1
|
Islam MT, Ferdous J, Hasan MSA, Hashem A, Bappi MH, Ansari SA, Islam MA, Saifuzzaman M. Phytol exerts sedative-like effects and modulates the diazepam and flumazenil's action, possibly through the GABA A receptor interaction pathway. Neurosci Lett 2024; 842:138007. [PMID: 39357640 DOI: 10.1016/j.neulet.2024.138007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
This study aimed at the evaluation of the sedative effect of phytol (PHY) with possible molecular mechanisms through in vivo and in silico studies. For this, adult male mice were randomly divided into six individual groups, namely control (vehicle), two standards (DZP: diazepam at 2 m/kg, FLU: flumazenil at 0.1 mg/kg), three test groups (PHY at 25, 50, and 75 mg/kg), and three combined groups with the DZP-2 and/or FLU-0.1 with PHY-75 mg/kg. After thirty minutes, each animal was treated with thiopental sodium (TS) at 40 mg/kg to produce sedation and observed for latency and duration of sleep up to 4 h. In silico studies were performed with the 6X3X protein of the GABAA receptor α1 and β2 subunits. The results demonstrate that PHY dose-dependently enhanced sleep duration in animals. However, it produced an insignificant sleep duration compared to the control and standard groups. It also significantly (p < 0.05) decreased the latency and increased the duration of sleep with DZP-2, while reducing these parameters with FLU-0.1. In in silico studies, DZP and FLU exhibited binding affinities with 6X3X by -6.8 and -6.9 kcal/mol, respectively, while PHY exhibited -6.9 kcal/mol. Taken together, PHY may exert a sedative-like effect in TS-induced sleeping mice and modulate the effects of DZP and FLU, possibly through interacting with the 6X3X protein of the GABAA receptor. PHY may be one of the good candidates for the management of sleep disturbances, such as insomnia.
Collapse
Affiliation(s)
- Md Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh.
| | - Jannatul Ferdous
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Mehedi Hasan Bappi
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O Box 2457, Riyadh 11451, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, East West University, Dhaka 1212, Bangladesh
| | - Md Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
Islam MT, Bhuia MS, Sheikh S, Hasan R, Bappi MH, Chowdhury R, Ansari SA, Islam MA, Saifuzzaman M. Sedative Effects of Daidzin, Possibly Through the GABA A Receptor Interaction Pathway: In Vivo Approach with Molecular Dynamic Simulations. J Mol Neurosci 2024; 74:83. [PMID: 39230641 DOI: 10.1007/s12031-024-02261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
The soy isoflavone daidzin (DZN) has been considered a hopeful bioactive compound having diverse biological activities, including anxiolytic, memory-enhancing, and antiepileptic effects, in experimental animals. However, its sedative and hypnotic effects are yet to be discovered. This study aimed to evaluate its sedative/hypnotic effect on Swiss mice. Additionally, in silico studies were also performed to see the possible molecular mechanisms behind the tested neurological effect. For this, male Swiss albino mice were treated with DZN (5, 10, or 20 mg/kg) intraperitoneally (i.p.) with or without the standard GABAergic medication diazepam (DZP) and/or flumazenil (FLU) and checked for the onset and duration of sleeping time using thiopental sodium-induced as well as DZP-induced sleeping tests. A molecular docking study was also performed to check its interaction capacity with the α1 and β2 subunits of the GABAA receptor. Findings suggest that DZN dose-dependently and significantly reduced the latency while increasing the duration of sleep in animals. In combination therapy, DZN shows synergistic effects with the DZP-2 and DZP-2 + FLU-0.01 groups, resulting in significantly (p < 0.05) reduced latency and increased sleep duration. Further, molecular docking studies demonstrate that DZN has a strong binding affinity of - 7.2 kcal/mol, which is closer to the standard ligand DZP (- 8.3 kcal/mol) against the GABAA (6X3X) receptor. Molecular dynamic simulations indicated stability and similar binding locations for DZP and DZN with 6X3X. In conclusion, DZN shows sedative effects on Swiss mice, possibly through the GABAA receptor interaction pathway.
Collapse
Affiliation(s)
- Md Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh.
