1
|
Huo X, Yu Z, Zhao F, Chen Y, Chen P, Xing L, Qiao Y, Peng Y, Tian M, Zhou M, Wu F, Wang Y, Wang C, Tian X, Lv D, Zhang B, Shi L, Ma X, Ma T. Hepatocyte Aquaporin 8-mediated Water Transport Facilitates Bile Dilution and Prevents Gallstone Formation in Mice. J Hepatol 2024:S0168-8278(24)02563-7. [PMID: 39326676 DOI: 10.1016/j.jhep.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Although water channel aquaporin-8 (AQP8) has been implicated in hepatic bile formation and liver diseases associated with abnormal bile flow in human and animal studies, direct evidence of its involvement in bile secretion is still lacking. This study aimed to determine the role of AQP8 in bile secretion and gallstone formation. METHODS We generated various transgenic knock-in and knockout mouse models and assessed liver AQP8 expression by immunostaining and immunoblotting, hepatic bile secretion by cannulation of the common bile duct, cholesterol gallstone formation by feeding a high-fat lithogenic diet, and identified regulatory small molecules by screening the organic fractions of cholagogic Chinese herbs and biochemical characterization. RESULTS We identified a novel expression pattern of AQP8 protein in the canalicular membrane of approximately 50% of the liver lobules. AQP8-deficient mice exhibited impaired hepatic bile formation, characterized by the secretion of concentrated bile with a lower flow rate and higher levels of bile lipids than that of wild-type littermates. AQP8-/- mice showed accelerated gallstone formation, which was rescued by AAV-mediated hepatic expression of AQP8 or AQP1. Moreover, we identified a small molecule, scutellarin, that upregulates hepatocyte AQP8 expression in vitro and in vivo. In AQP8+/+ mice, scutellarin significantly increased bile flow, decreased bile lipid concentrations, and prevented gallstone formation compared to AQP8-/- mice. Molecular studies revealed that scutellarin promoted the ubiquitination and degradation of HIF-1α, a transcriptional negative regulator of AQP8, by disrupting its interactions with HSP90. CONCLUSIONS AQP8 plays a crucial role in facilitating water transport and bile dilution during hepatic bile formation, thereby mitigating gallstone formation in mice. Small-molecule intervention validated hepatocyte AQP8 as a promising drug target for gallstone therapy. IMPACT AND IMPLICATIONS The incidence of gallstone disease is high, and current drug treatments for gallstones are very limited, necessitating the identification of novel drug targets for developing new drugs with universal applicability. To our knowledge, this is the first study to provide direct evidence that hepatic water channel AQP8 plays a key role in bile dilution and gallstone formation. Modulation of hepatic water transport may provide a universal therapeutic strategy for all types of gallstone diseases.
Collapse
Affiliation(s)
- Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Feng Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yang Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lina Xing
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yanling Qiao
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Harbin Medical University, Harbin, China
| | - Yulin Peng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Manman Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meirong Zhou
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fan Wu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dongyue Lv
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Shi
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Institute of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Cai J, Chen X, Xu C, Zhu X, Wang H, Wu S, Cai D, Fan H. The Metabolic Pathway of Bile Secretion Is Vulnerable to Salmonella enterica Exposure in Porcine Intestinal Epithelial Cells. Animals (Basel) 2024; 14:789. [PMID: 38473174 DOI: 10.3390/ani14050789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Pigs can be colonized with Salmonella enterica and become established carriers. However, the mechanisms of the host's response to Salmonella enterica infection are largely unclear. This study was constructed with the Salmonella enterica infection model in vitro using porcine intestinal epithelial cells (IPEC-J2). Transcriptome profiling of IPEC-J2 cells was carried out to characterize the effect of Salmonella enterica infection and lipopolysaccharide (LPS) treatment, in which LPS-induced inflammation was a positive control. At first, Salmonella enterica infection increased the cell apoptosis rate and induced an inflammation response in IPEC-J2. Then, the up-regulated genes were enriched in metabolic pathways, such as those for bile secretion and mineral absorption, while down-regulated genes were enriched in immune-related pathways, such as the Toll-like receptor signaling and p53 signaling pathways. Moreover, we found 368 up-regulated genes and 101 down-regulated genes in common. Then, an integrative analysis of the transcriptomic profile under Salmonella enterica infection and LPS treatment was conducted, and eight up-regulated genes and one down-regulated gene were detected. Among them, AQP8 is one critical gene of the bile secretion pathway, and its mRNA and protein expression were increased significantly under Salmonella enterica infection and LPS treatment. Thus, the AQP8 gene and bile secretion pathway may be important in IPEC-J2 cells under Salmonella enterica infection or LPS treatment.
