1
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Respiratory responses to hypoxia during rest and exercise in individuals born pre-term: a state-of-the-art review. Eur J Appl Physiol 2022; 122:1991-2003. [PMID: 35589858 DOI: 10.1007/s00421-022-04965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The pre-term birth survival rate has increased considerably in recent decades, and research investigating the long-term effects of premature birth is growing. Moreover, altitude sojourns are increasing in popularity and are often accompanied by various levels of physical activity. Individuals born pre-term appear to exhibit altered acute ventilatory responses to hypoxia, potentially predisposing them to high-altitude illness. These impairments are likely due to the use of perinatal hyperoxia stunting the maturation of carotid body chemoreceptors, but may also be attributed to limited lung diffusion capacity and/or gas exchange inefficiency. Aerobic exercise capacity also appears to be reduced in this population. This may relate to the aforementioned respiratory impairments, or could be due to physiological limitations in pulmonary blood flow or at the exercising muscle (e.g. mitochondrial efficiency). However, surprisingly, the debilitative effects of exercise when performed at altitude do not seem to be exacerbated by premature birth. In fact, it is reasonable to speculate that pre-term birth could protect against the consequences of exercise combined with hypoxia. The mechanisms that underlie this assertion might relate to differences in oxidative stress responses or in cardiopulmonary morphology in pre-term individuals, compared to their full-term counterparts. Further research is required to elucidate the independent effects of neonatal treatment, sex differences and chronic lung disease, and to establish causality in some of the proposed mechanisms that could underlie the differences discussed throughout this review. A more in-depth understanding of the acclimatisation responses to chronic altitude exposures would also help to inform appropriate interventions in this clinical population.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia. .,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia.
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Van De Pette M, Tunster SJ, McNamara GI, Shelkovnikova T, Millership S, Benson L, Peirson S, Christian M, Vidal-Puig A, John RM. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. PLoS Genet 2016; 12:e1005916. [PMID: 26963625 PMCID: PMC4786089 DOI: 10.1371/journal.pgen.1005916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to generate body heat, providing a valid explanation for the persistence of thinness in our model and supporting a major role for elevated CDKN1C in SRS. Silver Russell syndrome is a severe developmental disorder characterised by low birth weight, sparing of the head and neonatal hypoglycemia. SRS adults are small and can be extremely thin, lacking body fat. Numerous genetic and epigenetic mutations have been linked to SRS primarily involving imprinted genes, but progress has been hampered by the lack of a suitable animal model. Here we describe a mouse model of the rare micro duplications reported in some SRS patients, which recapitulated many of the defining features of SRS, including extreme thinness. We showed that these mice possessed substantially more of the energy consuming brown adipose tissue (BAT), driven by a double dose of the imprinted Cdkn1c gene. We further show that Cdkn1c is required for the postranscriptional accumulation of the BAT determinant PRDM16 and that these proteins co-localise to the nucleus of in a rare label-retaining cell within BAT. These data suggest that Cdkn1c contributes to the development of BAT by modulating PRDM16 and supports a major role for this gene in SRS.