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Mehedi Hasan Bappi
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, East West University, Dhaka, 1212, Bangladesh
| | - Md Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
3
|
Cui GF, Hou M, Shao YF, Chen HL, Gao JX, Xie JF, Chen YN, Cong CY, Dai FQ, Hou YP. A Novel Continuously Recording Approach for Unraveling Ontogenetic Development of Sleep-Wake Cycle in Rats. Front Neurol 2019; 10:873. [PMID: 31456739 PMCID: PMC6700276 DOI: 10.3389/fneur.2019.00873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
Sleep-wake development in postnatal rodent life could reflect the brain maturational stages. As the altricial rodents, rats are born in a very undeveloped state. Continuous sleep recording is necessary to study the sleep-wake cycle profiles. However, it is difficult to realize in infant rats since they rely on periodic feeding before weaning and constant warming and appropriate EEG electrodes. We developed a new approach including two types of EEG electrodes and milk-feeding system and temperature-controlled incubator to make continuously polysomnographic (PSG) recording possible. The results showed that there was no evident difference in weight gaining and behaviors between pups fed through the milk-feeding system and warmed with temperature-controlled incubator and those kept with their dam. Evolutional profiles of EEG and electromyogram (EMG) activities across sleep-wake states were achieved perfectly during dark and light period from postnatal day (P) 11 to P75 rats. The ontogenetic features of sleep-wake states displayed that the proportion of rapid eye movement (REM) was 57.0 ± 2.4% and 59.7 ± 1.7% and non-REM (NREM) sleep was 5.2 ± 0.8% and 4.9 ± 0.5% respectively, in dark and light phase at P11, and then REM sleep progressively decreased and NREM sleep increased with age. At P75, REM sleep in dark and light phase respectively, reduced to 6.3 ± 0.6% and 6.9 ± 0.5%, while NREM correspondingly increased to 37.5 ± 2.1% and 58.4 ± 1.7%. Wakefulness from P11 to P75 in dark phase increased from 37.8 ± 2.2% to 56.2 ± 2.6%, but the change in light phase was not obvious. P20 pups began to sleep more in light phase than in dark phase. The episode number of vigilance states progressively decreased with age, while the mean duration of that significantly increased. EEG power spectra in 0.5–4 Hz increased with age accompanied with prolonged duration of cortical slow wave activity. Results also indicated that the dramatic changes of sleep-wake cycle mainly occurred in the first month after birth. The novel approaches used in our study are reliable and valid for continuous PSG recording for infant rats and unravel the ontogenetic features of sleep-wake cycle.
Collapse
Affiliation(s)
- Guang-Fu Cui
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Anatomy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Yu Cong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng-Qiu Dai
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Akman O, Raol YH, Auvin S, Cortez MA, Kubova H, de Curtis M, Ikeda A, Dudek FE, Galanopoulou AS. Methodologic recommendations and possible interpretations of video-EEG recordings in immature rodents used as experimental controls: A TASK1-WG2 report of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:437-459. [PMID: 30525114 PMCID: PMC6276777 DOI: 10.1002/epi4.12262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 01/30/2023] Open
Abstract
The use of immature rodents to study physiologic aspects of cortical development requires high-quality recordings electroencephalography (EEG) with simultaneous video recording (vEEG) of behavior. Normative developmental vEEG data in control animals are fundamental for the study of abnormal background activity in animal models of seizures or other neurologic disorders. Electrical recordings from immature, freely behaving rodents can be particularly difficult because of the small size of immature rodents, their thin and soft skull, interference with the recording apparatus by the dam, and other technical challenges. In this report of the TASK1 Working Group 2 (WG2) of the International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force, we provide suggestions that aim to optimize future vEEG recordings from immature rodents, as well as their interpretation. We focus on recordings from immature rodents younger than 30 days old used as experimental controls, because the quality and correct interpretation of such recordings is important when interpreting the vEEG results of animals serving as models of neurologic disorders. We discuss the technical aspects of such recordings and compare tethered versus wireless approaches. We also summarize the appearance of common artifacts and various patterns of electrical activity seen in young rodents used as controls as a function of behavioral state, age, and (where known) sex and strain. The information herein will hopefully help improve the methodology of vEEG recordings from immature rodents and may lead to results and interpretations that are more consistent across studies from different laboratories.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of PhysiologyFaculty of MedicineIstanbul Bilim UniversityIstanbulTurkey