Collapse
Affiliation(s)
- Jiajia Cai
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Javitt NB. Hepatic Bile Formation: Developing a New Paradigm. Pharmacol Rev 2023; 75:1036-1042. [PMID: 37532432 DOI: 10.1124/pharmrev.122.000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 08/04/2023] Open
Abstract
In 1959, Ivar Sperber contrasted bile formation with that of urine and proposed that water flow into the canalicular conduit is in response to an osmotic, not a hydrostatic, gradient. Early attempts to support the hypothesis using a bile acid, sodium taurocholate, and the hormone secretin to stimulate bile flow led to conflicting data and a moratorium on attempts to further develop the initial proposal. However, current data amplify the initial proposal and indicate both paracellular and transcellular water flow into hepatic ductules and the canalicular conduit in response to an osmotic gradient. Also, the need to further modify the initial proposal became apparent with the recognition that bile acid aggregates (micelles), which form in the canalicular conduit, generate lecithin-cholesterol vesicles that contain water unrelated to an osmotic gradient. As part of this development is the recent introduction of the fluorescent localization after photobleaching technique for direct determination of hepatic duct flow and clarification of the role of biomarkers such as mannitol and polyethylene glycol 900. With the new paradigm, these biomarkers may prove useful for quantifying paracellular and transcellular water flow, respectively. SIGNIFICANCE STATEMENT: It is essential to identify and characterize all the sites for water flow during hepatic bile formation to obtain more precision in evaluating the causes and possible therapeutic approaches to cholestatic syndromes. Updating the Sperber proposal provides a new paradigm that addresses the advances in knowledge that have occurred.
Collapse
Affiliation(s)
- Norman B Javitt
- NYU Grossman School of Medicine, Division of Gastroenterology and Hepatology, New York, New York
| |
Collapse
|
4
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
5
|
Xiang M, Qian X, Han L, Wang H, Wang J, Liu W, Gu Y, Yao S, Yang J, Zhang Y, Peng Y, Zhang Z. Aquaporin-8 ameliorates hepatic steatosis through farnesoid X receptor in obese mice. iScience 2023; 26:106561. [PMID: 37123234 PMCID: PMC10130924 DOI: 10.1016/j.isci.2023.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Aquaporin-8(AQP8), is a transmembrane channel protein that abounds in liver, which mainly promotes water transport, modulating bile acid formation. However, its role in hepatic lipid metabolism remains unclear. In this study, we found the expression of AQP8 was reduced in liver specimens of patients with NAFLD, high-fat diet (HFD)-induced mice and genetically obese db/db mice. Knockdown of AQP8 in hepatocytes exacerbated the intracellular lipid accumulation induced by free fatty acid (FFA) mixtures. In contrast, hepatic AQP8 overexpression activated farnesoid X receptor (FXR), inhibiting gene expression associated with lipogenesis, which further reduced intrahepatic triglyceride overload in obese mice. FXR knockout abrogated the ameliorating effect of AQP8 overexpression on NAFLD in mice. These findings indicate that AQP8 overexpression protects against fatty liver through activating the FXR pathway.
