s)
- Masana Yokoya
- Faculty of Environmental Sciences, University of Human Environments, Okazaki, Japan
| | - Yukito Higuchi
- Faculty of Sports Science, Kyushu Kyoritsu University, Kitakyushu, Japan
| |
Collapse
|
3
|
Qiao Y, Li N, Song Y, Liu X, Wang D. Short photoperiod inhibited gonadal growth and elevated hypothalamic Dio3 expression unrelated to promoter DNA methylation in young Brandt's voles. Integr Zool 2024. [PMID: 39180280 DOI: 10.1111/1749-4877.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Photoperiod, the length of daylight, has a significant impact on the physiological characteristics of seasonal breeding animals, including their somatic and gonadal development. In rodents, expression of deiodinase type II (Dio2) and III (Dio3) in the hypothalamus is crucial for responding to photoperiodic signals. However, research on the photoperiodism of hypothalamic gene expression and the corresponding regulatory mechanism in Brandt's voles living in the Mongolian steppes is limited. In this study, we gradually changed day length patterns to simulate spring (increasing long photoperiod, ILP) and autumn (decreasing short photoperiod, DSP). We compared the somatic and gonadal development of voles born under ILP and DSP and the expression patterns of five reproduction-related genes in the hypothalamus of young voles. The results showed that DSP significantly inhibited somatic and gonadal development in both female and male offspring. Compared with ILP, Dio3 expression was significantly upregulated in the hypothalamus under DSP conditions and remained elevated until postnatal week 8 in both males and females. However, there was no significant difference in the methylation levels of the proximal promoter region of Dio3 between ILP and DSP, suggesting that methylation in the proximal promoter region may not be involved in regulating the expression of Dio3. These findings suggest that hypothalamic expression of Dio3 plays a key role in the photoperiodic regulation of gonadal activity in Brandt's voles. However, it appears that CpGs methylation in the promoter region is not the main mechanism regulating Dio3 expression.
Collapse
Affiliation(s)
- Yanting Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Science, Changji, China
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Wang D, Li N, Tian L, Ren F, Li Z, Chen Y, Liu L, Hu X, Zhang X, Song Y, Hut RA, Liu XH. Dynamic expressions of hypothalamic genes regulate seasonal breeding in a natural rodent population. Mol Ecol 2019; 28:3508-3522. [PMID: 31233652 DOI: 10.1111/mec.15161] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
Abstract
Seasonal breeding is a universal reproductive strategy in many animals. Hypothalamic genes, especially type 2 and 3 iodothyronine deiodinases (Dio2/3), RFamide-related peptide 3 (Rfrp-3), kisspeptin (Kiss-1) and gonadotropin-releasing hormone (GnRH), are involved in a photoperiodic pathway that encodes seasonal signals from day length in many vertebrate species. However, the seasonal expression patterns of these genes in wild mammals are less studied. Here, we present a four-year field investigation to reveal seasonal rhythm and age-dependent reproductive activity in male Brandt's voles (Lasiopodomys brandtii) and to detect relationships among seasonal expression profiles of hypothalamic genes, testicular activity, age and annual day length. From breeding season (April) to nonbreeding season (October), adult male voles displayed a synchronous peak in gonadal activity with annual day length around summer solstice, which was jointly caused by age structure shifts and age-dependent gonadal development patterns. Overwintered males maintained reproductive activity until late in the breeding season, whereas most newborn males terminated gonadal development completely, except for a minority of males born early in spring. Consistently, the synchronous and opposite expression profiles of Dio2/3 suggest their central function to decode photoperiodic signals and to predict the onset of the nonbreeding season. Moreover, changes in Dio2/3 signals may guide the actions of Kiss-1 and Rfrp-3 to regulate the age-dependent divergence of reproductive strategy in wild Brandt's vole. Our results provide evidence on how hypothalamic photoperiod genes regulate seasonal breeding in a natural rodent population.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengguang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences, Sichuan University, Chengdu, China
| | - Lan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiangfa Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuechang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Xiao-Hui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Sáenz de Miera C. Maternal photoperiodic programming enlightens the internal regulation of thyroid-hormone deiodinases in tanycytes. J Neuroendocrinol 2019; 31:e12679. [PMID: 30585670 DOI: 10.1111/jne.12679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
Seasonal rhythms in physiology are widespread among mammals living in temperate zones. These rhythms rely on the external photoperiodic signal being entrained to the seasons, although they persist under constant conditions, revealing their endogenous origin. Internal long-term timing (circannual cycles) can be revealed in the laboratory as photoperiodic history-dependent responses, comprising the ability to respond differently to similar photoperiodic cues based on prior photoperiodic experience. In juveniles, history-dependence relies on the photoperiod transmitted by the mother to the fetus in utero, a phenomenon known as "maternal photoperiodic programming" (MPP). The response to photoperiod in mammals involves the nocturnal pineal hormone melatonin, which regulates a neuroendocrine network including thyrotrophin in the pars tuberalis and deiodinases in tanycytes, resulting in changes in thyroid hormone in the mediobasal hypothalamus. This review addresses MPP and discusses the latest findings on its impact on the thyrotrophin/deiodinase network. Finally, commonalities between MPP and other instances of endogenous seasonal timing are considered, and a unifying scheme is suggested in which timing arises from a long-term communication between the pars tuberalis and the hypothalamus and resultant spontaneous changes in local thyroid hormone status, independently of the pineal melatonin signal.