1
|
Rodríguez-Núñez I, Pontes RB, Romero F, Campos RR. Effects of physical exercise on baroreflex sensitivity and renal sympathetic nerve activity in chronic nicotine-treated rats. Can J Physiol Pharmacol 2021; 99:786-794. [PMID: 33290163 DOI: 10.1139/cjpp-2020-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic nicotine exposure may increase cardiovascular risk by impairing the cardiac autonomic function. Besides, physical exercise (PE) has shown to improve cardiovascular health. Thus, we aimed to investigate the effects of PE on baroreflex sensitivity (BRS), heart rate variability (HRV), and sympathetic nerve activity (SNA) in chronically nicotine-exposed rats. Male Wistar rats were assigned to four independent groups: Control (treated with saline solution), Control+Ex (treated with saline and submitted to treadmill training), Nicotine (treated with Nicotine), and Nicotine+Ex (treated with nicotine and submitted to treadmill training). Nicotine (1 mg·kg-1) was administered daily for 28 consecutive days. PE consisted of running exercise (60%-70% of maximal aerobic capacity) for 45 min, 5 days per week, for 4 weeks. At the end of the protocol, cardiac BRS, HRV, renal SNA (rSNA), and renal BRS were assessed. Nicotine treatment decreased absolute values of HRV indexes, increased low frequency/high frequency ratio of HRV, reduced the bradycardic and sympatho-inhibitory baroreceptor reflex responses, and reduced the rSNA. PE effectively restored time-domain HRV indexes, the bradycardic and sympatho-inhibitory reflex responses, and the rSNA in chronic nicotine-treated rats. PE was effective in preventing the deterioration of time-domain parameters of HRV, arterial baroreceptor dysfunction, and the rSNA after nicotine treatment.
Collapse
Affiliation(s)
- Iván Rodríguez-Núñez
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Chile
| | - Roberto B Pontes
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Fernando Romero
- Programa de Doctorado en Ciencias Médicas, Departamento de Cirugía, Facultad de Medicina, Universidad de La Frontera, Temuco. Chile
| | - Ruy R Campos
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
2
|
Clyburn C, Travagli RA, Arnold AC, Browning KN. DMV extrasynaptic NMDA receptors regulate caloric intake in rats. JCI Insight 2021; 6:139785. [PMID: 33764905 PMCID: PMC8262316 DOI: 10.1172/jci.insight.139785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Acute high-fat diet (aHFD) exposure induces a brief period of hyperphagia before caloric balance is restored. Previous studies have demonstrated that this period of regulation is associated with activation of synaptic N-methyl-D-aspartate (NMDA) receptors on dorsal motor nucleus of the vagus (DMV) neurons, which increases vagal control of gastric functions. Our aim was to test the hypothesis that activation of DMV synaptic NMDA receptors occurs subsequent to activation of extrasynaptic NMDA receptors. Sprague-Dawley rats were fed a control or high-fat diet for 3-5 days prior to experimentation. Whole-cell patch-clamp recordings from gastric-projecting DMV neurons; in vivo recordings of gastric motility, tone, compliance, and emptying; and food intake studies were used to assess the effects of NMDA receptor antagonism on caloric regulation. After aHFD exposure, inhibition of extrasynaptic NMDA receptors prevented the synaptic NMDA receptor-mediated increase in glutamatergic transmission to DMV neurons, as well as the increase in gastric tone and motility, while chronic extrasynaptic NMDA receptor inhibition attenuated the regulation of caloric intake. After aHFD exposure, the regulation of food intake involved synaptic NMDA receptor-mediated currents, which occurred in response to extrasynaptic NMDA receptor activation. Understanding these events may provide a mechanistic basis for hyperphagia and may identify novel therapeutic targets for the treatment of obesity.
Collapse
|
3
|
Page SJ, Zhu M, Appleyard SM. Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2018; 316:R38-R49. [PMID: 30354182 DOI: 10.1152/ajpregu.00344.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.
