1
|
Ota C, Nagashima A, Kato A. Electroneutral Na +/Cl - cotransport activity of zebrafish Slc12a10.1 expressed in Xenopus oocytes. Am J Physiol Regul Integr Comp Physiol 2024; 327:R152-R163. [PMID: 38842519 DOI: 10.1152/ajpregu.00096.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Na+/Cl- cotransporter 2 (Ncc2 or Slc12a10) is a membrane transport protein that belongs to the electroneutral cation-chloride cotransporter family. The Slc12a10 gene (slc12a10) is widely present in bony vertebrates but is deleted or pseudogenized in birds, some bony fishes, and most mammals. Slc12a10 is highly homologous to Ncc (Slc12a3 or Ncc1); however, there are only a few reports measuring the activity of Slc12a10. In this study, we focused on zebrafish Slc12a10.1 (zSlc12a10.1) and analyzed its activity using Xenopus oocyte electrophysiology. Analysis using Na+-selective microelectrodes showed that intracellular sodium activity (aNai) in zSlc12a10.1 oocytes was significantly decreased in Na+- or Cl--free medium and recovered when Na+ or Cl- was readded to the medium. Similar analysis using a Cl--selective microelectrode showed that intracellular chloride activity (aCli) in zSlc12a10.1 oocytes significantly decreased in Na+- or Cl--free medium and recovered when Na+ or Cl- was readded to the medium. When a similar experiment was performed with a voltage clamp, the membrane current did not change when aNai of zSlc12a10.1 oocytes was decreased in Na+-free medium. Molecular phylogenetic and synteny analyses suggest that gene duplication between slc12a10.2 and slc12a10.3 in zebrafish is a relatively recent event, whereas gene duplication between slc12a10.1 and the ancestral gene of slc12a10.2/slc12a10.3 occurred at least about 2 million years ago. slc12a10 deficiency was observed in species belonging to Ictaluridae, Salmoniformes, Osmeriformes, Batrachoididae, Syngnathiformes, Gobiesociformes, Labriformes, and Tetraodontiformes. These results indicate that zebrafish Slc12a10.1 is an electroneutral Na+/Cl-cotransporter and establish its evolutionary position among various teleost slc12a10 paralogs.NEW & NOTEWORTHY Na+/Cl- cotransporter 2 (Slc12a10; Ncc2) is a protein highly homologous to Ncc (Slc12a3; Ncc1); however, there are only a few reports measuring the activity of Slc12a10. Electrophysiological analysis of Xenopus oocytes expressing zebrafish Slc12a10.1 showed that Slc12a10.1 acts as an electroneutral Na+/Cl-cotransporter. This is the third report on the activity of Slc12a10, following previous reports on Slc12a10 in eels.
Collapse
Affiliation(s)
- Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Higgins JA, Ramos DS, Gili S, Spetea C, Kanoski S, Ha D, McDonough AA, Youn JH. Stable potassium isotopes (41K/39K) track transcellular and paracellular potassium transport in biological systems. Front Physiol 2022; 13:1016242. [PMID: 36388124 PMCID: PMC9644202 DOI: 10.3389/fphys.2022.1016242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
As the most abundant cation in archaeal, bacterial, and eukaryotic cells, potassium (K+) is an essential element for life. While much is known about the machinery of transcellular and paracellular K transport–channels, pumps, co-transporters, and tight-junction proteins—many quantitative aspects of K homeostasis in biological systems remain poorly constrained. Here we present measurements of the stable isotope ratios of potassium (41K/39K) in three biological systems (algae, fish, and mammals). When considered in the context of our current understanding of plausible mechanisms of K isotope fractionation and K+ transport in these biological systems, our results provide evidence that the fractionation of K isotopes depends on transport pathway and transmembrane transport machinery. Specifically, we find that passive transport of K+ down its electrochemical potential through channels and pores in tight-junctions at favors 39K, a result which we attribute to a kinetic isotope effect associated with dehydration and/or size selectivity at the channel/pore entrance. In contrast, we find that transport of K+ against its electrochemical gradient via pumps and co-transporters is associated with less/no isotopic fractionation, a result that we attribute to small equilibrium isotope effects that are expressed in pumps/co-transporters due to their slower turnover rate and the relatively long residence time of K+ in the ion pocket. These results indicate that stable K isotopes may be able to provide quantitative constraints on transporter-specific K+ fluxes (e.g., the fraction of K efflux from a tissue by channels vs. co-transporters) and how these fluxes change in different physiological states. In addition, precise determination of K isotope effects associated with K+ transport via channels, pumps, and co-transporters may provide unique constraints on the mechanisms of K transport that could be tested with steered molecular dynamic simulations.
