1
|
Kozlova EV, Bishay AE, Denys ME, Chinthirla BD, Valdez MC, Spurgin KA, Krum JM, Basappa KR, Currás-Collazo MC. Gene deletion of the PACAP/VIP receptor, VPAC2R, alters glycemic responses during metabolic and psychogenic stress in adult female mice. J Neuroendocrinol 2023; 35:e13354. [PMID: 37946684 DOI: 10.1111/jne.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and the homologous peptide, vasoactive intestinal peptide (VIP), participate in glucose homeostasis using insulinotropic and counterregulatory processes. The role of VIP receptor 2 (VPAC2R) in these opposing actions needs further characterization. In this study, we examined the participation of VPAC2R on basal glycemia, fasted levels of glucoregulatory hormones and on glycemia responses during metabolic and psychogenic stress using gene-deleted (Vipr2-/- ) female mice. The mean basal glycemia was significantly greater in Vipr2-/- in the fed state and after an 8-h overnight fast as compared to wild-type (WT) mice. Insulin tolerance testing following a 5-h fast (morning fast, 0.38 U/kg insulin) indicated no effect of genotype. However, during a more intense metabolic challenge (8 h, ON fast, 0.25 U/kg insulin), Vipr2-/- females displayed significantly impaired insulin hypoglycemia. During immobilization stress, the hyperglycemic response and plasma epinephrine levels were significantly elevated above basal in Vipr2-/- , but not WT mice, in spite of similar stress levels of plasma corticosterone. Together, these results implicate participation of VPAC2R in upregulated counterregulatory processes influenced by enhanced sympathoexcitation. Moreover, the suppression of plasma GLP-1 levels in Vipr2-/- mice may have removed the inhibition on hepatic glucose production and the promotion of glucose disposal by GLP-1. qPCR analysis indicated deregulation of central gene markers of PACAP/VIP signaling in Vipr2-/- , upregulated medulla tyrosine hydroxylase (Th) and downregulated hypothalamic Vip transcripts. These results demonstrate a physiological role for VPAC2R in glucose metabolism, especially during insulin challenge and psychogenic stress, likely involving the participation of sympathoadrenal activity and/or metabolic hormones.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Maximilian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Kurt A Spurgin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Karthik R Basappa
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | | |
Collapse
|
2
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
3
|
Bensalma S, Turpault S, Balandre AC, De Boisvilliers M, Gaillard A, Chadéneau C, Muller JM. PKA at a Cross-Road of Signaling Pathways Involved in the Regulation of Glioblastoma Migration and Invasion by the Neuropeptides VIP and PACAP. Cancers (Basel) 2019; 11:cancers11010123. [PMID: 30669581 PMCID: PMC6356933 DOI: 10.3390/cancers11010123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease, mainly due to the high migration and invasion potency of GBM cells inside the brain. PI3K/Akt, Sonic Hedgehog (SHH), and PKA pathways play major regulatory roles in the progression of GBM. The vasoactive intestinal peptide (VIP) family of neuropeptides and their receptors, referred in this article as the “VIP-receptor system”, has been reported to regulate proliferation, differentiation, and migration in a number of tumor cell types and more particularly in GBM cells. These neuropeptides are potent activators of the cAMP/PKA pathway. The present study aimed to investigate the cross-talks between the above cited signaling cascades. Regulation by VIP-related neuropeptides of GBM migration and invasion was evaluated ex vivo in rat brain slices explanted in culture. Effects of different combinations of VIP-related neuropeptides and of pharmacological and siRNA inhibitors of PKA, Akt, and of the SHH/GLI1 pathways were tested on GBM migration rat C6 and human U87 GBM cell lines using the wound-healing technique. Quantification of nuclear GLI1, phospho-Akt, and phospho-PTEN was assessed by western-immunoblotting. The VIP-receptor system agonists VIP and PACAP-38 significantly reduced C6 cells invasion in the rat brain parenchyma ex vivo, and C6 and U87 migration in vitro. A VIP-receptor system antagonist, VIP10-28 increased C6 cell invasion in the rat brain parenchyma ex vivo, and C6 and migration in vitro. These effects on cell migration were abolished by selective inhibitors of the PI3K/Akt and of the SHH pathways. Furthermore, VIP and PACAP-38 reduced the expression of nuclear GLI1 while VIP10-28 increased this expression. Selective inhibitors of Akt and PKA abolished VIP, PACAP-38, and VIP10-28 effects on nuclear GLI1 expression in C6 cells. PACAP-38 induced a time-dependent inhibition of phospho-Akt expression and an increased phosphorylation of PTEN in C6 cells. All together, these data indicate that triggering the VIP-receptor system reduces migration and invasion in GBM cells through a PKA-dependent blockade of the PI3K/Akt and of the SHH/GLI1 pathways. Therefore, the VIP-receptor system displays anti-oncogenic properties in GBM cells and PKA is a central core in this process.
