1
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
2
|
Omega 3 fatty acids stimulate thermogenesis during torpor in the Arctic Ground Squirrel. Sci Rep 2021; 11:1340. [PMID: 33446684 PMCID: PMC7809411 DOI: 10.1038/s41598-020-78763-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Omega 3 polyunsaturated fatty acids (PUFAs) influence metabolism and thermogenesis in non-hibernators. How omega 3 PUFAs influence Arctic Ground Squirrels (AGS) during hibernation is unknown. Prior to hibernation we fed AGS chow composed of an omega 6:3 ratio approximately 1:1 (high in omega 3 PUFA, termed Balanced Diet), or an omega 6:3 ratio of 5:1 (Standard Rodent Chow), and measured the influence of diet on core body temperature (Tb), brown adipose tissue (BAT) mass, fatty acid profiles of BAT, white adipose tissue (WAT) and plasma as well as hypothalamic endocannabinoid and endocannabinoid-like bioactive fatty acid amides during hibernation. Results show feeding a diet high in omega 3 PUFAs, with a more balanced omega 6:3 ratio, increases AGS Tb in torpor. We found the diet-induced increase in Tb during torpor is most easily explained by an increase in the mass of BAT deposits of Balanced Diet AGS. The increase in BAT mass is associated with elevated levels of metabolites DHA and EPA in tissue and plasma suggesting that these omega 3 PUFAs may play a role in thermogenesis during torpor. While we did not observe diet-induced change in endocannabinoids, we do report altered hypothalamic levels of some endocannabinoids, and endocannabinoid-like compounds, during hibernation.
Collapse
|
3
|
Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XIV. Global Metabolomics Screen Reveals Brown Adipose Tissue Changes in Amino Acids, Catecholamines, and Antioxidants After Short-Term Restriction in C57BL/6 Mice. J Gerontol A Biol Sci Med Sci 2020; 75:218-229. [PMID: 31220223 PMCID: PMC7530471 DOI: 10.1093/gerona/glz023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Animals undergoing calorie restriction (CR) often lower their body temperature to conserve energy. Brown adipose tissue (BAT) is stimulated through norepinephrine when rapid heat production is needed, as it is highly metabolically active due to the uncoupling of the electron transport chain from ATP synthesis. To better understand how BAT metabolism changes with CR, we used metabolomics to identify 883 metabolites that were significantly differentially expressed in the BAT of C57BL/6 mice, fed graded CR (10%, 20%, 30%, and 40% CR relative to their individual baseline intake), compared with mice fed ad libitum (AL) for 12 hours a day. Pathway analysis revealed that graded CR had an impact on the TCA cycle and fatty acid degradation. In addition, an increase in nucleic acids and catecholamine pathways was seen with graded CR in the BAT metabolome. We saw increases in antioxidants with CR, suggesting a beneficial effect of mitochondrial uncoupling. Importantly, the instigator of BAT activation, norepinephrine, was increased with CR, whereas its precursors l-tyrosine and dopamine were decreased, indicating a shift of metabolites through the activation pathway. Several of these key changes were correlated with food anticipatory activity and body temperature, indicating BAT activation may be driven by responses to hunger.
Collapse
Affiliation(s)
- Cara L Green
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
| | - Sharon E Mitchell
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
| | - Davina Derous
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle
| | - David Lusseau
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
| | - Alex Douglas
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
| | - John R Speakman
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| |
Collapse
|
4
|
Trayhurn P. A basic scientist's odyssey in nutrition. Eur J Clin Nutr 2018; 72:923-928. [PMID: 29563641 DOI: 10.1038/s41430-018-0089-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/20/2023]
Affiliation(s)
- P Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, UK. .,Clore Laboratory, University of Buckingham, Buckingham, UK.
| |
Collapse
|
5
|
Ballinger MA, Andrews MT. Nature's fat-burning machine: brown adipose tissue in a hibernating mammal. ACTA ACUST UNITED AC 2018. [PMID: 29514878 DOI: 10.1242/jeb.162586] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Brown adipose tissue (BAT) is a unique thermogenic tissue in mammals that rapidly produces heat via nonshivering thermogenesis. Small mammalian hibernators have evolved the greatest capacity for BAT because they use it to rewarm from hypothermic torpor numerous times throughout the hibernation season. Although hibernator BAT physiology has been investigated for decades, recent efforts have been directed toward understanding the molecular underpinnings of BAT regulation and function using a variety of methods, from mitochondrial functional assays to 'omics' approaches. As a result, the inner-workings of hibernator BAT are now being illuminated. In this Review, we discuss recent research progress that has identified players and pathways involved in brown adipocyte differentiation and maturation, as well as those involved in metabolic regulation. The unique phenotype of hibernation, and its reliance on BAT to generate heat to arouse mammals from torpor, has uncovered new molecular mechanisms and potential strategies for biomedical applications.