Collapse
Affiliation(s)
- Stephen J Page
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
4
|
Furuya WI, Colombari E, Ferguson AV, Colombari DSA. Effects of acetylcholine and cholinergic antagonists on the activity of nucleus of the solitary tract neurons. Brain Res 2017; 1659:136-141. [PMID: 28131721 DOI: 10.1016/j.brainres.2017.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/11/2017] [Accepted: 01/21/2017] [Indexed: 02/08/2023]
Abstract
Previously we have demonstrated that microinjection of acetylcholine (ACh) into the intermediate nucleus of the solitary tract (iNTS) induced sympatho-inhibition combined with a decrease in the phrenic nerve activity (PNA), whereas in the commissural NTS (cNTS), ACh did not change sympathetic nerve activity (SNA), but increased the PNA. In view of these demonstrated distinctive effects of ACh in different subnuclei of the NTS the current studies were undertaken to examine, using patch clamp techniques, the specific effects of ACh on the excitability of individual neurons in the NTS, as well as the neuropharmacology of these actions. Coronal slices of the brainstem containing either cNTS or iNTS subnuclei were used, and whole cell patch clamp recordings obtained from individual neurons in these two subnuclei. In cNTS, 58% of recorded neurons (n=12) demonstrated rapid reversible depolarizations in response to ACh (10mM), effects which were inhibited by the nicotinic antagonist mecamylamine (10μM), but unaffected by the muscarinic antagonist atropine (10μM). Similarly, bath application of ACh depolarized 76% of iNTS neurons (n=17), although in this case both atropine and mecamylamine reduced the ACh-induced depolarization. These data demonstrate that ACh depolarizes cNTS neurons through actions on nicotinic receptors, while depolarizing effects in iNTS are apparently mediated by both receptors.
Collapse
Affiliation(s)
- Werner I Furuya
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Feng L, Uteshev VV. Projection target-specific action of nicotine in the caudal nucleus of the solitary tract. J Neurosci Res 2014; 92:1560-72. [PMID: 24975270 DOI: 10.1002/jnr.23436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/11/2014] [Accepted: 05/20/2014] [Indexed: 01/26/2023]
Abstract
The brainstem nucleus of the solitary tract (NTS) is the key integrating relay in the central processing of sensory information from the thoracic and from most subdiaphragmatic viscera. Modulation of neuronal excitability and synaptic activity in the NTS by nicotinic agents can have potent effects on vital physiological functions, such as feeding, digestion, respiration, and blood circulation. Caudal NTS neurons demonstrate considerable heterogeneity in projection targets, synaptic properties, and expression of nicotinic acetylcholine receptors (nAChRs). However, despite its heterogeneity, the caudal NTS may contain discrete subsets of neurons with unique projection target-specific properties. To test this hypothesis, we used in vivo fluorescent tracing and ex vivo patch-clamp electrophysiology to evaluate responsiveness to nicotine of anatomically identified caudal NTS neurons that project to the hypothalamic paraventricular nucleus (PVN) and the brainstem caudal ventrolateral medulla (CVLM). The results of this study demonstrate that responsiveness to nicotine correlates with where the neurons project. Specifically, PVN-projecting caudal NTS neurons respond to nicotine only presynaptically (i.e., via activation of presynaptic nAChRs and potentiation of synaptic release of glutamate), suggesting indirect, glutamate-dependent effects of nicotine on the PVN-projecting NTS circuitry. By contrast, CVLM-projecting caudal NTS neurons exhibit only limited presynaptic, but dominant somatodendritic, responsiveness to nicotine, suggesting that the effects of nicotine on the CVLM-projecting NTS circuitry are direct and largely glutamate independent. Understanding the relationships among function-specific brainstem/hypothalamic neuronal networks, nuclei, and individual neurons could help develop therapies targeting identifiable neuronal circuits to offset impaired autonomic homeostasis.
Collapse
Affiliation(s)
- Lin Feng
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| | | |
Collapse
|
6
|
Furuya WI, Bassi M, Menani JV, Colombari E, Zoccal DB, Colombari DSA. Differential modulation of sympathetic and respiratory activities by cholinergic mechanisms in the nucleus of the solitary tract in rats. Exp Physiol 2014; 99:743-58. [DOI: 10.1113/expphysiol.2013.076794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Werner I. Furuya
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - José V. Menani
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Débora S. A. Colombari
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| |
Collapse
|
7
|
Shafei MN, Niazmand S, Enayatfard L, Hosseini M, Daloee MH. Pharmacological study of cholinergic system on cardiovascular regulation in the cuneiform nucleus of rat. Neurosci Lett 2013; 549:12-7. [PMID: 23811029 DOI: 10.1016/j.neulet.2013.05.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 02/07/2023]
Abstract
In the present study the effect of cholinergic system of Cuneiform nucleus (CnF) on central regulation of cardiovascular system was investigated. Two doses of acetylcholine (Ach; 90 and 150 nmol), atropine (3 and 9 nmol) and hexamethonium (Hexa; 100 and 300 nmol) were microinjected into the CnF. The maximum changes of MAP and HR were compared with control group (independent t-test). Both doses of Ach significantly decreased MAP but had no significant effect on HR. Administration of atropine and Hexa by themselves did not alter the MAP or HR. However, both doses of atropine and higher dose of Hexa significantly attenuated the hypotensive effect of Ach with no significant effect on HR. Our results suggest the involvement of CnF cholinergic system only on central blood pressure regulation that strongly mediated by muscarinic receptors.