Collapse
Affiliation(s)
- John A. Higgins
- Department of Geosciences, Princeton University, Princeton, NJ, United States
- *Correspondence: John A. Higgins,
| | - Danielle Santiago Ramos
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
| | - Stefania Gili
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Scott Kanoski
- Department of Human and Evolutionary Biology, University of Southern California, Los Angeles, CA, United States
| | - Darren Ha
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Alicia A. McDonough
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Jang H. Youn
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
3
|
Velotta JP, McCormick SD, Whitehead A, Durso CS, Schultz ET. Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity. Integr Comp Biol 2022; 62:357-375. [PMID: 35661215 DOI: 10.1093/icb/icac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stephen D McCormick
- USGS, Eastern Ecological Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA, 01003USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA
| | - Catherine S Durso
- Department of Computer Science, University of Denver, Denver, CO 80210, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Clifford AM, Tresguerres M, Goss GG, Wood CM. A novel K + -dependent Na + uptake mechanism during low pH exposure in adult zebrafish (Danio rerio): New tricks for old dogma. Acta Physiol (Oxf) 2022; 234:e13777. [PMID: 34985194 DOI: 10.1111/apha.13777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/27/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
AIM To determine whether Na+ uptake in adult zebrafish (Danio rerio) exposed to acidic water adheres to traditional models reliant on Na+ /H+ Exchangers (NHEs), Na+ channels and Na+ /Cl- Cotransporters (NCCs) or if it occurs through a novel mechanism. METHODS Zebrafish were exposed to control (pH 8.0) or acidic (pH 4.0) water for 0-12 hours during which 22 Na+ uptake ( J Na in ), ammonia excretion, net acidic equivalent flux and net K+ flux ( J H net ) were measured. The involvement of NHEs, Na+ channels, NCCs, K+ -channels and K+ -dependent Na+ /Ca2+ exchangers (NCKXs) was evaluated by exposure to Cl- -free or elevated [K+ ] water, or to pharmacological inhibitors. The presence of NCKXs in gill was examined using RT-PCR. RESULTS J Na in was strongly attenuated by acid exposure, but gradually recovered to control rates. The systematic elimination of each of the traditional models led us to consider K+ as a counter substrate for Na+ uptake during acid exposure. Indeed, elevated environmental [K+ ] inhibited J Na in during acid exposure in a concentration-dependent manner, with near-complete inhibition at 10 mM. Moreover, J H net loss increased approximately fourfold at 8-10 hours of acid exposure which correlated with recovered J Na in in 1:1 fashion, and both J Na in and J H net were sensitive to tetraethylammonium (TEA) during acid exposure. Zebrafish gills expressed mRNA coding for six NCKX isoforms. CONCLUSIONS During acid exposure, zebrafish engage a novel Na+ uptake mechanism that utilizes the outwardly directed K+ gradient as a counter-substrate for Na+ and is sensitive to TEA. NKCXs are promising candidates to mediate this K+ -dependent Na+ uptake, opening new research avenues about Na+ uptake in zebrafish and other acid-tolerant aquatic species.