Collapse
Affiliation(s)
- Mallory A Ballinger
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Matthew T Andrews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Heim AB, Chung D, Florant GL, Chicco AJ. Tissue-specific seasonal changes in mitochondrial function of a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017; 313:R180-R190. [DOI: 10.1152/ajpregu.00427.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 01/09/2023]
Abstract
Mammalian hibernators, such as golden-mantled ground squirrels ( Callospermophilus lateralis; GMGS), cease to feed while reducing metabolic rate and body temperature during winter months, surviving exclusively on endogenous fuels stored before hibernation. We hypothesized that mitochondria, the cellular sites of oxidative metabolism, undergo tissue-specific seasonal adjustments in carbohydrate and fatty acid utilization to facilitate or complement this remarkable phenotype. To address this, we performed high-resolution respirometry of mitochondria isolated from GMGS liver, heart, skeletal muscle, and brown adipose tissue (BAT) sampled during summer (active), fall (prehibernation), and winter (hibernation) seasons using multisubstrate titration protocols. Mitochondrial phospholipid composition was examined as a postulated intrinsic modulator of respiratory function across tissues and seasons. Respirometry revealed seasonal variations in mitochondrial oxidative phosphorylation capacity, substrate utilization, and coupling efficiency that reflected the distinct functions and metabolic demands of the tissues they support. A consistent finding across tissues was a greater influence of fatty acids (palmitoylcarnitine) on respiratory parameters during the prehibernation and hibernation seasons. In particular, fatty acids had a greater suppressive effect on pyruvate-supported oxidative phosphorylation in heart, muscle, and liver mitochondria and enhanced uncoupled respiration in BAT and muscle mitochondria in the colder seasons. Seasonal variations in the mitochondrial membrane composition reflected changes in the supply and utilization of polyunsaturated fatty acids but were generally mild and inconsistent with functional variations. In conclusion, mitochondria respond to seasonal variations in physical activity, temperature, and nutrient availability in a tissue-specific manner that complements circannual shifts in the bioenergetic and thermoregulatory demands of mammalian hibernators.
Collapse
Affiliation(s)
- Ashley B. Heim
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Dillon Chung
- Department of Zoology, University of British Colombia, Vancouver, British Columbia, Canada; and
| | - Gregory L. Florant
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
7
|
McFarlane SV, Mathers KE, Staples JF. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017; 312:R434-R442. [PMID: 28077390 DOI: 10.1152/ajpregu.00316.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
Abstract
Although seasonal modifications of brown adipose tissue (BAT) in hibernators are well documented, we know little about functional regulation of BAT in different phases of hibernation. In the 13-lined ground squirrel, liver mitochondrial respiration is suppressed by up to 70% during torpor. This suppression is reversed during arousal and interbout euthermia (IBE), and corresponds with patterns of maximal activities of electron transport system (ETS) enzymes. Uncoupling of BAT mitochondria is controlled by free fatty acid release stimulated by sympathetic activation of adipocytes, so we hypothesized that further regulation at the level of the ETS would be of little advantage. As predicted, maximal ETS enzyme activities of isolated BAT mitochondria did not differ between torpor and IBE. In contrast to this pattern, respiration rates of mitochondria isolated from torpid individuals were suppressed by ~60% compared with rates from IBE individuals when measured at 37°C. At 10°C, however, mitochondrial respiration rates tended to be greater in torpor than IBE. As a result, the temperature sensitivity (Q10) of mitochondrial respiration was significantly lower in torpor (~1.4) than IBE (~2.4), perhaps facilitating energy savings during entrance into torpor and thermogenesis at low body temperatures. Despite the observed differences in isolated mitochondria, norepinephrine-stimulated respiration rates of isolated BAT adipocytes did not differ between torpor and IBE, perhaps because the adipocyte isolation requires lengthy incubation at 37°C, potentially reversing any changes that occur in torpor. Such changes may include remodeling of BAT mitochondrial membrane phospholipids, which could change in situ enzyme activities and temperature sensitivities.