Collapse
Affiliation(s)
- Mohammad Naser Shafei
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | |
Collapse
|
8
|
Cheng WH, Lu PJ, Hsiao M, Hsiao CH, Ho WY, Cheng PW, Lin CT, Hong LZ, Tseng CJ. Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT₁ and Mas receptors to modulate central blood pressure control in the nucleus tractus solitarii. Br J Pharmacol 2012; 166:2024-35. [PMID: 22224457 DOI: 10.1111/j.1476-5381.2012.01832.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The renin-angiotensin system (RAS) is critical for the control of blood pressure by the CNS. Recently, direct renin inhibitors were approved as antihypertensive agents. However, the signalling mechanism of renin, which regulates blood pressure in the nucleus tractus solitarii (NTS) remains unclear. Here we have investigated the signalling pathways involved in renin-mediated blood pressure regulation, at the NTS. EXPERIMENTAL APPROACH Depressor responses to renin microinjected into the NTS of Wistar-Kyoto rats were elicited in the absence and presence of the endothelial nitric oxide synthase (eNOS)-specific inhibitor, N(5)-(-iminoethyl)-L-ornithine, Akt inhibitor IV and LY294002, a PI3K inhibitor and GP antagonist-2A [G(q) inhibitor]. Lisinopril (angiotensin converting enzyme inhibitor), losartan, valsartan (angiotensin AT(1) receptor antagonists), D-Ala7-Ang-(1-7) (angiotensin-(1-7) receptor antagonist) were used to study the involvement of RAS on renin-induced depressor effects. KEY RESULTS Microinjection of renin into the NTS produced a prominent depressor effect and increased NO production. Pretreatment with G(q) -PI3K-Akt-eNOS pathway-specific inhibitors significantly attenuated the depressor response evoked by renin. Immunoblotting and immunohistochemical studies further showed that inhibition of PI3K significantly blocked renin-induced eNOS-Ser ¹¹⁷ and Akt-Ser⁴⁷³ phosphorylation in situ. In addition, pre-treatment of the NTS with RAS inhibitors attenuated the vasodepressor effects evoked by renin. Microinjection of renin also increased Ras activation in the NTS. CONCLUSIONS AND IMPLICATIONS Taken together, these results suggest renin modulated blood pressure at the NTS by AT₁ and Mas receptor-mediated activation of G(q) and Ras to evoke PI3K-Akt-eNOS signalling.
Collapse
Affiliation(s)
- Wen-Han Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The effect of varenicline on heart rate variability in healthy smokers and nonsmokers. Auton Neurosci 2011; 164:82-6. [DOI: 10.1016/j.autneu.2011.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 05/07/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022]
|
10
|
Moore C, Wang Y, Ramage AG. Nicotine's central cardiovascular actions: Receptor subtypes involved and their possible physiological role in anaesthetized rats. Eur J Pharmacol 2011; 668:177-83. [DOI: 10.1016/j.ejphar.2011.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
11
|
McCallum SE, Taraschenko OD, Hathaway ER, Vincent MY, Glick SD. Effects of 18-methoxycoronaridine on ghrelin-induced increases in sucrose intake and accumbal dopamine overflow in female rats. Psychopharmacology (Berl) 2011; 215:247-56. [PMID: 21210086 PMCID: PMC3790315 DOI: 10.1007/s00213-010-2132-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/01/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE 18-methoxycoronaridine (18-MC), a selective antagonist of α3β4 nicotinic receptors, has been previously shown, in rats, to reduce the self-administration of several drugs of abuse, reduce operant responding for sucrose, and prevent the development of sucrose-induced obesity. It has become increasingly apparent that there is a significant overlap between the systems regulating drug reward and food intake, therefore, we investigated whether 18-MC might modulate the effects of ghrelin, one of several orexigenic peptides recently implicated in both feeding and drug reward. OBJECTIVES In female Sprague-Dawley rats, we determined whether acute 18-MC treatment would reduce both ghrelin-induced increases in sucrose intake and ghrelin-elicited increases in accumbal dopamine levels. RESULTS Pretreatment with 18-MC (20 mg/kg, i.p.), given prior to the administration of ghrelin (1 μg, lateral ventricle), blocked ghrelin-induced increases in sucrose (5%) intake in a two-bottle open access paradigm. Using in vivo microdialysis, 18-MC (both 20 and 40 mg/kg) prevented ghrelin (2 μg, intraventral tegmental area)-induced increases in extracellular dopamine in the nucleus accumbens. 18-MC had no effect on deposition of fat or on serum levels of glucose, triglycerides, and cholesterol in ghrelin-treated rats. CONCLUSIONS The present results suggest that one potential mechanism by which 18-MC exerts its effects on palatable food consumption is via modulation of ghrelin's effects.