Collapse
Affiliation(s)
- Alexander M. Clifford
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Marine Biology Research Division Scripps Institution of Oceanography University of California San Diego La Jolla California USA
| | - Martin Tresguerres
- Marine Biology Research Division Scripps Institution of Oceanography University of California San Diego La Jolla California USA
| | - Greg G. Goss
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| | - Chris M. Wood
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
5
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
6
|
Barnawi EA, Doherty JE, Ferreira PG, Wilson JM. Extra-gastric expression of the proton pump H +/K +-ATPase in the gills and kidney of the teleost Oreochromis niloticus. J Exp Biol 2020; 223:jeb214890. [PMID: 32611790 DOI: 10.1242/jeb.214890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
Potassium regulation is essential for the proper functioning of excitable tissues in vertebrates. The H+/K+-ATPase (HKA), which is composed of the HKα1 (gene: atp4a) and HKβ (gene: atp4b) subunits, has an established role in potassium and acid-base regulation in mammals and is well known for its role in gastric acidification. However, the role of HKA in extra-gastric organs such as the gill and kidney is less clear, especially in fishes. In the present study in Nile tilapia, Oreochromis niloticus, uptake of the K+ surrogate flux marker rubidium (Rb+) was demonstrated in vivo; however, this uptake was not inhibited with omeprazole, a potent inhibitor of the gastric HKA. This contrasts with gill and kidney ex vivo preparations, where tissue Rb+ uptake was significantly inhibited by omeprazole and SCH28080, another gastric HKA inhibitor. The cellular localization of this pump in both the gill and kidney was demonstrated using immunohistochemical techniques with custom-made antibodies specific for Atp4a and Atp4b. Antibodies against the two subunits showed the same apical ionocyte distribution pattern in the gill and collecting tubules/ducts in the kidney. Atp4a antibody specificity was confirmed by western blotting. RT-PCT was used to confirm the expression of both subunits in the gill and kidney. Taken together, these results indicate for the first time K+ (Rb+) uptake in O. niloticus and that HKA is implicated, as shown through the ex vivo uptake inhibition by omeprazole and SCH28080, verifying a role for HKA in K+ absorption in the gill's ionocytes and collecting tubule/duct segments of the kidney.
Collapse
Affiliation(s)
- Ebtesam Ali Barnawi
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Justine E Doherty
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | | | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
- Molecular Physiology, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Mohindra V, Dangi T, Tripathi RK, Kumar R, Singh RK, Jena JK, Mohapatra T. Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies. Sci Rep 2019; 9:16511. [PMID: 31712633 PMCID: PMC6848103 DOI: 10.1038/s41598-019-52603-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/18/2019] [Indexed: 01/23/2023] Open
Abstract
This study provides the first high-quality draft genome assembly (762.5 Mb) of Tenualosa ilisha that is highly contiguous and nearly complete. We observed a total of 2,864 contigs, with 96.4% completeness with N50 of 2.65 Mbp and the largest contig length of 17.4 Mbp, along with a complete mitochondrial genome of 16,745 bases. A total number of 33,042 protein coding genes were predicted, among these, 512 genes were classified under 61 Gene Ontology (GO) terms, associated with various homeostasis processes. Highest number of genes belongs to cellular calcium ion homeostasis, followed by tissue homeostasis. A total of 97 genes were identified, with 16 GO terms related to water homeostasis. Claudins, Aquaporins, Connexins/Gap junctions, Adenylate cyclase, Solute carriers and Voltage gated potassium channel genes were observed to be higher in number in T. ilisha, as compared to that in other teleost species. Seven novel gene variants, in addition to claudin gene (CLDZ), were found in T. ilisha. The present study also identified two putative novel genes, NKAIN3 and L4AM1, for the first time in fish, for which further studies are required for pinpointing their functions in fish. In addition, 1.6 million simple sequence repeats were mined from draft genome assembly. The study provides a valuable genomic resource for the anadromous Hilsa. It will form a basis for future studies, pertaining to its adaptation mechanisms to different salinity levels during migration, which in turn would facilitate in its domestication.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
| | - Tanushree Dangi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Ratnesh K Tripathi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.,Imperial Life Sciences (P) Limited, Gurgaon, Haryana, 122001, India
| | - Rajesh Kumar
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| | - T Mohapatra
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| |
Collapse
|
8
|
Fjelldal PG, Hansen TJ, Karlsen Ø, Wright DW. Effects of laboratory salmon louse infection on Arctic char osmoregulation, growth and survival. CONSERVATION PHYSIOLOGY 2019; 7:coz072. [PMID: 31723431 PMCID: PMC6839430 DOI: 10.1093/conphys/coz072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 06/02/2023]
Abstract
High salmon lice (Lepeophtheirus salmonis) infestation levels resulting from intensive salmonid sea-cage aquaculture can threaten populations of wild salmonid hosts. This includes anadromous Arctic char (Salvelinus alpinus), which rely on short migrations into more productive seawater environments to build energy stores for maturation, spawning and over-wintering in freshwater. Elevated salmon lice burdens may limit the benefits of migration by constraining osmoregulation, growth, survival and reproduction. To test for these effects, we simulated anadromous migration in tanks by transferring individually tagged Arctic char smolts (n = 352, averaging 133 g) to seawater where they were infected with salmon lice or left as uninfected controls for 1 month, and then transferring them back to freshwater for 2 months. After the seawater phase, infected post-smolts had a mean of 0.33 (range of 0.09-0.91) mobile lice g-1 fish weight. At this point, specific growth rates (SGRs) dropped in infected compared to control fish (0.1% vs. 1.6% day-1). Higher plasma Na+ and osmolality in infected fish also indicate osmoregulatory impairment. Throughout the study, mortality was 18.2% and 1.7% in infected and control groups, but sexual maturation was low and comparable between groups. Infection intensity correlated positively with mortality rate and plasma Cl-, and correlated negatively with SGR and condition factor (CF). CF dropped (ΔCF < 0) at intensities of >0.09 lice g-1 fish weight, and intensities of >0.3 causing zero or negative SGRs and increased mortality were particularly concerning. If infection intensities reach these levels in the wild, char could be impacted by growth restrictions and increased mortality rates, which potentially cause shorter migration durations, lowered reproductive success and possibly also selection against anadromy. This study provides vital information for conservation practitioners wanting to understand the physiologically derived burden salmon lice can have on Arctic char populations, and can be used to define thresholds in the monitoring and conservation of Arctic char populations affected by aquaculture-driven salmon lice infestations.
