1
|
Witkin JM, Radin DP, Rana S, Fuller DD, Fusco AF, Demers JC, Pradeep Thakre P, Smith JL, Lippa A, Cerne R. AMPA receptors play an important role in the biological consequences of spinal cord injury: Implications for AMPA receptor modulators for therapeutic benefit. Biochem Pharmacol 2024; 228:116302. [PMID: 38763261 DOI: 10.1016/j.bcp.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Julie C Demers
- Indiana University/Purdue University, Indianapolis, IN, USA
| | - Prajwal Pradeep Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, Ljubljana, Slovenia
| |
Collapse
|
2
|
Andreev-Andrievskiy A, Lagereva E, Popova A. Reflex erection in the rat: reciprocal interplay between hemodynamic and somatic events. BMC Urol 2018; 18:36. [PMID: 29739451 PMCID: PMC5941648 DOI: 10.1186/s12894-018-0352-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/02/2018] [Indexed: 01/23/2023] Open
Abstract
Background Penile erection is a complex reflex under spinal control and modulated by the brain. The hemodynamic events under autonomic control and the perineal muscles somatic activity are interconnected during the reflex erection at the spinal level, however if the afferent feedback on the corpus cavernosum pressure during an erection affects the somatic activity (perineal muscles contractions) and vice versa is not known. This study was aimed to test this hypothesis using a rat model. Methods Intracavernous pressure (ICP) and bulbocavernosus (BC) muscle EMG were recorded during reflex erections elicited with dorsal penile nerve (DNP) electrical stimulation in anaesthetized acutely spinalized SD rats with surgically (bilateral cavernous nerve section, CnX, n = 8) and pharmacologically (trimetaphan infusion, TMPh, n = 8) abolished pressor response, or with surgically (bilateral section of the motor branch of the pudendal nerve, PnX, n = 7) and pharmacologically (1 mg/kg d-tubocurarine, n = 8) blocked perineal muscles contractions, or with interrupted afferent input from the penis (bilateral crush of the dorsal penile nerve, DPnX, n = 7). Control rats (n = 8) received no intervention. Results Moderate positive correlations were found between net parameters of pressor and somatic activity during DNP-stimulation induced reflex erection in spinal rats, particularly the speed of pressor response development was positively correlated to EMG parameters. No changes of EMG activity were found in CnX rats, while the decrease of BC EMG in TMPh-treated males can be attributed to direct inhibitory action of TMPh on neuromuscular transmission. Pressor response latency was increased and ICP front slope decreased in dTK and PnX rats, indicating that perineal muscles contraction augment pressor response. DPN crush had little effect on ICP and EMG. Conclusion Afferent input on the level of intracavernous pressure and the perineal muscles activity has minimal impact on, correspondingly, the somatic and the autonomic components of the reflex erection in spinal males, once the reflex has been initiated. Electronic supplementary material The online version of this article (10.1186/s12894-018-0352-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Andreev-Andrievskiy
- Lomonosov Moscow State University, Biology faculty, 1-12 Leninskie gory, Moscow, 119234, Russia. .,Institute for biomedical problems RAS, 76A Khoroshevskoe shosse, Moscow, 123007, Russia. .,MSU Institute for mitoengeneering, LLC, 1-73A Leninskie gory, Moscow, 119234, Russia.
| | - Evgeniia Lagereva
- Institute for biomedical problems RAS, 76A Khoroshevskoe shosse, Moscow, 123007, Russia.,MSU Institute for mitoengeneering, LLC, 1-73A Leninskie gory, Moscow, 119234, Russia
| | - Anfisa Popova
- Lomonosov Moscow State University, Biology faculty, 1-12 Leninskie gory, Moscow, 119234, Russia.,Institute for biomedical problems RAS, 76A Khoroshevskoe shosse, Moscow, 123007, Russia.,MSU Institute for mitoengeneering, LLC, 1-73A Leninskie gory, Moscow, 119234, Russia
| |
Collapse
|
3
|
Chen LWH, Chen MYS, Chen KY, Lin HS, Chien CC, Yin HL. Topiramate-associated sexual dysfunction: A systematic review. Epilepsy Behav 2017; 73:10-17. [PMID: 28605628 DOI: 10.1016/j.yebeh.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 05/14/2017] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Sexual pharmacotoxicity renders patients with epilepsy at a risk for sexual dysfunction (SD). This study is aimed to analyze the relationship between sexual function and topiramate to avoid topiramate-associated SD. METHODS A systematic review following the PRISMA guidelines was performed to elucidate any SD occurrence in patients receiving topiramate. RESULTS A total of 17 publications were reviewed. Based on limited polytherapy observational studies, the frequency of self-reported topiramate-associated SD, libido disorder, and orgasmic disorder in patients with polytherapy was 9.0%, 9.0%, and 2.6%, respectively (grade C evidence). Female patients mainly had anorgasmia, whereas male patients principally had erectile dysfunction. The daily dose of topiramate in patients with SD was within the recommended dose. Sexual adversity usually occurred from 4weeks after topiramate use but favorably subsided without eventful complications after topiramate substitution or dose reduction in all patients. CONCLUSIONS Topiramate can elicit different patterns of SD, especially anorgasmia in women and erectile dysfunction in men, even with a therapeutic dose. Detailed drug education and careful monitoring are necessary to maximize sexual health, especially in persons undergoing polytherapy and with other risks for SD. Moreover, a rapid response, such as substitution or reduction of the dose, is suggested when SD occurs during its use.