Collapse
Affiliation(s)
- Sarah E McCallum
- Center for Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
12
|
de Matsumoto JPP, de Ferrari MFR, Fior-Chadi DR. Adenosine receptor type 2a is differently modulated by nicotine in dorsal brainstem cells of Wistar Kyoto and spontaneously hypertensive rats. J Neural Transm (Vienna) 2010; 117:799-807. [DOI: 10.1007/s00702-010-0417-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 05/02/2010] [Indexed: 02/04/2023]
|
13
|
Taraschenko OD, Maisonneuve IM, Glick SD. 18-Methoxycoronaridine, a potential anti-obesity agent, does not produce a conditioned taste aversion in rats. Pharmacol Biochem Behav 2010; 96:247-50. [PMID: 20457177 DOI: 10.1016/j.pbb.2010.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/27/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
Abstract
18-Methoxycoronaridine (18-MC), a selective antagonist of alpha3beta4 nicotinic receptors, has been shown to reduce the self-administration of several drugs of abuse. Recently, this agent has also been shown to attenuate sucrose reward, decrease sucrose intake and prevent the development of sucrose-induced obesity in rats. The present experiments were designed to determine whether the latter effect was due to an 18-MC-induced conditioned taste aversion to sucrose. Both 18-MC (20mg/ kg, i.p.) and control agent, lithium chloride (100mg/kg, i.p.), reduced sucrose intake 24h after association with sucrose; however, only lithium chloride reduced sucrose intake 72h later. Consistent with previous data, 18-MC appears to have proactive effect for 24h and it does not induce a conditioned taste aversion.
Collapse
Affiliation(s)
- Olga D Taraschenko
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA.
| | | | | |
Collapse
|
14
|
Sofuoglu M, Herman AI, Mooney M, Waters AJ. Varenicline attenuates some of the subjective and physiological effects of intravenous nicotine in humans. Psychopharmacology (Berl) 2009; 207:153-62. [PMID: 19693492 PMCID: PMC2796376 DOI: 10.1007/s00213-009-1643-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Varenicline, a partial nicotinic acetylcholine receptor (nAChR) agonist, is approved for smoking cessation. A few preclinical studies examined the pharmacological effects of varenicline, alone or in combination with nicotine. How varenicline affects the pharmacological effects of pure nicotine has not been examined in humans. The goal of this study was to characterize varenicline's actions on nicotine's dose-dependent effects in abstinent smokers. METHODS Six male and six female smokers participated in a double-blind, placebo-controlled, crossover study. Smokers had two 4-day treatment periods, assigned in random sequence, to varenicline (1 mg/day) or placebo treatment. On day 4 of each treatment phase, smokers had an experimental session, where they received three escalating doses of intravenous (IV) nicotine (0.1, 0.4, and 0.7 mg/70 kg), in 30-min intervals. Varenicline's effects were assessed through subjective, physiological, and cognitive performance outcomes to nicotine administered via IV route. RESULTS In response to IV nicotine, varenicline treatment attenuated the rating of drug strength, high, head rush, and stimulated. Varenicline also attenuated nicotine-induced increases in heart rate. Varenicline had mixed effects on cognitive performance. Smokers under varenicline treatment, compared with placebo, reported enhanced positive mood measured with the Positive and Negative Affect Schedule. CONCLUSIONS These findings provide new insights into the mechanisms of action of varenicline in smoking cessation.