Collapse
Affiliation(s)
- P G Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - T J Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Ø Karlsen
- Institute of Marine Research (IMR), PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - D W Wright
- Department of Primary Industries, Narrandera Fisheries Centre, PO Box 182, Narrandera, New South Wales, Australia
| |
Collapse
|
9
|
Marshall WS, Breves JP, Doohan EM, Tipsmark CK, Kelly SP, Robertson GN, Schulte PM. claudin-10 isoform expression and cation selectivity change with salinity in salt-secreting epithelia of Fundulusheteroclitus. ACTA ACUST UNITED AC 2018; 221:jeb.168906. [PMID: 29150449 DOI: 10.1242/jeb.168906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
To provide insight into claudin (Cldn) tight junction (TJ) protein contributions to branchial salt secretion in marine teleost fishes, this study examined cldn-10 TJ protein isoforms of a euryhaline teleost (mummichog; Fundulus heteroclitus) in association with salinity change and measurements of transepithelial cation selectivity. Mummichogs were transferred from freshwater (FW) to seawater (SW, 35‰) and from SW to hypersaline SW (2SW, 60‰) in a time course with transfer control groups (FW to FW, and SW to SW). FW to SW transfer increased mRNA abundance of cldn-10d and cldn-10e twofold, whilst cldn-10c and cldn-10f transcripts were unchanged. Transfer from SW to 2SW did not alter cldn-10d, and transiently altered cldn-10e abundance, but increased cldn-10c and cldn-10f fourfold. This was coincident with an increased number of single-stranded junctions (observed by transmission electron microscopy). For both salinity transfers, (1) cldn-10e mRNA was acutely responsive (i.e. after 24 h), (2) other responsive cldn-10 isoforms increased later (3-7 days), and (3) cystic fibrosis transmembrane conductance regulator (cftr) mRNA was elevated in accordance with established changes in transcellular Cl- movement. Changes in mRNA encoding cldn-10c and -10f appeared linked, consistent with the tandem repeat locus in the Fundulus genome, whereas mRNA for tandem cldn-10d and cldn-10e seemed independent of each other. Cation selectivity sequence measured by voltage and conductance responses to artificial SW revealed Eisenman sequence VII: Na+>K+>Rb+∼Cs+>Li+ Collectively, these data support the idea that Cldn-10 TJ proteins create and maintain cation-selective pore junctions in salt-secreting tissues of teleost fishes.