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department Neurobiology of Rhythms, Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Gullo D, Latina A, Frasca F, Squatrito S, Belfiore A, Vigneri R. Seasonal variations in TSH serum levels in athyreotic patients under L-thyroxine replacement monotherapy. Clin Endocrinol (Oxf) 2017; 87:207-215. [PMID: 28398655 DOI: 10.1111/cen.13351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Whether serum TSH undergoes seasonal fluctuations in euthyroid and hypothyroid residents of temperate climates is controversial. METHODS Monthly TSH and thyroid hormone levels were cross-sectionally analysed in a large cohort of euthyroid subjects (n=11 806) and L-thyroxine (L-T4)-treated athyreotic patients (n=3 934). Moreover, in a small group (n=119) of athyreotic patients treated with an unchanged dosage of L-T4 monotherapy, hormones were measured both in the coldest and in the hottest seasons of the same year (longitudinal study). RESULTS No seasonal hormone change was observed in the euthyroid subjects except for a small FT3 increase in winter (+2.9%, P<.001). In contrast, the L-T4-treated athyreotic patients had significantly higher serum TSH values in the cold season when the FT4 values were significantly lower. The differences were more notable in the longitudinal series (TSH, 0.80 vs. 0.20 mU/L and FT4, 16.3 vs. 17.8 pmol/L in December-March vs. June-September, respectively). In these patients also serum FT3 values significantly decreased in winter (in the longitudinal series, 3.80 in winter vs 4.07 pmol/L in summer). Regression analysis showed that in athyreotic subjects, a greater FT4 change is required to obtain a TSH change similar to that of euthyroid controls and that this effect is more pronounced in the summer. CONCLUSION Athyreotic patients undergoing L-T4 monotherapy have abnormal seasonal variations in TSH. These changes are secondary to the FT4 and FT3 serum decreases in winter, which occur in spite of the constant treatment. The underlying mechanisms are unclear, but in some cases, these changes may be clinically relevant.
Collapse
Affiliation(s)
- Damiano Gullo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Adele Latina
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Sebastiano Squatrito
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Antonino Belfiore
- Endocrine Unit, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
- CNR, Institute of Biostructures and Bioimaging, Catania, Italy
| |
Collapse
|
7
|
Ebling FJP. On the value of seasonal mammals for identifying mechanisms underlying the control of food intake and body weight. Horm Behav 2014; 66:56-65. [PMID: 24681216 PMCID: PMC4064697 DOI: 10.1016/j.yhbeh.2014.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/12/2023]
Abstract
This article is part of a Special Issue "Energy Balance". Seasonal cycles of adiposity and body weight reflecting changes in both food intake and energy expenditure are the norm in mammals that have evolved in temperate and polar habitats. Innate circannual rhythmicity and direct responses to the annual change in photoperiod combine to ensure that behavior and energy metabolism are regulated in anticipation of altered energetic demands such as the energetically costly processes of hibernation, migration, and lactation. In the last decade, major progress has been made into identifying the central mechanisms that underlie these profound long-term changes in behavior and physiology. Surprisingly they are distinct from the peptidergic and aminergic systems in the hypothalamus that have been identified in studies of the laboratory mouse and rat and implicated in timing meal intervals and in short-term responses to caloric restriction. Comparative studies across rodents, ungulates and birds reveal that tanycytes embedded in the ependymal layer of the third ventricle play a critical role in seasonal changes because they regulate the local availability of thyroid hormone. Understanding how this altered hormonal environment might regulate neurogenesis and plasticity in the hypothalamus should provide new insight into development of strategies to manage appetite and body weight.
Collapse
Affiliation(s)
- Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
8
|
Kampf-Lassin A, Prendergast BJ. Acute downregulation of Type II and Type III iodothyronine deiodinases by photoperiod in peripubertal male and female Siberian hamsters. Gen Comp Endocrinol 2013; 193:72-8. [PMID: 23891658 PMCID: PMC3812426 DOI: 10.1016/j.ygcen.2013.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Availability of the thyroid hormone triiodothyronine (T3) in the mediobasal hypothalamus plays a central role in seasonal reproductive responses to photoperiod. Across many vertebrates, Type 2 iodothyronine deiodinase (DIO2) is elevated under reproductively stimulatory long days (LD) and synthesizes the conversion of thyroxine to T3; Type 3 iodothyronine deiodinase (DIO3) reduces T3 production and signaling, and is upregulated under reproductively-inhibitory short days (SD). In Siberian hamsters, regulation of hypothalamic T3 is dominated by dio3 expression, whereas dio2 expression is less-consistently affected by photoperiod. In adult hamsters, changes in deiodinase mRNA expression typically require several weeks to manifest, but it is not known whether or how quickly these mechanisms are engaged during the rapid responses to photoperiod observed in young, peri-pubertal hamsters. This experiment tested the hypotheses that (1) deiodinase responses to photoperiod are accelerated in juvenile hamsters and (2) photoperiodic downregulation of deiodinase expression occurs more rapidly than upregulation. Hypothalamic dio2 and dio3 mRNA expression was quantified in male and female Siberian hamsters that were weaned on postnatal day 18 (PND 18) into SD or remained in their natal LD, and on PND 31 were exposed to a single long or short day. In SD males and females, a single long day inhibited dio3 mRNA expression, but did not increase dio2 mRNA. In LD males, a single short day rapidly inhibited dio2 mRNA expression, but did not stimulate expression of dio3 mRNA. Downregulation of dio2 and dio3 mRNAs precedes gonadotrophin responses to day length. Rapid photoperiodic inhibition of deiodinase mRNAs may initiate changes in thyroid hormone signaling in advance of longer-term, melatonin-dependent, responses.
Collapse
|