1
|
Beutler LR, Corpuz TV, Ahn JS, Kosar S, Song W, Chen Y, Knight ZA. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. eLife 2020; 9:e55909. [PMID: 32720646 PMCID: PMC7398661 DOI: 10.7554/elife.55909] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Body weight is regulated by interoceptive neural circuits that track energy need, but how the activity of these circuits is altered in obesity remains poorly understood. Here we describe the in vivo dynamics of hunger-promoting AgRP neurons during the development of diet-induced obesity in mice. We show that high-fat diet attenuates the response of AgRP neurons to an array of nutritionally-relevant stimuli including food cues, intragastric nutrients, cholecystokinin and ghrelin. These alterations are specific to dietary fat but not carbohydrate or protein. Subsequent weight loss restores the responsiveness of AgRP neurons to exterosensory cues but fails to rescue their sensitivity to gastrointestinal hormones or nutrients. These findings reveal that obesity triggers broad dysregulation of hypothalamic hunger neurons that is incompletely reversed by weight loss and may contribute to the difficulty of maintaining a reduced weight.
Collapse
Affiliation(s)
| | | | - Jamie S Ahn
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Seher Kosar
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Weimin Song
- Northwestern University Feinberg School of Medicine, Comprehensive Metabolic CoreChicagoUnited States
| | - Yiming Chen
- UCSF Department of PhysiologySan FranciscoUnited States
- UCSF Neuroscience Graduate ProgramSan FranciscoUnited States
| | - Zachary A Knight
- Howard Hughes Medical InstituteChevy ChaseUnited States
- UCSF Department of PhysiologySan FranciscoUnited States
- UCSF Neuroscience Graduate ProgramSan FranciscoUnited States
- Kavli Institute for Fundamental NeuroscienceSan FranciscoUnited States
| |
Collapse
|
2
|
Marvizon JC, Chen W, Fu W, Taylor BK. Neuropeptide Y release in the rat spinal cord measured with Y1 receptor internalization is increased after nerve injury. Neuropharmacology 2019; 158:107732. [PMID: 31377198 DOI: 10.1016/j.neuropharm.2019.107732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (EC50s of 1 nM and 1 μM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.
Collapse
Affiliation(s)
- Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA.
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Sousa-Ferreira L, Garrido M, Nascimento-Ferreira I, Nobrega C, Santos-Carvalho A, Álvaro AR, Rosmaninho-Salgado J, Kaster M, Kügler S, Pereira de Almeida L, Cavadas C. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats. PLoS One 2011; 6:e22333. [PMID: 21799827 PMCID: PMC3142146 DOI: 10.1371/journal.pone.0022333] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/25/2011] [Indexed: 12/30/2022] Open
Abstract
Neuropeptide Y (NPY) produced by arcuate nucleus (ARC) neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change). The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase) and down-regulation (0.5-fold decrease) of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir) of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased), suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.
Collapse
Affiliation(s)
- Lígia Sousa-Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Manuel Garrido
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Neurology, Viral Vectors Laboratory, University Medicine Göttingen, Göttingen, Germany
| | - Isabel Nascimento-Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nobrega
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Santos-Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | - Manuella Kaster
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sebastian Kügler
- Department of Neurology, Viral Vectors Laboratory, University Medicine Göttingen, Göttingen, Germany
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
4
|
Orozco-Sólis R, Lopes de Souza S, Barbosa Matos RJ, Grit I, Le Bloch J, Nguyen P, Manhães de Castro R, Bolaños-Jiménez F. Perinatal undernutrition-induced obesity is independent of the developmental programming of feeding. Physiol Behav 2009; 96:481-92. [DOI: 10.1016/j.physbeh.2008.11.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/17/2008] [Accepted: 11/25/2008] [Indexed: 12/20/2022]
|
5
|
Beck B. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos Trans R Soc Lond B Biol Sci 2007; 361:1159-85. [PMID: 16874931 PMCID: PMC1642692 DOI: 10.1098/rstb.2006.1855] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropeptide Y (NPY) is one the most potent orexigenic peptides found in the brain. It stimulates food intake with a preferential effect on carbohydrate intake. It decreases latency to eat, increases motivation to eat and delays satiety by augmenting meal size. The effects on feeding are mediated through at least two receptors, the Y1 and Y5 receptors. The NPY system for feeding regulation is mostly located in the hypothalamus. It is formed of the arcuate nucleus (ARC), where the peptide is synthesized, and the paraventricular (PVN), dorsomedial (DMN) and ventromedial (VMN) nuclei and perifornical area where it is active. This activity is modulated by the hindbrain and limbic structures. It is dependent on energy availability, e.g. upregulation with food deprivation or restriction, and return to baseline with refeeding. It is also sensitive to diet composition with variable effects of carbohydrates and fats. Leptin signalling and glucose sensing which are directly linked to diet type are the most important factors involved in its regulation. Absence of leptin signalling in obesity models due to gene mutation either at the receptor level, as in the Zucker rat, the Koletsky rat or the db/db mouse, or at the peptide level, as in ob/ob mouse, is associated with increased mRNA abundance, peptide content and/or release in the ARC or PVN. Other genetic obesity models, such as the Otsuka-Long-Evans-Tokushima Fatty rat, the agouti mouse or the tubby mouse, are characterized by a diminution in NPY expression in the ARC nucleus and by a significant increase in the DMN. Further studies are necessary to determine the exact role of NPY in these latter models. Long-term exposure to high-fat or high-energy palatable diets leads to the development of adiposity and is associated with a decrease in hypothalamic NPY content or expression, consistent with the existence of a counter-regulatory mechanism to diminish energy intake and limit obesity development. On the other hand, an overactive NPY system (increased mRNA expression in the ARC associated with an upregulation of the receptors) is characteristic of rats or rodent strains sensitive to dietary-induced obesity. Finally, NPY appears to play an important role in body weight and feeding regulation, and while it does not constitute the only target for drug treatment of obesity, it may nevertheless provide a useful target in conjunction with others.