Collapse
Affiliation(s)
- Sarah V McFarlane
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Bal NC, Maurya SK, Singh S, Wehrens XHT, Periasamy M. Increased Reliance on Muscle-based Thermogenesis upon Acute Minimization of Brown Adipose Tissue Function. J Biol Chem 2016; 291:17247-57. [PMID: 27298322 DOI: 10.1074/jbc.m116.728188] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle has been suggested as a site of nonshivering thermogenesis (NST) besides brown adipose tissue (BAT). Studies in birds, which do not contain BAT, have demonstrated the importance of skeletal muscle-based NST. However, muscle-based NST in mammals remains poorly characterized. We recently reported that sarco/endoplasmic reticulum Ca(2+) cycling and that its regulation by SLN can be the basis for muscle NST. Because of the dominant role of BAT-mediated thermogenesis in rodents, the role of muscle-based NST is less obvious. In this study, we investigated whether muscle will become an important site of NST when BAT function is conditionally minimized in mice. We surgically removed interscapular BAT (iBAT, which constitutes ∼70% of total BAT) and exposed the mice to prolonged cold (4 °C) for 9 days. The iBAT-ablated mice were able to maintain optimal body temperature (∼35-37 °C) during the entire period of cold exposure. After 4 days in the cold, both sham controls and iBAT-ablated mice stopped shivering and resumed routine physical activity, indicating that they are cold-adapted. The iBAT-ablated mice showed higher oxygen consumption and decreased body weight and fat mass, suggesting an increased energy cost of cold adaptation. The skeletal muscles in these mice underwent extensive remodeling of both the sarcoplasmic reticulum and mitochondria, including alteration in the expression of key components of Ca(2+) handling and mitochondrial metabolism. These changes, along with increased sarcolipin expression, provide evidence for the recruitment of NST in skeletal muscle. These studies collectively suggest that skeletal muscle becomes the major site of NST when BAT activity is minimized.
Collapse
Affiliation(s)
- Naresh C Bal
- From the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, the School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India 751024, and
| | - Santosh K Maurya
- From the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Sushant Singh
- From the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Xander H T Wehrens
- the Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine, and Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Muthu Periasamy
- From the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Alawi KM, Aubdool AA, Liang L, Wilde E, Vepa A, Psefteli MP, Brain SD, Keeble JE. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. FASEB J 2015; 29:4285-98. [PMID: 26136480 PMCID: PMC4650996 DOI: 10.1096/fj.15-272526] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.
Collapse
Affiliation(s)
- Khadija M Alawi
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Aisah A Aubdool
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Lihuan Liang
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Elena Wilde
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Abhinav Vepa
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Maria-Paraskevi Psefteli
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Susan D Brain
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Julie E Keeble
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Welch AJ, Bedoya-Reina OC, Carretero-Paulet L, Miller W, Rode KD, Lindqvist C. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment. Genome Biol Evol 2015; 6:433-50. [PMID: 24504087 PMCID: PMC3942037 DOI: 10.1093/gbe/evu025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).
Collapse
Affiliation(s)
- Andreanna J Welch
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo
| | | | | | | | | | | |
Collapse
|
11
|
Wu CW, Biggar KK, Storey KB. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:284-91. [PMID: 25526980 PMCID: PMC4411486 DOI: 10.1016/j.gpb.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/24/2014] [Accepted: 08/17/2014] [Indexed: 12/05/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P < 0.05), which was 16%–54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%–70% of control), while only expression of miR-138 was significantly upregulated (2.91 ± 0.8-fold of the control, P < 0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct biological roles in WAT and BAT during hibernation and may involve the regulation of signaling cascades.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
12
|
Tessier SN, Storey KB. To be or not to be: the regulation of mRNA fate as a survival strategy during mammalian hibernation. Cell Stress Chaperones 2014; 19:763-76. [PMID: 24789358 PMCID: PMC4389848 DOI: 10.1007/s12192-014-0512-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022] Open
Abstract
Mammalian hibernators undergo profound behavioral, physiological, and biochemical changes in order to cope with hypothermia, ischemia-reperfusion, and finite fuel reserves over days or weeks of continuous torpor. Against a backdrop of global reductions in energy-expensive processes such as transcription and translation, a subset of genes/proteins are strategically upregulated in order to meet challenges associated with hibernation. Consequently, hibernation involves substantial transcriptional and posttranscriptional regulatory mechanisms and provides a phenomenon with which to understand how a set of common genes/proteins can be differentially regulated in order to enhance stress tolerance beyond that which is possible for nonhibernators. The present review focuses on the involvement of messenger RNA (mRNA) interacting factors that play a role in the regulation of gene/protein expression programs that define the hibernating phenotype. These include proteins involved in mRNA processing (i.e., capping, splicing, and polyadenylation) and the possible role of alternative splicing as a means of enhancing protein diversity. Since the total pool of mRNA remains constant throughout torpor, mechanisms which enhance mRNA stability are discussed in the context of RNA binding proteins and mRNA decay pathways. Furthermore, mechanisms which control the global reduction of cap-dependent translation and the involvement of internal ribosome entry sites in mRNAs encoding stress response proteins are also discussed. Finally, the concept of regulating each of these factors in discrete subcellular compartments for enhanced efficiency is addressed. The analysis draws on recent research from several well-studied mammalian hibernators including ground squirrels, bats, and bears.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
13
|
Global DNA modifications suppress transcription in brown adipose tissue during hibernation. Cryobiology 2014; 69:333-8. [PMID: 25192827 DOI: 10.1016/j.cryobiol.2014.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 11/22/2022]
Abstract
Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels.