Collapse
Affiliation(s)
- William S Marshall
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Ellen M Doohan
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, Fayetteville, AK 72701, USA
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - George N Robertson
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
10
|
Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Sci Rep 2017; 7:16215. [PMID: 29176723 PMCID: PMC5701230 DOI: 10.1038/s41598-017-16381-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/13/2017] [Indexed: 01/29/2023] Open
Abstract
Molecular mechanisms of Na+, Cl−, and Ca2+ regulation in ionocytes of fish have been well investigated. However, the regulatory mechanism of K+ in fishes has been largely unknown. In this study, we investigated the mechanism of K+ regulation in medaka larvae acclimated to fresh water. Using a scanning ion-selective electrode technique (SIET) to measure the K+ fluxes at skin cells, significant K+ effluxes were found at ionocytes; in contrast, significant K+ influxes were found at the boundaries between keratinocytes. High K+ water (HK) acclimation induced the K+ effluxes at ionocytes and suppressed the K+ influxes at keratinocytes. The K+ effluxes of ionocytes were suppressed by VU591, bumetanide and ouabain. The K+ influxes of keratinocytes were suppressed by TAP. In situ hybridization analysis showed that mRNA of ROMKa was expressed by ionocytes in the skin and gills of medaka larvae. Quantitative PCR showed that mRNA levels of ROMKa and NKCC1a in gills of adult medaka were upregulated after HK acclimation. This study suggests that medaka obtain K+ through a paracellular pathway between keratinocytes and extrude K+ through ionocytes; apical ROMKa and basolateral NKCC1a are involved in the K+ secretion by ionocytes.
Collapse
|
11
|
Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:576-600. [PMID: 27808448 PMCID: PMC6114146 DOI: 10.1002/etc.3676] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 05/21/2023]
Abstract
Anthropogenic sources increase freshwater salinity and produce differences in constituent ions compared with natural waters. Moreover, ions differ in physiological roles and concentrations in intracellular and extracellular fluids. Four freshwater taxa groups are compared, to investigate similarities and differences in ion transport processes and what ion transport mechanisms suggest about the toxicity of these or other ions in freshwater. Although differences exist, many ion transporters are functionally similar and may belong to evolutionarily conserved protein families. For example, the Na+ /H+ -exchanger in teleost fish differs from the H+ /2Na+ (or Ca2+ )-exchanger in crustaceans. In osmoregulation, Na+ and Cl- predominate. Stenohaline freshwater animals hyperregulate until they are no longer able to maintain hypertonic extracellular Na+ and Cl- concentrations with increasing salinity and become isotonic. Toxic effects of K+ are related to ionoregulation and volume regulation. The ionic balance between intracellular and extracellular fluids is maintained by Na+ /K+ -adenosine triphosphatase (ATPase), but details are lacking on apical K+ transporters. Elevated H+ affects the maintenance of internal Na+ by Na+ /H+ exchange; elevated HCO3- inhibits Cl- uptake. The uptake of Mg2+ occurs by the gills or intestine, but details are lacking on Mg2+ transporters. In unionid gills, SO42- is actively transported, but most epithelia are generally impermeant to SO42- . Transporters of Ca2+ maintain homeostasis of dissolved Ca2+ . More integration of physiology with toxicology is needed to fully understand freshwater ion effects. Environ Toxicol Chem 2017;36:576-600. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Michael B. Griffith
- Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Fortification of an Aquafeed with Potassium Chloride Does Not Improve Survival of Juvenile Australian Snapper Pagrus auratus Reared in Potassium Deficient Saline Groundwater. FISHES 2016. [DOI: 10.3390/fishes1010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation. Sci Rep 2016; 6:25073. [PMID: 27125643 PMCID: PMC4850402 DOI: 10.1038/srep25073] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/11/2016] [Indexed: 01/08/2023] Open
Abstract
The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations.
Collapse
|
14
|
Al-Reasi HA, Smith DS, Wood CM. The influence of dissolved organic matter (DOM) on sodium regulation and nitrogenous waste excretion in the zebrafish (Danio rerio). J Exp Biol 2016; 219:2289-99. [DOI: 10.1242/jeb.139444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Dissolved organic matter (DOM) is both ubiquitous and diverse in composition in natural waters, but its effects on the branchial physiology of aquatic organisms have received little attention relative to other variables (e.g. pH, hardness, salinity, alkalinity). Here we investigated the effects of four chemically distinct DOM isolates (three natural, one commercial, ranging from autochthonous to highly allochthonous, all at∼6 mg C L−1) on the physiology of gill ionoregulation and N-waste excretion in zebrafish acclimated to either circumneutral (7.0 – 8.0) or acidic pH (5.0). Overall, lower pH tended to increase net branchial ammonia excretion, net K+ loss, and [3H]PEG-4000 clearance rates (indicators of transcellular and paracellular permeability respectively). However unidirectional Na+ efflux, urea excretion, and drinking rates were unaffected. DOMs tended to stimulate unidirectional Na+ influx rate and exerted subtle effects on the concentration-dependent kinetics of Na+ uptake, increasing maximum transport capacity. All DOM sources reduced passive Na+ efflux rates regardless of pH, but exerted negligible effects on N-waste excretion, drinking rate, net K+ loss, or [3H]PEG-4000 clearance, so the mechanism of Na+ loss reduction remains unclear. Overall, these actions appear beneficial to ionoregulatory homeostasis in zebrafish, and some may be related to physico-chemical properties of the DOMs. They are very different from those seen in a recent parallel study on Daphnia magna using the same DOM isolates, indicating that DOM actions may be both species-specific and DOM-specific.
