1
|
Busceti CL, Bucci D, Damato A, De Lucia M, Venturini E, Ferrucci M, Lazzeri G, Puglisi-Allegra S, Scioli M, Carrizzo A, Nicoletti F, Vecchione C, Fornai F. Methamphetamine-Induced Blood Pressure Sensitization Correlates with Morphological Alterations within A1/C1 Catecholamine Neurons. Int J Mol Sci 2024; 25:10282. [PMID: 39408612 PMCID: PMC11476956 DOI: 10.3390/ijms251910282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Methamphetamine (METH) is a drug of abuse, which induces behavioral sensitization following repeated doses. Since METH alters blood pressure, in the present study we assessed whether systolic and diastolic blood pressure (SBP and DBP, respectively) are sensitized as well. In this context, we investigated whether alterations develop within A1/C1 neurons in the vasomotor center. C57Bl/6J male mice were administered METH (5 mg/kg, daily for 5 consecutive days). Blood pressure was measured by tail-cuff plethysmography. We found a sensitized response both to SBP and DBP, along with a significant decrease of catecholamine neurons within A1/C1 (both in the rostral and caudal ventrolateral medulla), while no changes were detected in glutamic acid decarboxylase. The decrease of catecholamine neurons was neither associated with the appearance of degeneration-related marker Fluoro-Jade B nor with altered expression of α-synuclein. Rather, it was associated with reduced free radicals and phospho-cJun and increased heat shock protein-70 and p62/sequestosome within A1/C1 cells. Blood pressure sensitization was not associated with altered arterial reactivity. These data indicate that reiterated METH administration may increase blood pressure persistently and may predispose to an increased cardiovascular response to METH. These data may be relevant to explain cardiovascular events following METH administration and stressful conditions.
Collapse
Affiliation(s)
- Carla Letizia Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Domenico Bucci
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Antonio Damato
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Massimiliano De Lucia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Eleonora Venturini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.F.); (G.L.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.F.); (G.L.)
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Mariarosaria Scioli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Albino Carrizzo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana” University of Salerno, 84081 Baronissi, Italy
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Physiology and Pharmacology, University Sapienza, 00185 Roma, Italy
| | - Carmine Vecchione
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana” University of Salerno, 84081 Baronissi, Italy
| | - Francesco Fornai
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.F.); (G.L.)
| |
Collapse
|
2
|
da Silva EF, Freiria-Oliveira AH, Custódio CHX, Ghedini PC, Bataus LAM, Colombari E, de Castro CH, Colugnati DB, Rosa DA, Cravo SLD, Pedrino GR. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats. PLoS One 2013; 8:e73187. [PMID: 24039883 PMCID: PMC3769347 DOI: 10.1371/journal.pone.0073187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1)) or free saporin (sham, 0.021 ng.nL(-1)) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1), b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.
Collapse
Affiliation(s)
- Elaine Fernanda da Silva
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | | | | | - Paulo César Ghedini
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Luiz Artur Mendes Bataus
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Carlos Henrique de Castro
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Diego Basile Colugnati
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Daniel Alves Rosa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Sergio L. D. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
3
|
Luckman SM, Hamamura M, Antonijevic I, Dye S, Leng G. Involvement of cholecystokinin receptor types in pathways controlling oxytocin secretion. Br J Pharmacol 1993; 110:378-84. [PMID: 8220899 PMCID: PMC2176025 DOI: 10.1111/j.1476-5381.1993.tb13820.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Intravenous administration of cholecystokinin (CCK) results in a transient activation of oxytocin neurones in the rat, and hence to oxytocin secretion: this activation is followed by expression of c-fos mRNA and of Fos-like immunoreactivity (Fos-LI) in magnocellular oxytocin neurones. Fos-like immunoreactivity is also induced in the regions of the brainstem that are thought to relay information from the periphery to the hypothalamus. 2. Administration of the selective CCKA receptor antagonist MK-329, but not the CCKB receptor antagonist L-365,260, prior to CCK injection, prevented oxytocin release as measured by radioimmunoassay and oxytocin neuronal activation as measured by electrophysiology and by the lack of induction of c-fos mRNA. 3. MK-329 abolished the release of adrenocorticotrophic hormone (ACTH) following injection of CCK. 4. MK-329 prevented the expression of Fos-LI in the hypothalamic magnocellular nuclei and in the area postrema and dorsal vagal complex of the brainstem. 5. L-365,260 had no effect on the expression of Fos-LI in the brainstem, but attenuated that seen in the hypothalamic magnocellular nuclei. 6. We conclude that CCK acts on CCKA receptors, either in the area postrema or on peripheral endings of the vagus nerve, to cause the release of hypothalamic oxytocin and ACTH. Information may be carried to the hypothalamus in part by CCK acting at CCKB receptors.