Collapse
Affiliation(s)
- Souheyla Bensalma
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Soumaya Turpault
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Annie-Claire Balandre
- STIM Laboratory, CNRS ERL 7003-EA7349, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Madryssa De Boisvilliers
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC)⁻INSERM UMR-S1084, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Corinne Chadéneau
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Jean-Marc Muller
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| |
Collapse
|
4
|
Pituitary adenylate cyclase activating polypeptide induces long-term, transcription-dependent plasticity and remodeling at autonomic synapses. Mol Cell Neurosci 2017; 85:170-182. [DOI: 10.1016/j.mcn.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022] Open
|
5
|
Kumar NN, Allen K, Parker L, Damanhuri H, Goodchild AK. Neuropeptide coding of sympathetic preganglionic neurons; focus on adrenally projecting populations. Neuroscience 2010; 170:789-99. [PMID: 20674686 DOI: 10.1016/j.neuroscience.2010.07.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 01/04/2023]
Abstract
Chemical coding of sympathetic preganglionic neurons (SPN) suggests that the chemical content of subpopulations of SPN can define their function. Since neuropeptides, once synthesized are transported to the axon terminal, most demonstrated chemical coding has been identified using immunoreactive terminals at the target organ. Here, we use a different approach to identify and quantify the subpopulations of SPN that contain the mRNA for pituitary adenylate cyclase activating polypeptide (PACAP) or enkephalin. Using double-labeled immunohistochemistry combined with in situ hybridization (ISH) we firstly identified the distribution of these mRNAs in the spinal cord and determined quantitatively, in Sprague-Dawley rats, that many SPN at the T4-T10 spinal level contain preproPACAP (PPP+, 80 ± 3%, n=3), whereas a very small percentage contain preproenkephalin (PPE+, 4 ± 2%, n=4). A similar neurochemical distribution was found at C8-T3 spinal level. These data suggest that PACAP potentially regulates a large number of functions dictated by SPN whereas enkephalins are involved in few functions. We extended the study to explore those SPN that control adrenal chromaffin cells. We found 97 ± 5% of adrenally projecting SPN (AP-SPN) to be PPP+ (n=4) with only 47 ± 3% that were PPE+ (n=5). These data indicate that adrenally projecting PACAPergic SPN regulate both adrenal adrenaline (Ad) and noradrenaline (NAd) release whereas the enkephalinergic SPN subpopulation must control a (sub) population of chromaffin cells - most likely those that release Ad. The sensory innervation of the adrenal gland was also determined. Of the few adrenally projecting dorsal root ganglia (AP-DRG) observed, 74 ± 12% were PPP+ (n=3), whereas 1 ± 1% were PPE+ (n=3). Therefore, if sensory neurons release peptides to the adrenal medulla, PACAP is most likely involved. Together, these data provide a neurochemical basis for differential control of sympathetic outflow particularly that to the adrenal medulla.
Collapse
Affiliation(s)
- N N Kumar
- The Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | | | | | | |
Collapse
|
6
|
Pugh PC, Jayakar SS, Margiotta JF. PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses. Mol Cell Neurosci 2009; 43:244-57. [PMID: 19958833 DOI: 10.1016/j.mcn.2009.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 12/11/2022] Open
Abstract
Neuropeptides collaborate with conventional neurotransmitters to regulate synaptic output. Pituitary adenylate cyclase-activating polypeptide (PACAP) co-localizes with acetylcholine in presynaptic nerve terminals, is released by stimulation, and enhances nicotinic acetylcholine receptor- (nAChR-) mediated responses. Such findings implicate PACAP in modulating nicotinic neurotransmission, but relevant synaptic mechanisms have not been explored. We show here that PACAP acts via selective high-affinity G-protein coupled receptors (PAC(1)Rs) to enhance transmission at nicotinic synapses on parasympathetic ciliary ganglion (CG) neurons by rapidly and persistently increasing the frequency and amplitude of spontaneous, impulse-dependent nicotinic excitatory postsynaptic currents (sEPSCs). Of the canonical adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP/PAC(1)R signaling, only AC-generated signals are critical for synaptic modulation since the increases in sEPSC frequency and amplitude were mimicked by 8-Bromo-cAMP, blocked by inhibiting AC or cAMP-dependent protein kinase (PKA), and unaffected by inhibiting PLC. Despite its ability to increase agonist-induced nAChR currents, PACAP failed to influence nAChR-mediated impulse-independent miniature EPSC amplitudes (quantal size). Instead, evoked transmission assays reveal that PACAP/PAC(1)R signaling increased quantal content, indicating that it modulates synaptic function by increasing vesicular ACh release from presynaptic terminals. Lastly, signals generated by the retrograde messenger, nitric oxide- (NO-) are critical for the synaptic modulation since the PACAP-induced increases in spontaneous EPSC frequency, amplitude and quantal content were mimicked by NO donor and absent after inhibiting NO synthase (NOS). These results indicate that PACAP/PAC(1)R activation recruits AC-dependent signaling that stimulates NOS to increase NO production and control presynaptic transmitter output at neuronal nicotinic synapses.