Collapse
Affiliation(s)
- Hassan A. Al-Reasi
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - D. Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - Chris M. Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
15
|
Matsumoto A, Shigeoka Y, Arakawa H, Hirakawa N, Morioka Y, Mizuno T. Biological half-life of radioactive cesium in Japanese rockfish Sebastes cheni contaminated by the Fukushima Daiichi nuclear power plant accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 150:68-74. [PMID: 26301830 DOI: 10.1016/j.jenvrad.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
Since the Fukushima accident in March 2011 the concentration of radioactive cesium in Japanese rockfish (Sebastes cheni) has been decreasing slower than other fish species. The aim of this study was therefore to investigate the possibility of slow elimination rate (i.e., relatively longer Tb) as one of the reasons for the slow decrease in (137)Cs concentrations in Japanese rockfish (S. cheni). To do this, we reared twenty-three individuals of this species for a period of about 1 year, during which time we measured the (137)Cs concentrations and γ-ray spectra 14 times by using a high-efficiency NaI(Tl) scintillator. We then examined the relationship between the (137)Cs concentrations and the total length of each individual. We estimated the biological half-life (Tb, day) for each individual using the total number of (137)Cs counts in the energy region, and examined the effects of total length and (137)Cs concentration on Tb by generalized linear model (GLM). We also examined the effect of sex, total length, seawater temperature, and the (137)Cs concentration of seawater on temporal changes in the (137)Cs count reduction rate by GLM. There was no clear relationship between the corrected whole-body (137)Cs concentrations and the total length in females, however there was a significant positive correlation between these two variables in males. The difference between males and females may be attributable to variation in the degree of dilution because of variable growth of individuals, and suggests that the (137)Cs concentrations of small individuals may be greatly diluted because of faster growth. However, there was no significant difference in Tb between sexes. The mean Tb (±SD) in all individuals was 269 (±39) days; this Tb value is 2.7-5.4 times longer than past Tb values (marine fish: 50-100 days), and is thought to be one of the reasons for the slower decrease in (137)Cs concentrations in this species than other fish species on the coast of Fukushima. The GLM showed significant effects of both total length and (137)Cs concentration on Tb, which may reflect a reduction in the metabolic rate with increased body size (i.e., aging) and gradient of concentration against seawater. The GLM also showed a significant positive effect of seawater temperature on the reduction rate of the (137)Cs counts (D, day(-1)). Therefore, D was clearly related to seasonal variations in the temperature of seawater, and this relationship may be attributable to changes in the metabolic rate that are controlled by variations in the seawater temperature. From these measurements, we examined the processes that control reductions in (137)Cs radioactivity.
Collapse
Affiliation(s)
- Akira Matsumoto
- Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 1088477, Japan.