Collapse
Affiliation(s)
- Louis Wei-Hsi Chen
- Graduate School of Human Sexuality, Shu-Te University, Kaohsiung City, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Kaohsiung City, Taiwan
| | - Melody Yun-Si Chen
- Department of Psychology, College of Social Sciences and Management, Fo Guang University, Yilan County, Taiwan
| | - Kuo-Yen Chen
- Graduate School of Human Sexuality, Shu-Te University, Kaohsiung City, Taiwan
| | - Hung-Sheng Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Kaohsiung City, Taiwan
| | - Chia-Chang Chien
- Graduate School of Human Sexuality, Shu-Te University, Kaohsiung City, Taiwan; Department of Psychiatry, E-Da Hospital, Kaohsiung City, Taiwan
| | - Hsin-Ling Yin
- Department of Clinical Forensic Medicine, Kaohsiung Medical University Hospital, and College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Bozkurt M, Gocmez C, Soylemez H, Daggulli M, Em S, Yildiz M, Atar M, Bozkurt Y, Ozbey I. Association Between Neuropathic Pain, Pregabalin Treatment, and Erectile Dysfunction. J Sex Med 2014; 11:1816-22. [DOI: 10.1111/jsm.12458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Andersson KE. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev 2011; 63:811-59. [PMID: 21880989 DOI: 10.1124/pr.111.004515] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Erection is basically a spinal reflex that can be initiated by recruitment of penile afferents, both autonomic and somatic, and supraspinal influences from visual, olfactory, and imaginary stimuli. Several central transmitters are involved in the erectile control. Dopamine, acetylcholine, nitric oxide (NO), and peptides, such as oxytocin and adrenocorticotropin/α-melanocyte-stimulating hormone, have a facilitatory role, whereas serotonin may be either facilitatory or inhibitory, and enkephalins are inhibitory. The balance between contractant and relaxant factors controls the degree of contraction of the smooth muscle of the corpora cavernosa (CC) and determines the functional state of the penis. Noradrenaline contracts both CC and penile vessels via stimulation of α₁-adrenoceptors. Neurogenic NO is considered the most important factor for relaxation of penile vessels and CC. The role of other mediators, released from nerves or endothelium, has not been definitely established. Erectile dysfunction (ED), defined as the "inability to achieve or maintain an erection adequate for sexual satisfaction," may have multiple causes and can be classified as psychogenic, vasculogenic or organic, neurologic, and endocrinologic. Many patients with ED respond well to the pharmacological treatments that are currently available, but there are still groups of patients in whom the response is unsatisfactory. The drugs used are able to substitute, partially or completely, the malfunctioning endogenous mechanisms that control penile erection. Most drugs have a direct action on penile tissue facilitating penile smooth muscle relaxation, including oral phosphodiesterase inhibitors and intracavernosal injections of prostaglandin E₁. Irrespective of the underlying cause, these drugs are effective in the majority of cases. Drugs with a central site of action have so far not been very successful. There is a need for therapeutic alternatives. This requires identification of new therapeutic targets and design of new approaches. Research in the field is expanding, and several promising new targets for future drugs have been identified.