Collapse
Affiliation(s)
| | - Simon J. Tunster
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Steven Millership
- MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Lindsay Benson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stuart Peirson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mark Christian
- Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Miot S, Voituron N, Sterlin A, Vigneault E, Morel L, Matrot B, Ramanantsoa N, Amilhon B, Poirel O, Lepicard E, Mestikawy SE, Hilaire G, Gallego J. The vesicular glutamate transporter VGLUT3 contributes to protection against neonatal hypoxic stress. J Physiol 2012; 590:5183-98. [PMID: 22890712 DOI: 10.1113/jphysiol.2012.230722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neonates respond to hypoxia initially by increasing ventilation, and then by markedly decreasing both ventilation (hypoxic ventilatory decline) and oxygen consumption (hypoxic hypometabolism). This latter process, which vanishes with age, reflects a tight coupling between ventilatory and thermogenic responses to hypoxia. The neurological substrate of hypoxic hypometabolism is unclear, but it is known to be centrally mediated, with a strong involvement of the 5-hydroxytryptamine (5-HT, serotonin) system. To clarify this issue, we investigated the possible role of VGLUT3, the third subtype of vesicular glutamate transporter. VGLUT3 contributes to glutamate signalling by 5-HT neurons, facilitates 5-HT transmission and is expressed in strategic regions for respiratory and thermogenic control. We therefore assumed that VGLUT3 might significantly contribute to the response to hypoxia. To test this possibility, we analysed this response in newborn mice lacking VGLUT3 using anatomical, biochemical, electrophysiological and integrative physiology approaches. We found that the lack of VGLUT3 did not affect the histological organization of brainstem respiratory networks or respiratory activity under basal conditions. However, it impaired respiratory responses to 5-HT and anoxia, showing a marked alteration of central respiratory control. These impairments were associated with altered 5-HT turnover at the brainstem level. Furthermore, under cold conditions, the lack of VGLUT3 disrupted the metabolic rate, body temperature, baseline breathing and the ventilatory response to hypoxia. We conclude that VGLUT3 expression is dispensable under basal conditions but is required for optimal response to hypoxic stress in neonates.
Collapse
Affiliation(s)
- Stéphanie Miot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U952, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shirahata M, Kostuk EW, Pichard LE. Carotid chemoreceptor development in mice. Respir Physiol Neurobiol 2012; 185:20-9. [PMID: 22634368 DOI: 10.1016/j.resp.2012.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Mice are the most suitable species for understanding genetic aspects of postnatal developments of the carotid body due to the availability of many inbred strains and knockout mice. Our study has shown that the carotid body grows differentially in different mouse strains, indicating the involvement of genes. However, the small size hampers investigating functional development of the carotid body. Hypoxic and/or hyperoxic ventilatory responses have been investigated in newborn mice, but these responses are indirect assessment of the carotid body function. Therefore, we need to develop techniques of measuring carotid chemoreceptor neural activity from young mice. Many studies have taken advantage of the knockout mice to understand chemoreceptor function of the carotid body, but they are not always suitable for addressing postnatal development of the carotid body due to lethality during perinatal periods. Various inbred strains with well-designed experiments will provide useful information regarding genetic mechanisms of the postnatal carotid chemoreceptor development. Also, targeted gene deletion is a critical approach.
Collapse
Affiliation(s)
- Machiko Shirahata
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
6
|
Olfactory classical conditioning in neonatal mouse pups using thermal stimuli. Behav Brain Res 2012; 229:250-6. [PMID: 22257564 DOI: 10.1016/j.bbr.2011.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/29/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022]
Abstract
Mouse models are increasingly used to investigate genetic contributions to developmental disorders in children, especially newborns. In particular, early cognitive assessment in newborn mice is critical to evaluate pediatric drug efficacy and toxicity. Unfortunately, methods for behavioral tests in newborn mice are scarce. Therefore, developing such tests for newborn mice is a priority challenge for neurogenetics and pharmacological research. The aim of the present study was to develop a conditioning method well suited to high-throughput cognitive screening in newborn mice. To this end, we developed an odor-preference conditioning test using ambient temperature as an unconditioned stimulus (US) and artificial odors as conditioned stimuli (CS). First, we showed that mouse pups move toward the thermoneutral temperature when offered a choice between a thermoneutral and cold environment, thus showing thermotaxis. Second, we conducted a classical conditioning paradigm in pups aged six to ten days. In terms of central nervous system development, this period corresponds to extreme prematurity to early post-term period in humans. During acquisition, the pups were alternatively exposed to odor CS paired with either cold or warm temperatures. Immediately after acquisition, the pups underwent a two-odor choice test, which showed preference for the odor previously paired with the warm temperature, thus showing conditioning. The proposed paradigm is easy to conduct, and requires modest experimenter interference. The method is well suited for high-throughput screening of early associative disorders in newborn mice.