| | - Yu Shigeoka
- Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 1088477, Japan
| | - Hisayuki Arakawa
- Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 1088477, Japan
| | - Naoto Hirakawa
- Fukushima Fisheries Office, Souma, Fukushima 9760022, Japan
| | - Yoshiaki Morioka
- Fukushima Prefectural Fisheries Experimental Station, Iwaki, Fukushima 9700316, Japan
| | - Takuji Mizuno
- Fukushima Prefectural Fisheries Experimental Station, Iwaki, Fukushima 9700316, Japan
| |
Collapse
|
16
|
Inokuchi M, Breves JP, Moriyama S, Watanabe S, Kaneko T, Lerner DT, Grau EG, Seale AP. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1251-63. [PMID: 26377558 DOI: 10.1152/ajpregu.00168.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023]
Abstract
This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York
| | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii
| |
Collapse
|
17
|
Furukawa F, Watanabe S, Seale AP, Breves JP, Lerner DT, Grau EG, Kaneko T. In vivo and in vitro effects of high-K(+) stress on branchial expression of ROMKa in seawater-acclimated Mozambique tilapia. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:111-8. [PMID: 26021981 DOI: 10.1016/j.cbpa.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022]
Abstract
Recently, a teleost ortholog of renal outer medullary K(+) channel (ROMK) expressed in gill ionocytes (ROMKa) has emerged as a primary K(+)-excreting pathway in fish. However, the mechanisms by which ROMKa expression is regulated in response to perturbations of plasma K(+) levels are unknown. In this study, we aimed to identify potential links between the endocrine system and K(+) regulation in a euryhaline fish. We assessed time-course changes in multiple endocrine parameters, including plasma cortisol and gene expression of branchial glucocorticoid and mineralocorticoid receptors (GR1, GR2, and MR) and pituitary hormones, in seawater (SW)-acclimated Mozambique tilapia (Oreochromis mossambicus) exposed to high-K(+) (H-K) SW. Exposure to H-K SW elicited little effects on plasma cortisol or mRNA levels of GRs and pituitary hormones. Since plasma K(+) and branchial ROMKa expression was increased within 6h after H-K treatment in vivo, the effect of high K(+) was subsequently tested in a gill filament incubation experiment using media with differing K(+) concentrations. ROMKa mRNA levels were induced following incubation of filaments in H-K medium for 6h. The present study is the first to demonstrate that the expression of ROMKa in teleost ionocytes can respond to high K(+) conditions independent from systemic signaling.
Collapse
Affiliation(s)
- Fumiya Furukawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Guh YJ, Lin CH, Hwang PP. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI JOURNAL 2015; 14:627-59. [PMID: 26600749 PMCID: PMC4650948 DOI: 10.17179/excli2015-246] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na(+) uptake/H(+) secretion/NH4 (+) excretion, Ca(2+) uptake, Na(+)/Cl(-) uptake, K(+) secretion, and Cl(-) uptake/HCO3 (-) secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Institute of Cellular and Organismic Biology, Academia Sinica, Nakang, Taipei, Taiwan ; Institute of Biological Chemistry, Academia Sinica, Nakang, Taipei, Taiwan
| | - Chia-Hao Lin
- National Institute for Basic Biology, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nakang, Taipei, Taiwan
| |
Collapse
|
19
|
Furukawa F, Watanabe S, Kakumura K, Hiroi J, Kaneko T. Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1303-12. [PMID: 25298512 DOI: 10.1152/ajpregu.00071.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of plasma K(+) levels in narrow ranges is vital to vertebrate animals. Since seawater (SW) teleosts are loaded with excess K(+), they constantly excrete K(+) from the gills. However, the K(+) regulatory mechanisms in freshwater (FW)-acclimated teleosts are still unclear. We aimed to identify the possible K(+) regulatory mechanisms in the gills and kidney, the two major osmoregulatory organs, of FW-acclimated Mozambique tilapia (Oreochromis mossambicus). As a potential molecular candidate for renal K(+) handling, a putative renal outer medullary K(+) channel (ROMK) was cloned from the tilapia kidney and tentatively named "ROMKb"; another ROMK previously cloned from the tilapia gills was thus renamed "ROMKa". The fish were acclimated to control FW or to high-K(+) (H-K) FW for 1 wk, and we assessed physiological responses of tilapia to H-K treatment. As a result, urinary K(+) levels were slightly higher in H-K fish, implying a role of the kidney in K(+) excretion. However, the mRNA expression levels of both ROMKa and ROMKb were very low in the kidney, while that of K(+)/Cl(-) cotransporter 1 (KCC1) was robust. In the gills, ROMKa mRNA was markedly upregulated in H-K fish. Immunofluorescence staining showed that branchial ROMKa was expressed at the apical membrane of type I and type III ionocytes, and the ROMKa immunosignals were more intense in H-K fish than in control fish. The present study suggests that branchial ROMKa takes a central role for K(+) regulation in FW conditions and that K(+) excretion via the gills is activated irrespective of environmental salinity.