| | - Yogendra H. Raol
- Division of NeurologyDepartment of PediatricsSchool of MedicineTranslational Epilepsy Research ProgramUniversity of ColoradoAuroraColoradoU.S.A
| | - Stéphane Auvin
- PROTECT, INSERM UMR1141APHPUniversity Paris DiderotSorbonne Paris CitéParisFrance
- University Hospital Robert‐DebréService of Pediatric NeurologyParisFrance
| | - Miguel A. Cortez
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
- Program of Neurosciences and Mental HealthPeter Gilgan Center for Research and LearningSickKids Research InstituteTorontoOntarioCanada
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Hana Kubova
- Department of Developmental EpileptologyInstitute of the Czech Academy of SciencesCzech Academy of SciencesPragueCzech Republic
| | - Marco de Curtis
- Epilepsy UnitCarlo Besta Neurological Institute FoundationMilanItaly
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and PhysiologyKyoto University Graduate School of MedicineKyotoJapan
| | - F. Edward Dudek
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtahU.S.A
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineEinstein/Montefiore Epilepsy CenterMontefiore Medical CenterBronxNew YorkU.S.A
| |
Collapse
|
5
|
Olayiwola G, Ukponmwan O, Olawode D. Sedative and anxiolytic effects of the extracts of the leaves of Stachytarpheta cayennensis in mice. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2013; 10:568-79. [PMID: 24311890 PMCID: PMC3847405 DOI: 10.4314/ajtcam.v10i6.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The leaves are used ethnomedicinally in Nigeria and other parts of the world for insomnia and anxiety among other uses. The investigations sought scientific evidence for the ethnomedicinal use of the leaves for the management of insomnia and anxiety as well as the neural mechanisms for the activities. The sedative and anxiolytic effects of the extracts of the leaves of Stachytarpheta cayennensis were examined in this study. The methanolic extract (5-50 mg/kg, i.p.) as well as the ethylacetate (10-50 mg/kg, i.p.), butanol and aqueous fractions (5-50 mg/kg, i.p.) of the extract were examined. Sedation was assessed as reduced novelty-induced rearing (NIR), reduced spontaneous locomotor activity (SLA) and increased pentobarbitone-induced sleeping time (PIST) in mice. The anti-anxiety effect (methanol 2.5-5.0; butanol 5.0; aqueous 20.0; ethylacetate 25.0 mg/kg, i.p.) was assessed using an elevated plus maze. LD50 was calculated for the extract and the fractions after the intraperitoneal route of administration using the Locke method. The methanolic extract, the butanol and the aqueous fractions inhibited rearing and spontaneous locomotion but prolonged pentobarbitone induced sleep. The ethylacetate fraction however increased both rearing and locomotion and decreased pentobarbitone sleeping time. The butanol and aqueous fractions, but not the methanol extract showed indices of open arm avoidance consistent with anti-anxiety effect. Naltrexone (2.5 mg/kg, i.p.) reversed the inhibition of rearing, locomotion and prolongation of pentobarbitone sleep due to the aqueous fraction of the extract. Flumazenil (2mg/kg, i.p.) abolished the effects of both methanolic extract and the butanol fraction on rearing, locomotion, pentobarbitone sleep and anxiety model. The methanolic extract, the butanol and aqueous fractions possess sedative activity while the ethylacetate fraction possesses stimulant property. The anxiolytic effect was found in both the aqueous fraction and the butanol fraction but not in the main methanol extract and also not in the ethylacetate fraction. Flumazenil, blocked the effect of the leaves of Stachytarpheta cayennensis on rearing, locomotion and elevated plus maze suggesting that GABA receptors are involved in the observed sedative and anxiolytic activities. This study also found opioid receptors involved in the sedative activity of the leaves of Stachytarpheta cayennensis. The rationale for the ethnomedicinal use of the leaves for the management of insomnia and anxiety were confirmed scientifically in this study.
Collapse
Affiliation(s)
- Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | |
Collapse
|