Collapse
|
7
|
Abstract
Breathing is a spontaneous, rhythmic motor behavior critical for maintaining O(2), CO(2), and pH homeostasis. In mammals, it is generated by a neuronal network in the lower brainstem, the respiratory rhythm generator (Feldman et al., 2003). A century-old tenet in respiratory physiology posits that the respiratory chemoreflex, the stimulation of breathing by an increase in partial pressure of CO(2) in the blood, is indispensable for rhythmic breathing. Here we have revisited this postulate with the help of mouse genetics. We have engineered a conditional mouse mutant in which the toxic PHOX2B(27Ala) mutation that causes congenital central hypoventilation syndrome in man is targeted to the retrotrapezoid nucleus, a site essential for central chemosensitivity. The mutants lack a retrotrapezoid nucleus and their breathing is not stimulated by elevated CO(2) at least up to postnatal day 9 and they barely respond as juveniles, but nevertheless survive, breathe normally beyond the first days after birth, and maintain blood PCO(2) within the normal range. Input from peripheral chemoreceptors that sense PO(2) in the blood appears to compensate for the missing CO(2) response since silencing them by high O(2) abolishes rhythmic breathing. CO(2) chemosensitivity partially recovered in adulthood. Hence, during the early life of rodents, the excitatory input normally afforded by elevated CO(2) is dispensable for life-sustaining breathing and maintaining CO(2) homeostasis in the blood.
Collapse
|
8
|
Ramanantsoa N, Matrot B, Vardon G, Lajard AM, Voituron N, Dauger S, Denjean A, Hilaire G, Gallego J. Impaired ventilatory and thermoregulatory responses to hypoxic stress in newborn phox2b heterozygous knock-out mice. Front Physiol 2011; 2:61. [PMID: 21977017 PMCID: PMC3178811 DOI: 10.3389/fphys.2011.00061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 11/17/2022] Open
Abstract
The Phox2b genesis necessary for the development of the autonomic nervous system, and especially, of respiratory neuronal circuits. In the present study, we examined the role of Phox2b in ventilatory and thermoregulatory responses to hypoxic stress, which are closely related in the postnatal period. Hypoxic stress was generated by strong thermal stimulus, combined or not with reduced inspired O(2). To this end, we exposed 6-day-old Phox2b(+/-) pups and their wild-type littermates (Phox2b(+/+)) to hypoxia (10% O(2)) or hypercapnia (8% CO(2)) under thermoneutral (33°C) or cold (26°C) conditions. We found that Phox2b(+/-) pups showed less normoxic ventilation (V(E)) in the cold than Phox2b(+/+) pups. Phox2b(+/-) pups also showed lower oxygen consumption (VO(2)) in the cold, reflecting reduced thermogenesis and a lower body temperature. Furthermore, while the cold depressed ventilatory responses to hypoxia and hypercapnia in both genotype groups, this effect was less pronounced in Phox2b(+/-) pups. Finally, because serotonin (5-HT) neurons are pivotal to respiratory and thermoregulatory circuits and depend on Phox2b for their differentiation, we studied 5-HT metabolism using high pressure liquid chromatography, and found that it was altered in Phox2b(+/-) pups. We conclude that Phox2b haploinsufficiency alters the ability of newborns to cope with metabolic challenges, possibly due to 5-HT signaling impairments.