Collapse
|
14
|
Abstract
Hypoxia develops in white adipose tissue in obese mice, resulting in changes in adipocyte function that may underpin the dysregulation that leads to obesity-associated disorders. Whether hypoxia occurs in adipose tissue in human obesity is unclear, with recent studies contradicting earlier reports that this was the case. Adipocytes, both murine and human, exhibit extensive functional changes in culture in response to hypoxia, which alters the expression of up to 1,300 genes. These include genes encoding key adipokines such as leptin, interleukin (IL)-6, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2), which are upregulated, and adiponectin, which is downregulated. Hypoxia also inhibits the expression of genes linked to oxidative metabolism while stimulating the expression of genes associated with glycolysis. Glucose uptake and lactate release by adipocytes are both stimulated by hypoxia, and insulin sensitivity falls. Preadipocytes and macrophages in adipose tissue also respond to hypoxia. The hypoxia-signaling pathway may provide a new target for the treatment of obesity-associated disorders.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Research Unit, Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool L69 3GA United Kingdom, and Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, United Kingdom;
| |
Collapse
|
15
|
Hindle AG, Martin SL. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. Am J Physiol Endocrinol Metab 2014; 306:E284-99. [PMID: 24326419 PMCID: PMC3920013 DOI: 10.1152/ajpendo.00431.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Winter hibernators repeatedly cycle between cold torpor and rewarming supported by nonshivering thermogenesis in brown adipose tissue (BAT). In contrast, summer animals are homeotherms, undergoing reproduction, growth, and fattening. This life history confers variability to BAT recruitment and activity. To address the components underlying prewinter enhancement and winter activation, we interrogated the BAT proteome in 13-lined ground squirrels among three summer and five winter states. We also examined mixed physiology in fall and spring individuals to test for ambient temperature and seasonal effects, as well as the timing of seasonal transitions. BAT form and function differ circannually in these animals, as evidenced by morphology and proteome dynamics. This intrinsic pattern distinguished homeothermic groups and early vs. late winter hibernators. Homeothermic variation derived from postemergence delay in growth and substrate biosynthesis. The heterothermic proteome varied less despite extreme winter physiological shifts and was optimized to exploit lipids by enhanced fatty acid binding, β-oxidation, and mitochondrial protein translocation. Surprisingly, ambient temperature did not affect the BAT proteome during transition seasons; rather, the pronounced summer-winter shift preceded environmental changes and phenotypic progression. During fall transition, differential regulation of two fatty acid binding proteins provides further evidence of recruitment and separates proteomic preparation from successful hibernation. Abundance of FABP4 correlates with torpor bout length throughout the year, clarifying its potential function in hibernation. Metabolically active BAT is a target for treating human obesity and metabolic disorders. Understanding the hibernator's extreme and seasonally distinct recruitment and activation control strategies offers untapped potential to identify novel, therapeutically relevant regulatory pathways.