Collapse
Affiliation(s)
- S M Luckman
- Department of Neurobiology, AFRC Babraham Institute, Cambridge
| | | | | | | | | |
Collapse
|
4
|
Raby WN, Renaud LP. Dorsomedial medulla stimulation activates rat supraoptic oxytocin and vasopressin neurones through different pathways. J Physiol 1989; 417:279-94. [PMID: 2621594 PMCID: PMC1189266 DOI: 10.1113/jphysiol.1989.sp017801] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. This study utilized retrograde anatomical tracer techniques and in vivo extracellular electrophysiological studies to examine caudal ventrolateral and dorsomedial medulla afferents to supraoptic nucleus neurosecretory neurones in male Long-Evans rats. 2. In one series of experiments, pentobarbitone-anaesthetized animals were subjected to ventral exposure of the hypothalamus and rhodamine-tagged latex microspheres (0.05-0.2 microliter) were injected into one supraoptic nucleus. Following perfusion with paraformaldehyde-glutaraldehyde 18-24 h later, cell counts were obtained of rhodamine- and/or catecholamine-labelled neurones in the caudal ventrolateral and dorsomedial medulla both ipsi- and contralateral to the injection site. 3. In the caudal ventrolateral medulla, each injection labelled fewer than 15% of the catecholaminergic neurones; with small injections, most (68-100%) of the rhodamine-labelled neurones also displayed catecholamine histofluorescence. In the caudal nucleus tractus solitarii, one-half to one-third as many rhodamine-labelled cells were observed, but a higher percentage (13-100%) of these were non-catecholaminergic. 4. Extracellular recordings were obtained from antidromically identified supraoptic neurones classified as vasopressin (n = 106) or oxytocin (n = 26) secreting. Single cathodal pulses (0.2 ms duration, 0.02-0.08 mA) applied in the caudal half of the ipsilateral nucleus tractus solitarii evoked a transient (30-50 ms) activation of 63% of both vasopressin- and oxytocin-secreting neurones. Mean latencies (+/- S.E.M.) for vasopressin and oxytocin cells were 49.8 +/- 1.0 and 46.5 +/- 2.4 ms respectively; these were not significantly different. Similar responses were noted to contralateral stimuli applied to four vasopressin and two oxytocin cells. 5. Vasopressin neurones activated by caudal nucleus tractus solitarii stimulation displayed similar patterns of response to stimulation in the caudal ventrolateral medulla. However, latencies from the nucleus solitarius (mean 47.6 +/- 1.4 ms; n = 59) were significantly longer (P less than 0.05) than from the ventrolateral medulla (41.5 +/- 2.0 ms; n = 17). In eight out of eleven vasopressin neurones tested, interruption of synaptic transmission through the ventrolateral medulla reduced or abolished the caudal nucleus tractus solitarii-evoked excitation but had no effect on their response to baroreceptor activation. This manoeuvre affected zero out of five oxytocin cells similarly excited by nucleus solitarius stimulation. 6. These observations indicate that visceral input mediated through the nucleus tractus solitarii is transmitted differentially to supraoptic vasopressin- and oxytocin-secreting neurones.
Collapse
Affiliation(s)
- W N Raby
- Neurosciences Unit, Montreal General Hospital Research Institute, PQ, Canada
| | | |
Collapse
|