Collapse
Affiliation(s)
- Phyllis C Pugh
- University of Toledo College of Medicine, Department of Neurosciences, Toledo, OH 43614-5804, USA
| | | | | |
Collapse
|
7
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Guillemot J, Aït-Ali D, Turquier V, Montero-Hadjadje M, Fournier A, Vaudry H, Anouar Y, Yon L. Involvement of multiple signaling pathways in PACAP-induced EM66 secretion from chromaffin cells. ACTA ACUST UNITED AC 2006; 137:79-88. [PMID: 16963134 DOI: 10.1016/j.regpep.2006.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/10/2006] [Accepted: 04/22/2006] [Indexed: 10/24/2022]
Abstract
Secretoneurin (SN) and EM66 are two highly conserved peptides that derive from the processing of secretogranin II (SgII), one of the major constituents of chromaffin cell secretory vesicles. It has been shown that PACAP regulates SgII gene transcription and SN release in bovine adrenochromaffin cells. The aim of the present study was to localize and characterize EM66 in the bovine adrenal gland, and to examine the signaling pathways activated by PACAP to regulate the secretion of EM66 from cultured chromaffin cells. Double immunohistochemical labeling showed an intense EM66-immunoreactive (EM66-IR) signal in TH-positive medullary chromaffin cells of the adrenal gland. HPLC analysis combined with RIA detection revealed, in adrenal medulla extracts and cultured chromaffin cell media, the presence of a major EM66-IR peak co-eluting with the recombinant peptide. PACAP dose-dependently stimulated EM66 release from chromaffin cells (ED(50)=4.8 nM). The effect of PACAP on EM66 secretion was observed after 6 h of treatment and increased to reach a 2.6-fold stimulation at 48 h. The nonselective calcium channel blocker NiCl(2), the cytosolic calcium chelator BAPTA-AM and the L-type calcium channel blocker nimodipine significantly inhibited the stimulatory effect of PACAP on EM66 release. The secretory response to PACAP was also significantly lowered by the protein kinase A inhibitor H89 and by the protein kinase C inhibitor chelerythrine. Concomitant administration of chelerythrine, H89, NiCl(2) and BAPTA totally abolished PACAP-stimulated EM66 secretion. The MAPK inhibitors U0126 and SB203580 respectively decreased by 63% and 72% PACAP-evoked EM66 release. These results indicate that, in bovine adrenal medulla, SgII is processed to generate the EM66 peptide and that PACAP activates multiple signaling pathways to regulate EM66 release from chromaffin cells, suggesting that EM66 may act downstream of the trans-synaptic stimulation of the adrenal medulla by neurocrine factors.
Collapse
Affiliation(s)
- Johann Guillemot
- INSERM U413, European Institute for Peptide Research IFRMP 23, Laboratory of Cellular and Molecular Neuroendocrinology, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ohtaki H, Dohi K, Yofu S, Nakamachi T, Kudo Y, Endo S, Aruga T, Goto N, Watanabe J, Kikuyama S, Shioda S. Effect of pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) on tissue oxygen content—Treatment in central nervous system of mice. ACTA ACUST UNITED AC 2004; 123:61-7. [PMID: 15518894 DOI: 10.1016/j.regpep.2004.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in preventing neuronal cell death and is also a potent vasodilator. Cerebral hypotension and hypoperfusion during cerebral ischemia and neurodegenerative diseases are well known as some of the negative factors which aggravate neuronal cell death. Nevertheless, the effect of PACAP on the cerebral circulation was not understood well. Therefore, in the present study, we determined the mean arterial blood pressure (MBP), regional cerebral blood flow (rCBF) and cerebral oxygen content (pO2) in mice, and estimated the therapeutically useful doses of PACAP. Under barbiturate anesthesia, polyethylene tubes were inserted into mice to monitor MBP and to administer PACAP (5 x 10(-13)-5 x 10(-8) mol/kg) or vasoactive intestinal peptide (VIP; 5 x 10(-12) and 5 x 10(-9) mol/kg). Then, MBP, rCBF and cerebral pO2 were simultaneously measured in the mice. PACAP (5 x 10(-10)-5 x 10(-9) mol/kg) injections transiently decreased MBP, and cerebral pO2. PACAP (5 x 10(-8) mol/kg) injections produced a long-lasting potent decline of MBP, rCBF and cerebral pO2. Therefore, PACAP should be applied at low doses which do not influence the MBP and cerebral circulation to determine the therapeutically useful doses of PACAP for neuroprotection.