Collapse
Affiliation(s)
- Minqi Xiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Qian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Li J, Sun Y, Wang R, Ma S, Shi L, Wang K, Zhang H, Wang T, Liu L. Seasonal differences in intestinal flora are related to rats' intestinal water metabolism. Front Microbiol 2023; 14:1109696. [PMID: 36910220 PMCID: PMC9999011 DOI: 10.3389/fmicb.2023.1109696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Many studies have reported obvious seasonal differences in the intestinal flora of rats, and this stable distribution of the seasonal flora helps in maintaining the normal physiological function of the host. However, the mechanism underlying these seasonal differences in intestinal flora remains unclear. To explore the correlation among seasonal factors and intestinal water metabolism and intestinal flora, 20 Sprague Dawley (SD) rats were divided into spring, summer, autumn, and winter groups. The environment for the four seasons was simulated using the Balanced Temperature and Humidity Control system. The intestinal water metabolism was evaluated by determining the intestinal transmission function, fecal water content, water content of colonic tissue, and the colonic expression levels of AQP3, AQP4, and AQP8. The composition and relative abundance of intestinal microflora in rats in each season were assessed through 16S rDNA amplifier sequencing, and the relationship between the dominant flora and intestinal water metabolism in each season was analyzed using Spearman correlation analysis. The high temperature and humidity season could lead to an increase in intestinal water metabolism and intestinal water content in rats, whereas the low temperature and humidity season could lead to a decrease, which was closely related to the change in microflora. To explore the molecular mechanism of seasonal changes in intestinal water metabolism, the concentration of colonic 5-HT, VIP, cAMP, and PKA associated with intestinal water metabolism in rats were also examined. Seasonal changes could affect the concentration of colonic 5-HT and VIP in rats, and then regulate AQPs through cAMP/PKA pathway to affect the intestinal water metabolism. These results suggest that seasonal factors affect the level of intestinal water metabolism in rats and result in seasonal differences in intestinal flora.
Collapse
Affiliation(s)
- Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yike Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruochong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuran Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Wang
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hairong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Leilei Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
8
|
Javitt NB. Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am J Physiol Gastrointest Liver Physiol 2020; 319:G609-G618. [PMID: 32935994 DOI: 10.1152/ajpgi.00078.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in molecular biology identifying the many carrier-mediated organic anion transporters and advances in microscopy that have provided a more detailed anatomy of the canalicular conduit make updating the concept of osmotically determined canalicular flow possible. For the most part water flow is not transmembrane but via specific pore proteins in both the hepatocyte and the tight junction. These pores independently regulate the rate at which water flows in response to an osmotic gradient and therefore are determinants of canalicular bile acid concentration. Review of the literature indicates that the initial effect on hepatic bile flow of cholestatic agents such as Thorazine and estradiol 17β-glucuronide are on water flow and not bile salt export pump-mediated bile acid transport and thus provides new approaches to the pathogenesis of drug-induced liver injury. Attaining a micellar concentration of bile acids in the canaliculus is essential to the formation of cholesterol-lecithin vesicles, which mostly occur in the periportal region of the canalicular conduit. The other regions, midcentral and pericentral, may transport lesser amounts of bile acid but augment water flow. Broadening the concept of how hepatic bile flow is initiated, provides new insights into the pathogenesis of canalicular cholestasis.
Collapse
Affiliation(s)
- Norman B Javitt
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
9
|
Marinelli RA, Vore M, Javitt NB. Hepatic Bile Formation: Canalicular Osmolarity and Paracellular and Transcellular Water Flow. J Pharmacol Exp Ther 2019; 371:713-717. [DOI: 10.1124/jpet.119.261115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
|
10
|
Bai J, Jiang X, He M, Chan BCB, Wong AOL. Novel Mechanisms for IGF-I Regulation by Glucagon in Carp Hepatocytes: Up-Regulation of HNF1α and CREB Expression via Signaling Crosstalk for IGF-I Gene Transcription. Front Endocrinol (Lausanne) 2019; 10:605. [PMID: 31551932 PMCID: PMC6734168 DOI: 10.3389/fendo.2019.00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucagon, a key hormone for glucose homeostasis, can exert functional crosstalk with somatotropic axis via modification of IGF-I expression. However, its effect on IGF-I regulation is highly variable in different studies and the mechanisms involved are largely unknown. Using grass carp as a model, the signal transduction and transcriptional mechanisms for IGF-I regulation by glucagon were examined in Cyprinid species. As a first step, the carp HNF1α, a liver-enriched transcription factor, was cloned and confirmed to be a single-copy gene expressed in the liver. In grass carp hepatocytes, glucagon treatment could elevate IGF-I, HNF1α, and CREB mRNA levels, induce CREB phosphorylation, and up-regulate HNF1α and CREB protein expression. The effects on IGF-I, HNF1α, and CREB gene expression were mediated by cAMP/PKA and PLC/IP3/PKC pathways with differential coupling with the MAPK and PI3K/Akt cascades. During the process, protein:protein interaction between HNF1α and CREB and recruitment of RNA Pol-II to IGF-I promoter also occurred with a rise in IGF-I primary transcript level. In parallel study to examine grass carp IGF-I promoter activity expressed in αT3 cells, similar pathways for post-receptor signaling were also confirmed in glucagon-induced IGF-I promoter activation and the trans-activating effect by glucagon was mediated by the binding sites for HNF1α and CREB located in the proximal region of IGF-I promoter. Our findings, as a whole, shed light on a previously undescribed mechanism for glucagon-induced IGF-I gene expression by increasing HNF1α and CREB production via functional crosstalk of post-receptor signaling. Probably, by protein:protein interaction between the two transcription factors and subsequent transactivation via their respective cis-acting elements in the IGF-I promoter, IGF-I gene transcription can be initiated by glucagon at the hepatic level.