Collapse
Affiliation(s)
- Mehmet Sofuoglu
- Department of Psychiatry and VA Connecticut Healthcare System, Yale University School of Medicine, 950 Campbell Ave., Bldg. 36/116A4, West Haven, CT 06516, USA.
| | | | | | | |
Collapse
|
15
|
Taraschenko OD, Rubbinaccio HY, Maisonneuve IM, Glick SD. 18-methoxycoronaridine: a potential new treatment for obesity in rats? Psychopharmacology (Berl) 2008; 201:339-50. [PMID: 18751969 PMCID: PMC3787601 DOI: 10.1007/s00213-008-1290-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 07/30/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE Excessive eating often leads to obesity. Although a variety of neurotransmitters and brain regions are involved in modulating food intake, a role of accumbal dopamine is thought to be critical for several aspects of this behavior. Since 18-methoxycoronaridine (18-MC), a selective antagonist of alpha3beta4 nicotinic receptors, was previously shown to alter dopamine release in the nucleus accumbens in response to chronic injections of cocaine and morphine, this drug could be a promising therapy for abnormal eating behavior. OBJECTIVES Assess the effect of 18-MC on the consumption of sucrose (15%) vs. water in a self-administration paradigm and on the intake of freely available palatable fluids (i.e., 5% sucrose, 0.1% saccharin, and 0.6% saline solutions) as well as on water intake. Determine whether repeated administration of 18-MC (20 mg/kg i.p.) affects weight gain, food intake, and fat deposition in rats drinking 30% sucrose solution. RESULTS Acute administration of 18-MC (10-40 mg/kg i.p.) reduced operant responding for sucrose and decreased ad libitum ingestion of sucrose, saccharin, and saline. The highest dose of 18-MC also reduced consumption of water when palatable fluids were not available. In rats having unlimited access to sucrose (30%), chronic treatment with 18-MC (20 mg/kg i.p.) prevented sucrose-induced increases in body weight, decreased fat deposition, and reduced consumption of sucrose while not altering food intake. CONCLUSIONS These data suggest that antagonism of alpha3beta4 nicotinic receptors may be involved in the regulation of intake of palatable substances regardless of its caloric value and may participate in maintaining obesity.
Collapse
Affiliation(s)
- Olga D. Taraschenko
- Center for Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Heather Y. Rubbinaccio
- Center for Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Isabelle M. Maisonneuve
- Center for Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Stanley D. Glick
- Center for Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
16
|
O'Leary KT, Loughlin SE, Chen Y, Leslie FM. Nicotinic acetylcholine receptor subunit mRNA expression in adult and developing rat medullary catecholamine neurons. J Comp Neurol 2008; 510:655-72. [PMID: 18698592 DOI: 10.1002/cne.21833] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate numerous visceral functions via medullary catecholamine (CA) neurons found in the nucleus tractus solitarius (NTS), dorsal motor nucleus of the vagus (DMV), and ventrolateral medulla (VLM). However, the nAChR subtypes involved are not known. We have therefore characterized expression of nine nAChR subunit mRNAs in adult and developing rat medullary CA nuclei using combined isotopic/nonisotopic in situ hybridization. Tyrosine hydroxylase (TH) mRNA, the CA-synthesizing enzyme, was used as a marker for CA neurons, because these nuclei consist of heterogeneous populations of cells. Subunit mRNA expression varied within and between nuclei, along the rostrocaudal axis, between cell types, and across development. All CA neurons expressed beta2 mRNA, whereas alpha2 mRNA was completely absent. alpha6 And beta3 mRNA expression were restricted mainly to the VLM. alpha4, alpha5, And alpha7 mRNA expression was significantly greater in the rostral than in the caudal VLM. alpha3 And beta4 mRNAs were highly expressed in the dorsal region of the NTS, whereas dense alpha7 mRNA expression was restricted to the DMV and ventral NTS. The remaining subunit mRNAs were detected to some degree in both DMV and NTS. Except for alpha4 mRNA, which peaked prenatally, expression levels of subunit transcripts in the NTS and DMV were lower during development compared with adults. In the VLM, alpha3, alpha4, and alpha5 mRNAs expression peaked perinatally, whereas alpha6 and beta3 levels increased with age. These variations in nAChR subunit mRNA expression suggest that different receptor subtypes may produce function-specific regulation of medullary CA systems.