Collapse
Affiliation(s)
- Nelina Ramanantsoa
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
| | - Boris Matrot
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
| | - Guy Vardon
- Faculty of Medicine, University of AmiensAmiens, France
| | - Anne-Marie Lajard
- CNRS, UMR 6231, Faculty Saint Jérôme, Research Center of Neurobiology and Neurophysiology of Marseille, University of Aix-Marseille II and IIIMarseille, France
| | - Nicolas Voituron
- CNRS, UMR 6231, Faculty Saint Jérôme, Research Center of Neurobiology and Neurophysiology of Marseille, University of Aix-Marseille II and IIIMarseille, France
| | - Stéphane Dauger
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
- Pediatric Intensive Care Unit, AP–HP, Robert Debré HospitalParis, France
| | - André Denjean
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
- Physiology Department, AP–HP, Robert Debré HospitalParis, France
| | - Gérard Hilaire
- CNRS, UMR 6231, Faculty Saint Jérôme, Research Center of Neurobiology and Neurophysiology of Marseille, University of Aix-Marseille II and IIIMarseille, France
| | - Jorge Gallego
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
| |
Collapse
|
9
|
Gaultier C, Gallego J. Neural control of breathing: insights from genetic mouse models. J Appl Physiol (1985) 2008; 104:1522-30. [DOI: 10.1152/japplphysiol.01266.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies described the in vivo ventilatory phenotype of mutant newborn mice with targeted deletions of genes involved in the organization and development of the respiratory-neuron network. Whole body flow barometric plethysmography is the noninvasive method of choice for studying unrestrained newborn mice. Breathing-pattern abnormalities with apneas occur in mutant newborn mice that lack genes involved in the development and modulation of rhythmogenesis. Studies of deficits in ventilatory responses to hypercapnia and/or hypoxia helped to identify genes involved in chemosensitivity to oxygen and carbon dioxide. Combined studies in mutant newborn mice and in humans have shed light on the pathogenesis of genetically determined respiratory-control abnormalities such as congenital central hypoventilation syndrome, Rett syndrome, and Prader-Willi syndrome. The development of mouse models has opened up the field of research into new treatments for respiratory-control disorders in humans.
Collapse
|
10
|
Ramanantsoa N, Vaubourg V, Matrot B, Vardon G, Dauger S, Gallego J. Effects of temperature on ventilatory response to hypercapnia in newborn mice heterozygous for transcription factor Phox2b. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2027-35. [PMID: 17715184 DOI: 10.1152/ajpregu.00349.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare disease with variable severity, generally present from birth and chiefly characterized by impaired chemosensitivity to hypercapnia. The main cause of CCHS is a mutation in the PHOX2B gene, which encodes a transcription factor involved in the development of autonomic medullary reflex pathways. Temperature regulation is abnormal in many patients with CCHS. Here, we examined whether ambient temperature influenced CO2sensitivity in a mouse model of CCHS. A weak response to CO2at thermoneutrality (32°C) was noted previously in 2-day-old mice with an invalidated Phox2b allele ( Phox2b+/−), compared with wild-type littermates. We exposed Phox2b+/− pups to 8% CO2at three ambient temperatures (TAs): 29°C, 32°C, and 35°C. We measured breathing variables and heart rate (HR) noninvasively using a novel whole body flow plethysmograph equipped with contact electrodes. Body temperature and baseline breathing increased similarly with TA in mutant and wild-type pups. The hypercapnic ventilatory response increased linearly with TA in both groups, while remaining smaller in mutant than in wild-type pups at all TAs. The differences between the absolute increases in ventilation in mutant and wild-type pups become more pronounced as temperature increased above 29°C. The ventilatory abnormalities in mutant pups were not associated with significant impairments of heart rate control. In both mutant and wild-type pups, baseline HR increased with TA. In conclusion, TA strongly influenced the hypercapnic ventilatory response in Phox2b+/− mutant mice. These findings suggest that abnormal temperature regulation may contribute to the severity of respiratory impairments in CCHS patients.
Collapse
Affiliation(s)
- N Ramanantsoa
- Institut National de la Santé et de la Recherche Médicale, U676, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Gaultier C, Matrot B, Gallego J. Transgenic Models to Study Disorders of Respiratory Control in Newborn Mice. ILAR J 2006; 47:15-21. [PMID: 16391427 DOI: 10.1093/ilar.47.1.15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies described the in vivo respiratory phenotype of mutant newborn mice with targeted deletions of genes involved in respiratory control development. Whole-body flow barometric plethysmography is the noninvasive method of choice for studying unrestrained newborn mice. The main characteristics of the early postnatal development of respiratory control in mice are reviewed, including available data on breathing patterns and on hypoxic and hypercapnic ventilatory responses. Mice are very immature at birth, and their instable breathing is similar to that of preterm infants. Breathing pattern abnormalities with prolonged apneas occur in newborn mice that lack genes involved in the development of rhythmogenesis. Some mutant newborn mice have blunted hypoxic and hypercapnic ventilatory responses whereas others exhibit impairments in responses to hypoxia or hypercapnia. Furthermore, combined studies in mutant newborn mice and in humans have helped to provide pathogenic information on genetically determined developmental disorders of respiratory control in humans.