Collapse
|
11
|
Bernardino RL, Marinelli RA, Maggio A, Gena P, Cataldo I, Alves MG, Svelto M, Oliveira PF, Calamita G. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends. Int J Mol Sci 2016; 17:ijms17071096. [PMID: 27409609 PMCID: PMC4964472 DOI: 10.3390/ijms17071096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| | - Raul A Marinelli
- Instituto de Fisiología Experimental-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, 531 S2002LRK Rosario, Santa Fe, Argentina.
| | - Anna Maggio
- Department of Biosciences, Biotechnologies and Biopharnaceutics, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharnaceutics, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Ilaria Cataldo
- Department of Biosciences, Biotechnologies and Biopharnaceutics, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Marco G Alves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharnaceutics, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharnaceutics, University of Bari "Aldo Moro", 70125 Bari, Italy.
| |
Collapse
|
12
|
Aquaporins: Their role in gastrointestinal malignancies. Cancer Lett 2016; 373:12-18. [PMID: 26780474 DOI: 10.1016/j.canlet.2016.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022]
Abstract
Aquaporins (AQPs) are small (~30 kDa monomers) integral membrane water transport proteins that allow water to flow through cell membranes in reaction to osmotic gradients in cells. In mammals, the family of AQPs has thirteen (AQP0-12) unique members that mediate critical biological functions. Since AQPs can impact cell proliferation, migration and angiogenesis, their role in various human cancers is well established. Recently, AQPs have been explored as potential diagnostic and therapeutic targets in gastrointestinal (GI) cancers. GI cancers encompass multiple sites including the colon, esophagus, stomach and pancreas. Research in the last three decades has revealed biological aspects and signaling pathways critical for the development of GI cancers. Since the majority of these cancers are very aggressive and rapidly metastasizes, identifying effective targets is crucial for treatment. Preclinical studies have utilized inhibitors of specific AQPs and knock down of AQP expression using siRNA. Although several studies have explored the role of AQPs in colorectal, esophageal, gastric, hepatocellular and pancreatic cancers, there is no comprehensive review compiling the available information on GI cancers as has been published for other malignancies such as ovarian cancer. Due to the similarities and association of various sites of GI cancers, it is helpful to consider these results collectively in order to better understand the role of specific AQPs in critical GI cancers. This review summarizes the current knowledge of the role of AQPs in GI malignancies with particular focus on diagnosis and therapeutic applications.