Collapse
Affiliation(s)
- B Beck
- Université Henri Poincaré, Neurocal, Nancy, France.
| |
Collapse
|
6
|
Pronchuk N, Colmers WF. NPY presynaptic actions are reduced in the hypothalamic mpPVN of obese (fa/fa), but not lean, Zucker rats in vitro. Br J Pharmacol 2004; 141:1032-6. [PMID: 14967739 PMCID: PMC1574271 DOI: 10.1038/sj.bjp.0705699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Neuropeptide Y (NPY) profoundly enhances feeding when injected intracerebroventricularly, or directly into hypothalamic nuclei, such as the paraventricular nucleus (PVN). Paradoxically, NPY has a reduced action on feeding in obese Zucker rats relative to lean Zucker rats, although the obese rats have much higher levels of hypothalamic NPY expression. GABAergic inputs to a subpopulation of medial parvocellular PVN (mpPVN) neurons are sensitive to NPY. Here, we tested the hypothesis that the blunted eating response to NPY observed in obese Zucker rats will be reflected in a reduced NPY action at mpPVN GABAergic synapses. 2. 'Blind' whole-cell patch-clamp recordings made from mpPVN neurons in acute brain slices of lean and obese Zucker rats revealed GABAergic inhibitory postsynaptic currents (IPSC) responses which were inhibited by NPY. While the maximum response in the obese Zucker rats was significantly less than in lean Zucker or Sprague-Dawley rats, there was no difference in the EC(50). 3. Experiments using blocking concentrations of Y(1)- or Y(5)-receptor antagonists revealed no differences between lean and obese Zucker rats in the contributions of either of these receptors to the total NPY response in mpPVN. 4. NPY is less effective at the mpPVN GABA synapse in obese than in lean Zucker rats. This is not associated with a change in the proportion of Y(1) or Y(5) receptors mediating the NPY response, and is consistent with the downregulation of NPY receptors or a reduction in receptor-effector coupling, and with the reduced sensitivity of obese rats to NPY.
Collapse
Affiliation(s)
- Nina Pronchuk
- Department of Pharmacology, University of Alberta, 9-36 MSB, Edmonton, AB, Canada T6G 2H7
| | - William F Colmers
- Department of Pharmacology, University of Alberta, 9-36 MSB, Edmonton, AB, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
7
|
Nordheim U, Hofbauer KG. Stimulation of NPY Y2 receptors by PYY3-36 reveals divergent cardiovascular effects of endogenous NPY in rats on different dietary regimens. Am J Physiol Regul Integr Comp Physiol 2004; 286:R138-42. [PMID: 14551170 DOI: 10.1152/ajpregu.00374.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present experiments the gut hormone peptide YY3-36 (PYY3-36), which inhibits neuropeptide Y (NPY) release, was used as a tool to study the cardiovascular effects of endogenous NPY under different dietary regimens in rats instrumented with a telemetry transmitter. In a first experiment, rats were placed on a standard chow diet ad libitum and in a second experiment on a high-fat diet ad libitum. After 6 wk, PYY3-36 (300 μg/kg) or vehicle was injected intraperitoneally. In a third experiment, PYY3-36 or vehicle was administered after 14 days of 50% restriction of a standard chow diet. In food-restricted rats, PYY3-36 increased mean arterial pressure (7 ± 1 mmHg, mean ± SE, P < 0.001 vs. saline, 1-way repeated-measures ANOVA with Bonferroni t-test) and heart rate (22 ± 4 beats/min, P < 0.001) during 3 h after administration. Conversely, PYY3-36 did not influence mean arterial pressure (0 ± 1 mmHg) and heart rate (-8 ± 5 beats/min) significantly in rats on a high-fat diet. Rats fed standard chow diet ad libitum showed an intermediate response (mean arterial pressure 4 ± 1 mmHg, P < 0.05, and heart rate 5 ± 2 beats/min, not significant). Thus, in our studies, divergent cardiovascular responses to PYY3-36 were observed in rats on different dietary regimens. These findings suggest that the cardiovascular effects of PYY3-36 depend on the hypothalamic NPY release, which is increased after chronic food restriction and decreased during a high-fat diet.
Collapse
Affiliation(s)
- Ulrich Nordheim
- Applied Pharmacology, Biozentrum, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|