Collapse
Affiliation(s)
- Kathryn T O'Leary
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
17
|
Murota Y, Fujii M, Sugiyama Y, Funabashi T, Yagami T, Takahashi T, Goshima Y. DOPA cyclohexyl ester, a DOPA antagonist, blocks the depressor responses elicited by microinjections of nicotine into the nucleus tractus solitarii of rats. Neurosci Lett 2008; 442:114-7. [PMID: 18620021 DOI: 10.1016/j.neulet.2008.06.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/07/2008] [Accepted: 06/29/2008] [Indexed: 11/28/2022]
Abstract
Nicotinic cholinergic receptors play a role in cardiovascular regulation in the lower brain stem. Herein, we present evidence that l-3,4-dihydroxyphenylalanine (DOPA), a putative neurotransmitter in the central nervous system, is involved in the depressor response to microinjection of nicotine into the nucleus tractus solitarii (NTS). Microinjection of nicotine into the medial area of the NTS led to decreases in arterial blood pressure and heart rate in anesthetized rats. Mecamylamine, a nicotinic receptor antagonist, microinjected into NTS, blocked the depressor and bradycardic responses to nicotine. Nicotine-induced depressor and bradycardic responses were blocked by DOPA cyclohexyl ester (DOPA CHE), an antagonist for DOPA. DOPA CHE did not modify the action of carbachol on excitatory postsynaptic potential in rat cortical slices. These results suggest that endogenous DOPA is involved in nicotine-induced depressor responses in the NTS of anesthetized rats.
Collapse
Affiliation(s)
- Y Murota
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Moore C, Wang Y, Ramage AG. Cardiovascular effects of activation of central alpha7 and alpha4beta2 nAChRs: a role for vasopressin in anaesthetized rats. Br J Pharmacol 2008; 153:1728-38. [PMID: 18297099 PMCID: PMC2438263 DOI: 10.1038/bjp.2008.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/10/2008] [Accepted: 01/22/2008] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Central application of nicotine causes the release of vasopressin and affects blood pressure. Involvement of the 5 neuronal nicotinic receptor groups, alpha2(*)-alpha7(*) in these effects is unknown. The availability of selective agonists for alpha7 (PSAB-OFP) and alpha4beta2 (TC-2559) nACh receptors allowed their role to be investigated. EXPERIMENTAL APPROACH Recordings were made of arterial blood pressure, heart rate and renal sympathetic nerve activity in anaesthetized male rats with neuromuscular blockade and artificial respiration. Effects of the agonists, PSAB-OFP (1-10 micromol kg(-1)) and TC-2559 (1-10 micromol kg(-1)) on these variables given intracerebroventricularly (i.c.v.) and intracisternally (i.c.) in the presence or absence of the antagonists, DhbetaE (10 micromol kg(-1)) and MLA (0.5 micromol kg(-1)), for the appropriate nicotinic receptor subtypes, respectively, and a V(1) receptor antagonist, given i.v. or centrally, were investigated. KEY RESULTS Both agonists given i.c.v. caused a delayed rise in blood pressure and renal nerve activity which could be blocked only with the appropriate antagonist. The agonists had an earlier onset of action when given i.c., favouring the brainstem as the major site of action. The effects of these agonists were also attenuated by the V(1) receptor antagonist given i.v. and blocked when this antagonist was given centrally. Antagonists had no effect on baseline variables. CONCLUSIONS AND IMPLICATIONS Activation of alpha4beta2 and alpha7 receptors in the brainstem is mainly responsible for the cardiovascular effects of activating these receptors, which have a similar profile of action. These actions, although independent, are mediated by the central release of vasopressin.
Collapse
Affiliation(s)
- C Moore
- Department of Pharmacology, University College London, London, UK
| | - Y Wang
- Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - A G Ramage
- Department of Pharmacology, University College London, London, UK
| |
Collapse
|
19
|
Smith DV, Uteshev VV. Heterogeneity of nicotinic acetylcholine receptor expression in the caudal nucleus of the solitary tract. Neuropharmacology 2007; 54:445-53. [PMID: 18078963 DOI: 10.1016/j.neuropharm.2007.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 09/26/2007] [Accepted: 10/22/2007] [Indexed: 01/25/2023]
Abstract
The nucleus of the solitary tract (NTS) is the principal integrating relay in the processing of visceral sensory and gustatory information. In the present study, patch-clamp electrophysiological experiments were conducted using rat horizontal brainstem sections. Pre-synaptic and somatic/dendritic nicotinic acetylcholine receptors (nAChRs) expressed in neurons of the caudal NTS (cNTS) were found to be randomly distributed between pre-synaptic and somatic/dendritic sites (chi(2)=0.72, df=3, p>0.87, n=200). Pre-synaptic nAChRs were detected by their facilitating effects on glutamatergic neurotransmission of a sub-population of cNTS neurons (categorized as "effect-positive") upon brief picospritzer applications of 0.1-0.5mM nicotine. These effects were resistant to inhibition by 20nM methyllycaconitine (MLA) and 4muM dihydro-beta-erythroidine (DHbetaE), and were replicated by brief picospritzer applications of 0.2-1mM cytisine. Picospritzer applications of 0.2mM RJR-2403, a potent agonist of alpha4beta2 nAChRs, did not facilitate synaptic release of glutamate in effect-positive cNTS neurons. The population of somatic/dendritic nAChRs has been found to be heterogeneous and included nAChRs that were activated by RJR-2403 and/or cytisine, or insensitive to cytisine, or inhibited by MLA. The presented results are consistent with the expression of beta4-containing (i.e., beta4*) nAChRs, likely alpha3beta4*, in pre-synaptic terminals of effect-positive cNTS neurons. Somatic/dendritic nAChRs appear to involve both alpha7 and non-alpha7 subunits. Heterogeneity in the subunit composition of pre-synaptic and somatic/dendritic nAChRs may underlie diverse roles that these receptors play in regulation of behavioral and visceral reflexes, and may reflect specific targeting by endogenous nicotinic agents and nicotine.