Collapse
|
13
|
The effects of over expressing aquaporins on the cryopreservation of hepatocytes. Cryobiology 2015; 71:273-8. [PMID: 26247402 DOI: 10.1016/j.cryobiol.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 06/09/2015] [Accepted: 07/22/2015] [Indexed: 11/24/2022]
Abstract
During cryopreservation, aquaporins are critical in regulating water transport across cellular membranes and preventing osmotic damages. Hepatocytes express aquaporin (AQP) 0, 8, 9, 11, and 12; this study investigates whether increasing the localization of AQP8 on the cellular membrane would improve cell viability by increasing water transport during cryopreservation. Primary rat hepatocytes were cultured and treated with dibutyryl cAMP (Bt(2)cAMP) or glucagon to increase the expression of AQP8 at the cellular membrane via translocation. This phenomenon is verified through two experiments - confocal immunofluorescence microscopy and cell shrinkage analysis. The immunofluorescence results showed increase in AQP8 on the cellular membrane of treated cells, and cell shrinkage analysis showed an increase in water transport of treated cells compared to controls. Primary rat hepatocytes were treated with Bt(2)cAMP or glucagon and cryopreserved using standard protocols in a controlled rate freezer. This resulted in a significant increase in the cell viability on warming. These results indicate that Bt(2)cAMP or glucagon treated hepatocytes had increased expression of aquaporin in the cellular membrane, increased water transport during cryopreservation, and increased post-thaw viability.
Collapse
|
14
|
Wang JQ, Zhang L, Tao XG, Wei L, Liu B, Huang LL, Chen YG. Tetramethylpyrazine upregulates the aquaporin 8 expression of hepatocellular mitochondria in septic rats. J Surg Res 2013; 185:286-93. [DOI: 10.1016/j.jss.2013.05.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/26/2013] [Accepted: 05/31/2013] [Indexed: 12/17/2022]
|
15
|
Endothelin-1 and -3 induce choleresis in the rat through ETB receptors coupled to nitric oxide and vagovagal reflexes. Clin Sci (Lond) 2013; 125:521-32. [PMID: 23642207 DOI: 10.1042/cs20120633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have reported previously that centrally applied ET (endothelin)-1 and ET-3 induce either choleresis or cholestasis depending on the dose. In the present study, we sought to establish the role of these endothelins in the short-term peripheral regulation of bile secretion in the rat. Intravenously infused endothelins induced significant choleresis in a dose-dependent fashion, ET-1 being more potent than ET-3. Endothelins (with the exception of a higher dose of ET-1) did not affect BP (blood pressure), portal venous pressure or portal blood flow. ET-1 and ET-3 augmented the biliary excretion of bile salts, glutathione and electrolytes, suggesting enhanced bile acid-dependent and -independent bile flows. ET-induced choleresis was mediated by ET(B) receptors coupled to NO and inhibited by truncal vagotomy, atropine administration and capsaicin perivagal application, supporting the participation of vagovagal reflexes. RT (reverse transcription)-PCR and Western blot analysis revealed ETA and ET(B) receptor expression in the vagus nerve. Endothelins, through ET(B) receptors, augmented the hepatocyte plasma membrane expression of Ntcp (Na⁺/taurocholate co-transporting polypeptide; Slc10a1), Bsep (bile-salt export pump; Abcb11), Mrp2 (multidrug resistance protein-2; Abcc2) and Aqp8 (aquaporin 8). Endothelins also increased the mRNAs of these transporters. ET-1 and ET-3 induced choleresis mediated by ET(B) receptors coupled to NO release and vagovagal reflexes without involving haemodynamic changes. Endothelin-induced choleresis seems to be caused by increased plasma membrane translocation and transcriptional expression of key bile transporters. These findings indicate that endothelins are able to elicit haemodynamic-independent biological effects in the liver and suggest that these peptides may play a beneficial role in pathophysiological situations where bile secretion is impaired.