Collapse
Affiliation(s)
- Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McNeill B, Montpetit CJ, Perry SF. Catecholamine secretion in trout chromaffin cells experiencing nicotinic receptor desensitization is maintained by non-cholinergic neurotransmission. J Exp Biol 2003; 206:4247-53. [PMID: 14581595 DOI: 10.1242/jeb.00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe goal of the present study was to assess the catecholamine secretory capabilities of rainbow trout Oncorhynchus mykiss chromaffin cells experiencing desensitization of the nicotinic receptor. It was hypothesized that the potential to secrete catecholamines could be maintained under conditions of nicotinic receptor desensitization owing to activation of non-cholinergic release pathways. An in situ model for chromaffin cell nicotinic receptor desensitization was developed by perfusing a posterior cardinal vein preparation with saline containing 10–5 mol l–1 nicotine. Under such conditions of desensitization, the chromaffin cells were largely unresponsive to high-frequency (20 Hz)electrical stimulation; the minimal remaining secretory response was abolished by addition of the nicotinic receptor antagonist hexamethonium(10–3 mol l–1). In marked contrast, however,the capacity to secrete catecholamines in response to low-frequency (1 Hz)electrical stimulation was unaffected by nicotinic receptor desensitization or by cholinergic receptor blockade (hexamethonium plus atropine). In preparations experiencing nicotinic receptor desensitization, the stimulatory effect of low-frequency (1 Hz) stimulation on catecholamine secretion was reduced by 43% in the presence of the VPAC receptor antagonist,VIP6-28. The stimulatory effect of high-frequency (20 Hz)stimulation was unaffected by VIP6-28. Catecholamine secretion evoked by cod VIP (10–11 mol kg–1) and homologous angiotensin II ([Asn1, Val5] Ang II;5×10–7 mol kg–1) was markedly enhanced(107 and 97%, respectively) in desensitized preparations. However, the secretory response to the muscarinic receptor agonist methylcholine(1×10–3 mol kg–1) was unchanged by desensitization. The results of this study demonstrate that exploitation of non-cholinergic mechanisms, including peptidergic pathways activated during low-frequency neuronal stimulation, is a potential strategy whereby catecholamine secretion from trout chromaffin cells can be maintained during periods of nicotinic receptor desensitization.
Collapse
Affiliation(s)
- Brian McNeill
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | | | | |
Collapse
|
12
|
Skøtt O. Pituitary adenylate cyclase-activating polypeptide and adrenomedullary function. Am J Physiol Regul Integr Comp Physiol 2003; 284:R586-7. [PMID: 12529290 DOI: 10.1152/ajpregu.00695.2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Lamouche S, Yamaguchi N. PACAP release from the canine adrenal gland in vivo: its functional role in severe hypotension. Am J Physiol Regul Integr Comp Physiol 2003; 284:R588-97. [PMID: 12414436 DOI: 10.1152/ajpregu.00466.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was to investigate if endogenous pituitary adenylate cyclase-activating polypeptide (PACAP) can be released during direct splanchnic nerve stimulation in vivo and to determine whether PACAP in the adrenal gland can modulate the medullary response to sympathoadrenal reflex. The output of adrenal catecholamine and PACAP-38-like immunoreactivity (PACAP-38-ir) increased in a frequency-dependent manner after direct splanchnic nerve stimulation (0.2-20 Hz). Both responses were highly reproducible, and PACAP-38-ir output closely correlated with catecholamine output. Sodium nitroprusside (SNP; 0.1 mg/kg iv bolus) caused a severe hypotension resulting in marked increases in catecholamine secretion. In the presence of local PACAP-27 (125 ng), the maximum catecholamine response to SNP was significantly potentiated in a synergistic manner compared with that obtained in the group receiving SNP or PACAP-27 alone. The study indicates that endogenous PACAP-38 can be released particularly when the sympathoadrenal system is highly activated and that the local exogenous PACAP-27 enhanced the reflex-induced catecholamine release, suggesting collectively a facilitating role of PACAP as neuromodulator in the sympathoadrenal function in vivo.
Collapse
Affiliation(s)
- Stéphane Lamouche
- Groupe de Recherche sur le Système Nerveux Autonome, Faculté de Pharmacie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | | |
Collapse
|