Collapse
Affiliation(s)
- David V Smith
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
20
|
Gong CL, Chiu YT, Lin NN, Cheng CC, Lin SZ, Lee TJF, Kuo JS. Regulation of the common carotid arterial blood flow by nicotinic receptors in the medulla of cats. Br J Pharmacol 2006; 149:206-14. [PMID: 16894347 PMCID: PMC2013800 DOI: 10.1038/sj.bjp.0706844] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Actions of glutamate and serotonin on their respective receptors in the dorsal facial area (DFA) of the medulla are known to regulate common carotid arterial (CCA) blood flow in cats. Less is known about acetylcholine action on its nicotinic receptor (nAChR) subtypes in the DFA for regulation of CCA blood flow and this aspect was investigated. EXPERIMENTAL APPROACH Nicotinic and muscarinic agonists and antagonists were microinjected into the DFA through a three-barrel tubing in anesthetized cats. RESULTS CCA blood flow was dose-dependently increased by nicotine (a non-selective nAChR agonist) and choline (a selective alpha7-nAChR agonist). These effects of nicotine were attenuated by alpha-bungarotoxin (an alpha7-nAChR antagonist), methyllycaconitine (an alpha7-nAChR antagonist), mecamylamine (a relatively selective alpha3beta4-nAChR antagonist) and dihydro-beta-erythroidine (a relatively selective alpha4beta2-nAChR antagonist). The choline-induced flow increase was attenuated by alpha-bungarotoxin and mecamylamine, but not by dihydro-beta-erythroidine. Muscarinic agonists (muscarine and methacholine) and antagonist (atropine) affected neither the basal nor the nicotine-induced increase in the CCA blood flow. CONCLUSIONS AND IMPLICATIONS Functional alpha7, alpha4beta2, and alpha3beta4 subunits of the nAChR appear to be present on the DFA neurons. Activations of these receptors increase the CCA blood flow. The present findings do not preclude the presence of other nAChRs subunits. Muscarinic receptors, if any, on the DFA are not involved in regulation of the CCA blood flow. Various subtypes of nAChRs in the DFA may mediate regulation of the CCA and cerebral blood flows.