Collapse
Affiliation(s)
- Claude Gaultier
- Service de Physiologie and INSERM U676, Hôpital Robert Debré, Paris, France
| | | | | |
Collapse
|
12
|
Gaultier C, Gallego J. Development of respiratory control: Evolving concepts and perspectives. Respir Physiol Neurobiol 2005; 149:3-15. [PMID: 15941676 DOI: 10.1016/j.resp.2005.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms underlying respiratory system immaturity in newborns have been investigated, both in vivo and in vitro, in humans and in animals. Immaturity affects breathing rhythmicity and its modulation by suprapontine influences and by afferents from central and peripheral chemoreceptors. Recent research has moved from bedside tools to sophisticated technologies, bringing new insights into the plasticity and genetics of respiratory control development. Genetic research has benefited from investigations of newborn mice having targeted deletions of genes involved in respiratory control. Genetic variability may govern the normal programming of development and the processes underlying adaptation to homeostasis disturbances induced by prenatal and postnatal insults. Studies of plasticity have emphasized the role of neurotrophic factors. Improvements in our understanding of the mechanistic effects of these factors should lead to new neuroprotective strategies for infants at risk for early respiratory control disturbances, such as apnoeas of prematurity, sudden infant death syndrome and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Claude Gaultier
- Service de Physiologie, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France.
| | | |
Collapse
|
13
|
Durand E, Dauger S, Pattyn A, Gaultier C, Goridis C, Gallego J. Sleep-disordered Breathing in Newborn Mice Heterozygous for the Transcription Factor Phox2b. Am J Respir Crit Care Med 2005; 172:238-43. [PMID: 15860752 DOI: 10.1164/rccm.200411-1528oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Central congenital hypoventilation syndrome (CCHS) is a rare autosomal dominant syndrome present from birth, and characterized by depressed ventilation during sleep. Heterozygous mutations of the homeobox gene Phox2b were recently found in a very high proportion of patients. OBJECTIVES To determine whether newborn mice with heterozygous targeted deletion of the transcription factor Phox2b would display sleep-disordered breathing. METHODS We measured breathing pattern using whole-body plethysmography in wild-type and mutant 5-day-old mice, and we classified sleep-wake states using nuchal EMG and behavioral scores. RESULTS We found that sleep apnea total time was approximately six times longer (8.9 +/- 12 vs. 1.5 +/- 2.2 seconds, p < 0.0015), and ventilation during active sleep was 21% lower (18.4 +/- 5.1 vs. 23.3 +/- 5.5 ml/g/second, p < 0.006) in mutant than in wild-type pups. During wakefulness, apnea time and ventilation were not significantly different between mutant and wild-type pups. Mutant and wild-type pups showed highly similar sleep-wake states. CONCLUSION Although their respiratory phenotype was much less severe than CCHS, the Phox2b(+/-) mutant mice showed sleep-disordered breathing, which partially modeled the key feature of CCHS.