Collapse
Affiliation(s)
- Allyson G Hindle
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
16
|
Abstract
The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Research Unit, Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Tattersall GJ, Milsom WK. Hypoxia reduces the hypothalamic thermogenic threshold and thermosensitivity. J Physiol 2009; 587:5259-74. [PMID: 19770191 PMCID: PMC2790263 DOI: 10.1113/jphysiol.2009.175828] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 09/14/2009] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is well known to reduce the body temperature (T(b)) of mammals, although the neural origins of this response remain uncertain. Short-term hypoxic exposure causes a reduction in the lower critical temperature of the thermal neutral zone and a reduction in whole body thermal conductance of rodents, providing indirect support that hypoxia lowers T(b) in a regulated manner. In this study, we examined directly the potential for changes in central thermosensitivity to evoke the hypoxic metabolic response by heating and cooling the preoptic area of the hypothalamus (the area which integrates thermoreceptor input and regulates thermoeffector outputs) using chronic, indwelling thermodes in ground squirrels during normoxia and hypoxia (7, 10 and 12% O(2)). We found that the threshold hypothalamic temperature for the metabolic response to cooling (T(th)) of approximately 38 degrees C in normoxia was proportionately reduced in hypoxia (down to 28-31 degrees C at 7% O(2)) and that the metabolic thermosensitivity (alpha; the change in metabolic rate for any given change in hypothalamic temperature below the lower critical temperature) was comparatively reduced by 5 to 9 times. This provides strong support for the hypothesis that the fall in temperature that occurs during hypoxia is the result of a reduction in the activation of thermogenic mechanisms. The decrease in the central thermosensitivity in hypoxia, however, appears to be a critical factor in the alteration of mammalian T(b). We suggest, therefore, that an altered central thermosensitivity may provide a proximate explanation of how low oxygen and similar stressors reduce normal fluctuations in T(b) (i.e. circadian), in addition to the depression in regulated T(b).
Collapse
Affiliation(s)
- Glenn J Tattersall
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
18
|
Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B 2008; 178:811-27. [PMID: 18551297 DOI: 10.1007/s00360-008-0282-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 05/15/2008] [Accepted: 05/26/2008] [Indexed: 01/20/2023]
Abstract
Hibernation and daily torpor involve substantial decreases in body temperature and metabolic rate, allowing birds and mammals to cope with cold environments and/or limited food. Regulated suppression of mitochondrial metabolism probably contributes to energy savings: state 3 (phosphorylating) respiration is lower in liver mitochondria isolated from mammals in hibernation or daily torpor compared to normothermic controls, although data on state 4 (non-phosphorylating) respiration are equivocal. However, no suppression is seen in skeletal muscle, and there is little reliable data from other tissues. In both daily torpor and hibernation, liver state 3 substrate oxidation is suppressed, especially upstream of electron transport chain complex IV. In hibernation respiratory suppression is reversed quickly in arousal even when body temperature is very low, implying acute regulatory mechanisms, such as oxaloacetate inhibition of succinate dehydrogenase. Respiratory suppression depends on in vitro assay temperature (no suppression is evident below approximately 30 degrees C) and (at least in hibernation) dietary polyunsaturated fats, suggesting effects on inner mitochondrial membrane phospholipids. Proton leakiness of the inner mitochondrial membrane does not change in hibernation, but this also depends on dietary polyunsaturates. In contrast proton leak increases in daily torpor, perhaps limiting reactive oxygen species production.
Collapse
|
19
|
Barger JL, Barnes BM, Boyer BB. Regulation of UCP1 and UCP3 in arctic ground squirrels and relation with mitochondrial proton leak. J Appl Physiol (1985) 2006; 101:339-47. [PMID: 16782837 DOI: 10.1152/japplphysiol.01260.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5°C or −10°C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.
Collapse
Affiliation(s)
- Jamie L Barger
- 311 Irving I Bldg., Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | | | | |
Collapse
|
20
|
Yan J, Burman A, Nichols C, Alila L, Showe LC, Showe MK, Boyer BB, Barnes BM, Marr TG. Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays. Physiol Genomics 2006; 25:346-53. [PMID: 16464973 DOI: 10.1152/physiolgenomics.00260.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hibernation is an energy-saving strategy adopted by a wide range of mammals to survive highly seasonal or unpredictable environments. Arctic ground squirrels living in Alaska provide an extreme example, with 6- to 9-mo-long hibernation seasons when body temperature alternates between levels near 0 degrees C during torpor and 37 degrees C during arousal episodes. Heat production during hibernation is provided, in part, by nonshivering thermogenesis that occurs in large deposits of brown adipose tissue (BAT). BAT is active at tissue temperatures from 0 to 37 degrees C during rewarming and continuously at near 0 degrees C during torpor in subfreezing conditions. Despite its crucial role in hibernation, the global gene expression patterns in BAT during hibernation compared with the nonhibernation season remain largely unknown. We report a large-scale study of differential gene expression in BAT between winter hibernating and summer active arctic ground squirrels using mouse microarrays. Selected differentially expressed genes identified on the arrays were validated by quantitative real-time PCR using ground squirrel specific primers. Our results show that the mRNA levels of the genes involved in nearly every step of the biochemical pathway leading to nonshivering thermogenesis are significantly increased in BAT during hibernation, whereas those of genes involved in protein biosynthesis are significantly decreased compared with summer active animals in August. Surprisingly, the differentially expressed genes also include adipocyte differentiation-related protein or adipophilin (Adfp), gap junction protein 1 (Gja1), and secreted protein acidic and cysteine-rich (Sparc), which may play a role in enhancing thermogenesis at low tissue temperatures in BAT.