Collapse
Affiliation(s)
- K-E Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
6
|
Staudt MD, de Oliveira CVR, Lehman MN, McKenna KE, Coolen LM. Activation of NMDA receptors in lumbar spinothalamic cells is required for ejaculation. J Sex Med 2011; 8:1015-26. [PMID: 21235717 PMCID: PMC3253366 DOI: 10.1111/j.1743-6109.2010.02168.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The sexual reflex ejaculation is controlled by a spinal ejaculation generator located in the lumbosacral spinal cord. A population of spinothalamic (LSt) neurons forms a key component of this generator, as manipulations of LSt cells either block or trigger ejaculation. However, it is currently unknown which afferent signals contribute to the activation of LSt cells and ejaculation. AIM The current study tested the hypothesis that glutamate, via activation of N-Methyl-D-aspartic acid (NMDA) receptors in LSt cells, is a key regulator of ejaculation. METHODS Expression of phosphorylated NMDA receptor subunit 1 (NR1) was investigated following mating, or following ejaculation induced by electrical stimulation of the dorsal penile nerve (DPN) in anesthetized, spinalized male rats. Next, the effects of intraspinal delivery of NMDA receptor antagonist AP-5 on DPN stimulation-induced ejaculation were examined. Moreover, the ability of intraspinal delivery of NMDA to trigger ejaculation was examined. Finally, the site of action of NMDA was determined by studying effects of NMDA in male rats with LSt cell-specific lesions. MAIN OUTCOME MEASURES Expression of NR1 and phosphorylated NR1 in LSt cells was analyzed. Electromyographic recordings of the bulbocavernosus muscle (BCM) were recorded in anesthetized, spinalized rats following stimulation of the DPN and delivery of AP-5 or NMDA. RESULTS Results indicate that the NR1 receptors are activated in LSt cells following ejaculation in mating animals or induced by DPN stimulation in anesthetized, spinalized animals. Moreover, NR1 activation in LSt cells is an essential trigger for rhythmic BCM bursting, as DPN stimulation-induced reflexes were absent following administration of NMDA receptor antagonist in the L3-L4 spinal area, and were triggered by NMDA. NMDA effects were dependent on intact LSt cells and were absent in LSt-lesioned males. CONCLUSION These results demonstrate that glutamate, via activation of NMDA receptors in LSt cells, is a key afferent signal for ejaculation.
Collapse
Affiliation(s)
- Michael D Staudt
- The University of Western Ontario-Department of Anatomy and Cell Biology, London, Canada
| | | | | | | | | |
Collapse
|
7
|
Staudt MD, De Oliveira CV, Lehman MN, McKenna KE, Coolen LM. Activation of MAP Kinase in Lumbar Spinothalamic Cells Is Required for Ejaculation. J Sex Med 2010; 7:2445-57. [DOI: 10.1111/j.1743-6109.2010.01741.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Allard J, Reynolds DS, Edmunds NJ. Potentiation of reflex erectile responses in the anaesthetized rat by the selective melanocortin receptor 4 agonist MB243. BJU Int 2008; 102:1029-33. [DOI: 10.1111/j.1464-410x.2008.07751.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Carson CC. Central nervous system-acting agents and the treatment of erectile and sexual dysfunction. Curr Urol Rep 2007; 8:472-6. [DOI: 10.1007/s11934-007-0051-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Salas JCT, Iwasaki H, Jodo E, Schmidt MH, Kawauchi A, Miki T, Kayama Y, Otsuki M, Koyama Y. Penile erection and micturition events triggered by electrical stimulation of the mesopontine tegmental area. Am J Physiol Regul Integr Comp Physiol 2007; 294:R102-11. [PMID: 17977912 DOI: 10.1152/ajpregu.00226.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cholinergic neurons in the laterodorsal tegmental nucleus (LDT) play a crucial role in the regulation of rapid eye movement (REM) sleep. Because penile erection occurs during REM sleep, the involvement of the LDT in penile erection was examined in unanesthetized head-restrained rats. To detect penile erection, corpus spongiosum of the penis (CSP) pressure was measured through a telemetric device with simultaneous bulbospongiosum (BS) muscle EMG recording through stainless wires. Electrical stimulation in and around the LDT induced the following three CSP pressure patterns: 1) a full erection pattern indistinguishable from the nonevoked or spontaneous erection, characterized by a slow increase in CSP pressure with additional sharp CSP peaks associated with BS muscle bursts, 2) a muscular pattern characterized by sharp CSP pressure peaks but in the absence of a vascular component, i.e., without an increase in baseline CSP pressure, and 3) a mixed-type response characterized by high-frequency CSP pressure peaks followed by a full erection response. Full erections were evoked in and around the LDT, including more medially and ventrally. The sites for inducing mixed-type events were intermingled with the sites that triggered full erections in the anterior half of the LDT, whereas they were separated in the posterior half. The sites for muscular responses were lateral to the sites for full erections. Finally, a CSP pressure response identical to micturition was evoked in and around the Barrington's nucleus and in the dorsal raphe nucleus. These results suggest that the LDT and surrounding region are involved in the regulation of penile erection. Moreover, different anatomical areas in the mesopontine tegmentum may have specific roles in the regulation of penile erection and micturition.
Collapse
|