Collapse
Affiliation(s)
- Estelle Durand
- INSERM U676, Hôpital Robert-Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Bouslama M, Durand E, Chauvière L, Van den Bergh O, Gallego J. Olfactory classical conditioning in newborn mice. Behav Brain Res 2005; 161:102-6. [PMID: 15904716 DOI: 10.1016/j.bbr.2005.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/13/2005] [Accepted: 01/21/2005] [Indexed: 11/15/2022]
Abstract
Determining the behavioural phenotype of genetically altered mice is a valuable approach for elucidating the function of genes and their role in cognitive disorders. Methods for phenotyping newborn mice are scarce and generally confined to sensorimotor reflexes. Here, we describe a simple method for assessing associative abilities in newborn mice. We used a two-odour-choice classical conditioning paradigm in mice from the day of birth (post-natal age 0, P0) to P6. Acquisition required 20 trials: 10 trials during which the pups were placed over the conditioned stimulus (CS+) odour (lemon or peppermint) for 30s and simultaneously stroked gently with a paintbrush and 10 trials during which the pups were placed over the other odour (CS-) for 30s, without stroking. Then, the pups were subjected to five odour-preference trials to test for conditioning. This sequence of five trials was repeated after 5 and 24h to assess retention of the conditioned odour preference. During the immediate post-acquisition sequence, the pups spent significantly more time over the CS+ than over the CS- (p<0.0001). No extinction of the conditioned preference was observed during this test. No preference was observed after 5 or 24h, indicating that the conditioned response was promptly lost. Conditioning was effective as soon as P0-P1. Thus, conditioning may emerge in newborn mice sooner than previously reported. This paradigm is well suited to phenotyping of large samples of genetically altered mice and may shed light on the role for genes in paediatric cognitive impairments.
Collapse
Affiliation(s)
- Myriam Bouslama
- INSERM U676, Robert-Debré Teaching Hospital, 48 Boulevard Sérurier, 75019 Paris, France.
| | | | | | | | | |
Collapse
|
15
|
Dauger S, Durand E, Cohen G, Lagercrantz H, Changeux JP, Gaultier C, Gallego J. Control of breathing in newborn mice lacking the beta-2 nAChR subunit. ACTA ACUST UNITED AC 2005; 182:205-12. [PMID: 15450117 DOI: 10.1111/j.1365-201x.2004.01345.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To study the ventilatory and arousal/defence responses to hypoxia in newborn mutant mice lacking the beta2 subunit of the nicotinic acetylcholine receptors. METHODS Breathing variables were measured non-invasively in mutant (n = 31) and wild-type age-matched mice (n = 57) at 2 and 8 days of age using flow barometric whole-body plethysmography. The arousal/defence response to hypoxia was determined using behavioural criteria. RESULTS On day 2, mutant pups had significantly greater baseline ventilation (16%) than wild-type pups (P < 0.02). Mutant pups had a decreased hypoxic ventilatory declines. Arousal latency was significantly shorter in mutant than in wild-type pups (133 +/- 40 vs. 146 +/- 20 s, respectively, P < 0.026). However, the duration of movement elicited by hypoxia was shorter in mutant than in wild-type pups (14.7 +/- 5.9 vs. 23.0 +/- 10.7 s, respectively, P < 0.0005). Most differences disappeared on P8, suggesting a high degree of functional plasticity. CONCLUSION The blunted hypoxic ventilatory decline and the shorter arousal latency on day 2 suggested that disruption of the beta2 nicotinic acetylcholine receptors impaired inhibitory processes affecting both the ventilatory and the arousal response to hypoxia during postnatal development.
Collapse
Affiliation(s)
- S Dauger
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert-Debré, Boulevard Sérurier, Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The genetic approach to respiratory control is opening up new paths for research into developmental respiratory control disorders. Despite the identification of numerous genes involved in respiratory control, none of the genetically engineered mice developed to date fully replicate the human respiratory phenotype of human developmental respiratory disorders. However, combining studies in humans and studies in mouse models has proved useful in identifying candidate genes for human developmental respiratory control disorders and providing pathogenic information. In clinical practice, the development of databases that incorporate clinical phenotypes and genetic samples from patients would facilitate further genetic studies. International multicentre studies would advance the area of respiratory control research.
Collapse
Affiliation(s)
- Claude Gaultier
- Department of Physiology, INSERM 9935, Hôpital Robert, Faculté de Médecine Lariboisière, Université Paris VII, France.