Collapse
Affiliation(s)
- Jun Yan
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mammalian hibernation is a temporary suspension of euthermia allowing endotherms to undergo reversible hypothermia and generate a marked savings in energy expenditure. In most fat-storing hibernator species, seasonal changes in food intake, triacylglycerol deposition, metabolism, and reproductive development are controlled by a circannual clock. In ground-dwelling sciurid rodents (ground squirrels and marmots), for example, energy intake increases during a summer body mass gain phase, and toward the end of this phase metabolic rate also begins to decrease, resulting in a profound increase in lipid deposition as fat. Increased activity of lipogenic hormones and enzymes correspond with this increase. The hibernation mass loss phase begins after the body mass peak in the fall and ends in spring. During this phase, stored lipids are slowly utilized in a programmed manner by undergoing deep torpor or hibernation during which the hypothalamic setpoint for body temperature is typically reduced to just above 0 degrees C. Throughout the hibernation season, bouts of deep torpor are punctuated by periodic arousals in which brown adipose tissue thermogenesis plays a critical role. Lipid oxidation nearly exclusively fuels deep torpor and most of the rewarming process. The fatty acid composition of stored lipids can affect the depth and duration of deep torpor, and saturated fatty acids may be preferentially used during hibernation, whereas polyunsaturated fatty acids may be preferentially retained. Female and underweight male hibernators terminate hibernation in spring when aboveground food becomes available; in contrast, heavier males with sufficient lipid reserves spontaneously terminate hibernation several weeks before females and independent of food availability. Mating occurs shortly after emergence from hibernation, and the lipid cycle begins again with the completion of reproduction. Lipid deposition and mobilization, temperature regulation, reproduction, and circannual timing are intimately interdependent. The unique manner in which they are controlled during the annual cycle, especially lipid reserves, makes hibernators valuable and promising models for research into the mechanisms underlying these processes in all mammals.
Collapse
Affiliation(s)
- John Dark
- Department of Psychology, University of California, Berkeley, California 94720-1650, USA.
| |
Collapse
|
22
|
van Breukelen F, Sonenberg N, Martin SL. Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. Am J Physiol Regul Integr Comp Physiol 2004; 287:R349-53. [PMID: 15059792 DOI: 10.1152/ajpregu.00728.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian hibernation involves cessation of energetically costly processes typical of homeostatic regulation including protein synthesis. To further elucidate the mechanisms employed in depressing translation, we surveyed key eukaryotic initiation factors [eIF2, eIF4B, eIF4E, eIF4GI and -II, and 4E-binding protein-1 (4E-BP1), -2, and -3] for their availability and phosphorylation status in the livers of golden-mantled ground squirrels (Spermophilus lateralis) across the hibernation cycle. Western blot analyses indicated only one significant locus for regulation of translational initiation in ground squirrel liver: control of eIF4E. We found seasonal variation in a potent regulator of eIF4E activity, 4E-BP1. Summer squirrels lack 4E-BP1 and apparently control eIF4E activity through direct phosphorylation. In winter, eIF4E is regulated through binding with 4E-BP1. During the euthermic periods that separate bouts of torpor (interbout arousal), 4E-BP1 is hyperphosphorylated to promote initiation. However, during torpor, 4E-BP1 is hypophosphorylated and cap-dependent initiation of translation is restricted. The regulation of cap-dependent initiation of translation may allow for the differential expression of proteins directed toward enhancing survivorship.
Collapse
Affiliation(s)
- Frank van Breukelen
- Department of Biological Sciences, University of Nevada, Las Vegas, Nevada 89154-4004, USA
| | | | | |
Collapse
|