Collapse
Affiliation(s)
- C-L Gong
- Department of Physiology, School of Medicine, China Medical University Taichung, Taiwan
| | - Y-T Chiu
- Department of Education and Research, Taichung Veterans General Hospital Taichung, Taiwan
| | - N-N Lin
- Department of Education and Research, Taichung Veterans General Hospital Taichung, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University Taichung, Taiwan
| | - C-C Cheng
- Department of Education and Research, Taichung Veterans General Hospital Taichung, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University Taichung, Taiwan
| | - S-Z Lin
- Neuro-Medical Scientific Center and Center for Vascular Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University Hualien, Taiwan
| | - T J-F Lee
- Neuro-Medical Scientific Center and Center for Vascular Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University Hualien, Taiwan
- Institute of Pharmacology and Toxicology, Tzu Chi University Hualien, Taiwan
- Department of Pharmacology, Southern Illinois University, School of Medicine Springfield, IL, USA
| | - J-S Kuo
- Neuro-Medical Scientific Center and Center for Vascular Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University Hualien, Taiwan
- Institute of Pharmacology and Toxicology, Tzu Chi University Hualien, Taiwan
- Author for correspondence:
| |
Collapse
|
21
|
Vaupel DB, Tella SR, Huso DL, Wagner VO, Mukhin AG, Chefer SI, Horti AG, London ED, Koren AO, Kimes AS. Pharmacological and toxicological evaluation of 2-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-F-A-85380), a ligand for imaging cerebral nicotinic acetylcholine receptors with positron emission tomography. J Pharmacol Exp Ther 2004; 312:355-65. [PMID: 15331657 DOI: 10.1124/jpet.104.073999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-[(18)F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[(18)F]F-A-85380), a positron emission tomography (PET) radioligand for neuronal alpha4beta2(*) nicotinic acetylcholine receptors, was evaluated for its pharmacology and safety. In the Ames test for mutagenicity, 2-F-A-85380 was without effect in five bacterial strains. No evidence of gross pathology or histopathological changes occurred in either 2-day acute (0.4-4000 nmol/kg i.v.) or 14-day expanded acute (40-4000 nmol/kg i.v.) toxicity studies in mice. Similarly, hematology and serum chemistry values in rhesus monkeys administered 60 nmol/kg i.v. were not affected over 14 days. Like nicotine, 2-F-A-85380 produced convulsions in mice at very high doses. The ED(50) value of 2-F-A-85380 for eliciting tonic-clonic convulsions (5.0 micromol/kg i.v.) was nearly 4 times greater than that of nicotine (ED(50) = 1.4 micromol/kg i.v.). Lower doses of 2-F-A-85380 (30-300 nmol/kg i.v.) and nicotine (20-400 nmol/kg i.v.) increased systolic and diastolic blood pressure, heart rate, and cardiac contractility in rats. Notably, the PR, QRS, or QTc intervals of the rat electrocardiogram were unaffected by either drug. Dosimetry studies indicated that the urinary bladder wall was the critical organ and total radiation exposure was within acceptable limits. Estimated doses of 2-F-A-85380 required to elevate blood pressure and heart rate by 10% ranged from 40 to 58 nmol/kg i.v. Nevertheless, the estimated radiopharmaceutically relevant dose of [(18)F]2-F-A-8380 required for initial PET imaging studies, 10 pmol/kg, is less than 1/4000th of the doses calculated (40-58 nmol/kg i.v.) to elevate blood pressure and heart rate by 10% in humans and should elicit no clinically significant effects and have acceptable dosimetry.
Collapse
Affiliation(s)
- D Bruce Vaupel
- NIDA IRP, Neuroimaging Research Branch, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cucchiaro G, Commons KG. Alpha 4 nicotinic acetylcholine receptor subunit links cholinergic to brainstem monoaminergic neurotransmission. Synapse 2003; 49:195-205. [PMID: 12774304 DOI: 10.1002/syn.10218] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Agonists of nicotinic receptors containing the alpha4-subunit produce antinociception accompanied by several adverse side effects. The purpose of this study was to determine the distribution of the alpha4-subunit of nicotinic acetylcholine receptors (nAChR) in brainstem monoaminergic nuclei that may contribute to these effects using dual labeling immunofluorescence methods. The alpha4-subunit immunoreactivity was enriched in serotonergic (nucleus raphe magnus, pallidus, obscurus, and dorsalis) and noradrenergic (A5, locus coeruleus (LC), A7) areas associated with antinociception, where it was commonly colocalized with serotonin (5-HT) or tyrosine hydroxylase (TH) immunoreactivity. However, it was also noted that alpha4 was present in all other brainstem monoaminergic nuclei examined (adrenergic C1-C3, noradrenergic A1-alpha4, dopamine A9 and A10, nucleus raphe medianus). To determine if alpha4 agonists could impact neural activity in brainstem, monoaminergic nuclei that are associated with antinociception, the expression of c-Fos in response to the systemic administration of epibatidine (2.5, 5, or 10 microg/kg) was examined. Epibatidine produced a robust (2-5-fold) increase in c-Fos expression, which was not dose dependent, in all of these areas examined except the nucleus raphe magnus. These results suggest that the alpha4 subunit is positioned to mediate the effects of acetylcholine widely across many, if not all, monoaminergic neurons in the brainstem. These observations emphasize the potential involvement of noradrenergic, as well as serotonergic mechanisms in epibatidine's analgesic effects, and they also suggest that even selective alpha4 ligand may have widespread effects on brain monoamine neurotransmission.
Collapse
Affiliation(s)
- Giovanni Cucchiaro
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
23
|
Affiliation(s)
- Harald M Stauss
- Johannes-Müller-Institut für Physiologie, Humboldt-Universität zu Berlin (Charité), 10117 Berlin, Germany
| |
Collapse
|