| |
Collapse
|
17
|
Gaultier C, Amiel J, Dauger S, Trang H, Lyonnet S, Gallego J, Simonneau M. Genetics and early disturbances of breathing control. Pediatr Res 2004; 55:729-33. [PMID: 14739359 DOI: 10.1203/01.pdr.0000115677.78759.c5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early disturbances in breathing control, including apneas of prematurity and apparently life-threatening events, account for some cases of sudden infant death syndrome and for a rare disorder called congenital central hypoventilation syndrome (CCHS). Data suggesting a genetic basis for CCHS have been obtained. Recently, we found heterozygous de novo mutations of the PHOX2B gene in 18 of 29 individuals with CCHS. Most mutations consisted of five to nine alanine expansions within a 20-residue polyalanine tract, probably resulting from nonhomologous recombination. Other mutations, generally inherited from one of the parents, in the coding regions of genes involved in the endothelin and RET signaling pathways and in the brain-derived-neurotrophic factor (BDNF) gene have been found in a few CCHS patients. Interestingly, all these genes are involved in the development of neural crest cells. Targeted disruption of these genes in mice has provided information on the pathophysiological mechanisms underlying CCHS. Despite the identification of these genes involved in breathing control, none of the genetically engineered mice developed to date replicate the full human CCHS respiratory phenotype. Recent insights into the genetic basis for CCHS may shed light on the genetics of other early disturbances in breathing control, such as apnea of prematurity and sudden infant death syndrome.
Collapse
Affiliation(s)
- Claude Gaultier
- INSERM E9935, Réanimation Médicale Pédiatrique, Hôpital Robert Debré, 75019 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Nsegbe E, Wallén-Mackenzie A, Dauger S, Roux JC, Shvarev Y, Lagercrantz H, Perlmann T, Herlenius E. Congenital hypoventilation and impaired hypoxic response in Nurr1 mutant mice. J Physiol 2004; 556:43-59. [PMID: 14742729 PMCID: PMC1664884 DOI: 10.1113/jphysiol.2003.058560] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nurr1, a transcription factor belonging to the family of nuclear receptors, is expressed at high levels immediately after birth. Gene-targeted mice lacking Nurr1 fail to develop midbrain dopaminergic neurones and do not survive beyond 24 h after birth. Dopamine (DA) levels may be regulated by Nurr1, and as DA is involved in both central and peripheral respiratory control, we hypothesized that lack of Nurr1 may impair breathing and cause death by respiratory failure. We demonstrate herein that Nurr1 newborn knockout mice have a severely disturbed breathing pattern characterized by hypoventilation, numerous apnoeas and failure to increase breathing when challenged with hypoxia. In heterozygote Nurr1 mice the response to hypoxia is also altered. Furthermore, the central respiratory rhythm, generated from isolated brainstem-spinal cord preparations, exhibits impaired response to hypoxia in mice lacking Nurr1. Moreover, Nurr1 is expressed in several respiratory-related regions of the nervous system, including the nucleus of the solitary tract, the nucleus ambiguus and the dorsal motor nucleus of the vagus nerve, and in the carotid bodies. The prominent Nurr1 expression in these areas, involved in respiratory control, along with the severe respiratory phenotype, indicates that Nurr1 plays a major role in the extrauterine adaption of respiratory control and the response to hypoxia.
Collapse
Affiliation(s)
- Elise Nsegbe
- Karolinska Institutet, Neonatal Unit, Astrid Lindgren Children's Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gaultier C, Dauger S, Simonneau M, Gallego J. Genes modulating chemical breathing control: lessons from mutant animals. Respir Physiol Neurobiol 2003; 136:105-14. [PMID: 12853003 DOI: 10.1016/s1569-9048(03)00075-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic factors influence breathing control. Respiratory phenotypes of mutant mice may help to better understand these factors. Congenital central hypoventilation syndrome (CCHS) is a rare disorder defined as failure of chemical control of breathing causing central alveolar hypoventilation, especially during sleep. A genetic basis for CCHS is supported by several arguments, mainly the identification, in a few CCHS patients, of heterozygous mutations of genes contributing to neural crest cell development, namely, genes involved in the endothelin and c-ret pathways. Furthermore, plethysmography studies of the respiratory phenotypes of newborn heterozygous mutant mice have shown that genes in both pathways are involved in breathing control at birth. Nevertheless, no single gene mutation in newborn mice reproduces the human CCHS phenotype. Avenues for future research into the genetics of CCHS include (i) testing of mutant newborn mice for genes in other pathways and (ii) use of microarrays to identify gene clusters that should be associated with abnormal chemical breathing control.