Collapse
Affiliation(s)
- Fumiya Furukawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Keigo Kakumura
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| |
Collapse
|
20
|
Takei Y, Hiroi J, Takahashi H, Sakamoto T. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R778-92. [PMID: 24965789 DOI: 10.1152/ajpregu.00104.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleost fishes are the major group of ray-finned fishes and represent more than one-half of the total number of vertebrate species. They have experienced in their evolution an additional third-round whole genome duplication just after the divergence of their lineage, which endowed them with an extra adaptability to invade various aquatic habitats. Thus their physiology is also extremely diverse compared with other vertebrate groups as exemplified by the many patterns of body fluid regulation or osmoregulation. The key osmoregulatory organ for teleosts, whose body fluid composition is similar to mammals, is the gill, where ions are absorbed from or excreted into surrounding waters of various salinities against concentration gradients. It has been shown that the underlying molecular physiology of gill ionocytes responsible for ion regulation is highly variable among species. This variability is also seen in the endocrine control of osmoregulation where some hormones have distinct effects on body fluid regulation in different teleost species. A typical example is atrial natriuretic peptide (ANP); ANP is secreted in response to increased blood volume and acts on various osmoregulatory organs to restore volume in rainbow trout as it does in mammals, but it is secreted in response to increased plasma osmolality, and specifically decreases NaCl, and not water, in the body of eels. The distinct actions of other osmoregulatory hormones such as growth hormone, prolactin, angiotensin II, and vasotocin among teleost species are also evident. We hypothesized that such diversity of ionocytes and hormone actions among species stems from their intrinsic differences in body fluid regulation that originated from their native habitats, either fresh water or seawater. In this review, we summarized remarkable differences in body fluid regulation and its endocrine control among teleost species, although the number of species is still limited to substantiate the hypothesis.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan;
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; and
| | - Hideya Takahashi
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| |
Collapse
|
21
|
A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 2014; 357:225-43. [PMID: 24842048 DOI: 10.1007/s00441-014-1883-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The ion regulation mechanisms of fishes have been recently studied in zebrafish (Danio rerio), a stenohaline species. However, recent advances using this organism are not necessarily applicable to euryhaline fishes. The euryhaline species medaka (Oryzias latipes), which, like zebrafish, is genetically well categorized and amenable to molecular manipulation, was proposed as an alternative model for studying osmoregulation during acclimation to different salinities. To establish its suitability as an alternative, the present study was conducted to (1) identify different types of ionocytes in the embryonic skin and (2) analyze gene expressions of the transporters during seawater acclimation. Double/triple in situ hybridization and/or immunocytochemistry revealed that freshwater (FW) medaka contain three types of ionocyte: (1) Na(+)/H(+) exchanger 3 (NHE3) cells with apical NHE3 and basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC), Na(+)-K(+)-ATPase (NKA) and anion exchanger (AE); (2) Na(+)-Cl(-) cotransporter (NCC) cells with apical NCC and basolateral H(+)-ATPase; and (3) epithelial Ca(2+) channel (ECaC) cells [presumed accessory (AC) cells] with apical ECaC. On the other hand, seawater (SW) medaka has a single predominant ionocyte type, which possesses apical cystic fibrosis transmembrane conductance regulator (CFTR) and NHE3 and basolateral NKCC and NKA and is accompanied by smaller AC cells that express lower levels of basolateral NKA. Reciprocal gene expressions of decreased NHE3, AE, NCC and ECaC and increased CFTR and NKCC in medaka gills during SW were revealed by quantative PCR analysis.
Collapse
|
22
|
Hiroi J, McCormick SD. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 2012; 184:257-68. [PMID: 22850177 DOI: 10.1016/j.resp.2012.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022]
Abstract
Teleost fishes are able to acclimatize to seawater by secreting excess NaCl by means of specialized "ionocytes" in the gill epithelium. Antibodies against Na(+)/K(+)-ATPase (NKA) have been used since 1996 as a marker for identifying branchial ionocytes. Immunohistochemistry of NKA by itself and in combination with Na(+)/K(+)/2Cl(-) cotransporter and CFTR Cl(-) channel provided convincing evidence that ionocytes are functional during seawater acclimation, and also revealed morphological variations in ionocytes among teleost species. Recent development of antibodies to freshwater- and seawater-specific isoforms of the NKA alpha-subunit has allowed functional distinction of ion absorptive and secretory ionocytes in Atlantic salmon. Cutaneous ionocytes of tilapia embryos serve as a model for branchial ionocytes, allowing identification of 4 types: two involved in ion uptake, one responsible for salt secretion and one with unknown function. Combining molecular genetics, advanced imaging techniques and immunohistochemistry will rapidly advance our understanding of both the unity and diversity of ionocyte function and regulation in fish osmoregulation.
Collapse
Affiliation(s)
- Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki 216-8511, Japan.
| | | |
Collapse
|