Collapse
|
16
|
Soria LR, Marrone J, Calamita G, Marinelli RA. Ammonia detoxification via ureagenesis in rat hepatocytes involves mitochondrial aquaporin-8 channels. Hepatology 2013; 57:2061-71. [PMID: 23299935 DOI: 10.1002/hep.26236] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022]
Abstract
UNLABELLED Hepatocyte mitochondrial ammonia detoxification via ureagenesis is critical for the prevention of hyperammonemia and hepatic encephalopathy. Aquaporin-8 (AQP8) channels facilitate the membrane transport of ammonia. Because AQP8 is expressed in hepatocyte inner mitochondrial membranes (IMMs), we studied whether mitochondrial AQP8 (mtAQP8) plays a role in ureagenesis from ammonia. Primary cultured rat hepatocytes were transfected with small interfering RNAs (siRNAs) targeting two different regions of the rat AQP8 molecule or with scrambled control siRNA. After 48 hours, the levels of mtAQP8 protein decreased by approximately 80% (P < 0.05) without affecting cell viability. mtAQP8 knockdown cells in the presence of ammonium chloride showed a decrease in ureagenesis of approximately 30% (P < 0.05). Glucagon strongly stimulated ureagenesis in control hepatocytes (+120%, P < 0.05) but induced no significant stimulation in mtAQP8 knockdown cells. Contrarily, mtAQP8 silencing induced no significant change in basal and glucagon-induced ureagenesis when glutamine or alanine was used as a source of nitrogen. Nuclear magnetic resonance studies using 15N-labeled ammonia confirmed that glucagon-induced 15N-labeled urea synthesis was markedly reduced in mtAQP8 knockdown hepatocytes (-90%, P < 0.05). In vivo studies in rats showed that under glucagon-induced ureagenesis, hepatic mtAQP8 protein expression was markedly up-regulated (+160%, P < 0.05). Moreover, transport studies in liver IMM vesicles showed that glucagon increased the diffusional permeability to the ammonia analog [(14) C]methylamine (+80%, P < 0.05). CONCLUSION Hepatocyte mtAQP8 channels facilitate the mitochondrial uptake of ammonia and its metabolism into urea, mainly under glucagon stimulation. This mechanism may be relevant to hepatic ammonia detoxification and in turn, avoid the deleterious effects of hyperammonemia.
Collapse
Affiliation(s)
- Leandro R Soria
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
17
|
The cardioprotection of simvastatin in reperfused swine hearts relates to the inhibition of myocardial edema by modulating aquaporins via the PKA pathway. Int J Cardiol 2012; 167:2657-66. [PMID: 22819122 DOI: 10.1016/j.ijcard.2012.06.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 04/30/2012] [Accepted: 06/24/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Myocardial edema plays a role in myocardial no-reflow and infarction during ischemia and reperfusion. The effects of statins against no-reflow and infarction may relate to the inhibition of myocardial edema. The current study investigated the role of protein kinase A (PKA) in statin-reduced myocardial edema in reperfused swine hearts. METHODS AND RESULTS Minipigs were treated with simvastatin (SIM, 2mg/kg), SIM+H-89 (a PKA inhibitor, 1.0 μg/kg/min), or H-89 alone 1h before 90-min ischemia and 3-h reperfusion or sham operation. Ischemia or ischemia-reperfusion induced severe myocardial edema, PKA activation, and up-regulation of aquaporin-1, -4, -8, and -9 in the reflow and no-reflow myocardium. SIM pretreatment reduced the sizes of no-reflow and infarct areas by 18.5% and 11.1% (P<0.01), decreased water content in the left ventricle, reflow and no-reflow myocardium by 1.4%, 5.3%, and 4.3% (P<0.05), inhibited cardiomyocytes swelling in the reflow and no-reflow areas by 19.8% and 13.1% (P<0.01), suppressed mitochondrial water accumulation in the reflow and no-reflow areas by 49.0% and 35.9% (P<0.01), increased PKA activity (P<0.01), and blocked the up-regulation of aquaporin-1, -4, -8, and -9 in the reflow and no-reflow myocardium. However, these beneficial effects of SIM were partially abolished by inhibiting PKA with H-89. CONCLUSIONS The cardioprotective effects of acute SIM therapy against myocardial no-reflow and infarction relate to the reduction of myocardial edema by suppressing the expression of aquaporin-1, -4, -8, and -9 in a partially PKA-dependent manner.