Collapse
Affiliation(s)
- Claude Gaultier
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert-Debré, 48 Boulevard Sérurier, 75019 Paris, France.
| | | | | | | |
Collapse
|
20
|
Durand E, Dauger S, Vardon G, Gressens P, Gaultier C, De Schonen S, Gallego J. Classical conditioning of breathing pattern after two acquisition trials in 2-day-old mice. J Appl Physiol (1985) 2003; 94:812-8. [PMID: 12391118 DOI: 10.1152/japplphysiol.00488.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to test whether breathing pattern conditioning may occur just after birth. We hypothesized that sensory stimuli signaling the resumption of maternal care after separation may trigger an arousal and/or orienting response accompanied with concomitant respiratory changes. We performed a conditioning experiment in 2-day-old mice by using an odor (lemon) as the conditioned stimulus (CS) and maternal care after 1 h without the mother as the unconditioned stimulus (US). Each pup underwent two acquisition trials, in which the CS was presented immediately before (experimental paired group, n = 30) or 30 min before (control unpaired group, n = 30) contact with the mother. Conditioning was tested by using noninvasive whole body plethysmography to measure the respiratory response to the CS for 1 min. We found significantly stronger respiratory responses to the CS in the experimental group than in the control group. In contrast, somatomotor activity did not differ significantly between groups. Our results confirm the sensitivity of breathing to conditioning and indirectly support the hypothesis that learned feedforward processes may complement feedback pathways during postnatal maturation of respiratory control.
Collapse
Affiliation(s)
- E Durand
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert-Debré, 75019 Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Ordenes MC, Eugenín J, Llona I. Ventilatory Response to CO2 in New Born Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 536:549-54. [PMID: 14635711 DOI: 10.1007/978-1-4419-9280-2_69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- María Cristina Ordenes
- Laboratory of Neural Systems, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Casilla 40 Correo 33, Santiago Chile
| | | | | |
Collapse
|
22
|
Granger JP. Maternal and fetal adaptations during pregnancy: lessons in regulatory and integrative physiology. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1289-92. [PMID: 12429557 DOI: 10.1152/ajpregu.00562.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi, Jackson, Mississippi 39216, USA.
| |
Collapse
|
23
|
Aizenfisz S, Dauger S, Durand E, Vardon G, Levacher B, Simonneau M, Pachnis V, Gaultier C, Gallego J. Ventilatory responses to hypercapnia and hypoxia in heterozygous c-ret newborn mice. Respir Physiol Neurobiol 2002; 131:213-22. [PMID: 12126922 DOI: 10.1016/s1569-9048(02)00031-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The c-ret proto-oncogene encodes a tyrosine-kinase receptor involved in survival and differentiation of neural crest cell lineages. Previous studies have shown that homozygous c-ret-/- mice die soon after birth and have impaired ventilatory responses to hypercapnia. Heterozygous c-ret +/- mice develop normally, but their respiratory phenotype has not been described in detail. We used whole-body flow plethysmography to compare baseline breathing and ventilatory and arousal responses to chemical stimuli in unrestrained heterozygous c-ret +/- newborn mice and their wild-type c-ret +/+ littermates at 10-12 h of postnatal age. The hyperpnoeic and arousal responses to hypoxia and hypercapnia were not significantly different in these two groups. However, the number and total duration of apnoeas and periodic breathing episodes were significantly higher in c-ret +/- than in c-ret +/+ pups during hypoxia and post-hypoxic normoxia. These results are further evidence that respiratory control at birth is heavily dependent on genes involved in the neural determination of neural crest cells.
Collapse
Affiliation(s)
- Sophie Aizenfisz
- Laboratoire de Neurologie et Physiologie du Développement, Hôpital Robert-Debré, 48 Boulevard Sérurier, 75019, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Holger Scholz
- Johannes-Müller-Institut für Physiologie, Medizinische Fakultät Charité, Humboldt-Universität Berlin, 10117 Berlin, Germany.
| |
Collapse
|