Collapse
|
18
|
Li XD, Cheng YT, Yang YJ, Meng XM, Zhao JL, Zhang HT, Wu YJ, You SJ, Wu YL. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc Res 2012; 84:44-54. [DOI: 10.1016/j.mvr.2012.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/23/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
19
|
Phosphorylation of endothelial NOS contributes to simvastatin protection against myocardial no-reflow and infarction in reperfused swine hearts: partially via the PKA signaling pathway. Acta Pharmacol Sin 2012; 33:879-87. [PMID: 22659627 DOI: 10.1038/aps.2012.27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM The cholesterol-lowering drugs statins could enhance the activities of endothelial nitric oxide synthase (eNOS) and protect myocardium during ischemia and reperfusion. The aim of this study was to examine whether protein kinase A (PKA) was involved in statin-mediated eNOS phosphorylation and cardioprotection. METHODS 6-Month-old Chinese minipigs (20-30 kg) underwent a 1.5-h occlusion and 3-h reperfusion of the left anterior descending coronary artery (LAD). In the sham group, the LAD was encircled by a suture but not occluded. Hemodynamic and cardiac function was monitored using a polygraph. Plasma activity of creatine kinase and the tissue activities of PKA and NOS were measured spectrophotometrically. p-CREB, eNOS and p-eNOS levels were detected using Western blotting. Sizes of the area at risk, the area of no-reflow and the area of necrosis were measured morphologically. RESULTS Pretreatment of the animals with simvastatin (SIM, 2 mg/kg, po) before reperfusion significantly decreased the plasma activity of creatine kinase, an index of myocardial necrosis, and reduced the no-reflow size (from 50.4%±2.4% to 36.1%±2.1%, P<0.01) and the infarct size (from 79.0%±2.7% to 64.1%±4.5%, P<0.01). SIM significantly increased the activities of PKA and constitutive NOS, and increased Ser(133) p-CREB protein, Ser(1179) p-eNOS, and Ser(635) p-eNOS in ischemic myocardium. Intravenous infusion of the PKA inhibitor H-89 (1 μg·kg(-1)·min(-1)) partially abrogated the SIM-induced cardioprotection and eNOS phosphorylation. In contrast, intravenous infusion of the eNOS inhibitor L-NNA (10 mg·kg(-1)) completely abrogated the SIM-induced cardioprotection and eNOS phosphorylation during ischemia and reperfusion, but did not affect the activity of PKA. CONCLUSION Pretreatment with a single dose of SIM 2.5 h before reperfusion attenuates myocardial no-reflow and infarction through increasing eNOS phosphorylation at Ser(1179) and Ser(635) that was partially mediated via the PKA signaling pathway.
Collapse
|
20
|
Molinas SM, Trumper L, Marinelli RA. Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol Renal Physiol 2012; 303:F458-66. [PMID: 22622463 DOI: 10.1152/ajprenal.00226.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial ammonia synthesis in proximal tubules and its urinary excretion are key components of the renal response to maintain acid-base balance during metabolic acidosis. Since aquaporin-8 (AQP8) facilitates transport of ammonia and is localized in inner mitochondrial membrane (IMM) of renal proximal cells, we hypothesized that AQP8-facilitated mitochondrial ammonia transport in these cells plays a role in the response to acidosis. We evaluated whether mitochondrial AQP8 (mtAQP8) knockdown by RNA interference is able to impair ammonia excretion in the human renal proximal tubule cell line, HK-2. By RT-PCR and immunoblotting, we found that AQP8 is expressed in these cells and is localized in IMM. HK-2 cells were transfected with short-interfering RNA targeting human AQP8. After 48 h, the levels of mtAQP8 protein decreased by 53% (P < 0.05). mtAQP8 knockdown decreased the rate of ammonia released into culture medium in cells grown at pH 7.4 (-31%, P < 0.05) as well as in cells exposed to acid (-90%, P < 0.05). We also evaluated mtAQP8 protein expression in HK-2 cells exposed to acidic medium. After 48 h, upregulation of mtAQP8 (+74%, P < 0.05) was observed, together with higher ammonia excretion rate (+73%, P < 0.05). In vivo studies in NH(4)Cl-loaded rats showed that mtAQP8 protein expression was also upregulated after 7 days of acidosis in renal cortex (+51%, P < 0.05). These data suggest that mtAQP8 plays an important role in the adaptive response of proximal tubule to acidosis possibly facilitating mitochondrial ammonia transport.
Collapse
Affiliation(s)
- Sara M Molinas
- Instituto de Fisiología Experimental. Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Santa Fe, Argentina.
| | | | | |
Collapse
|
21
|
Portincasa P, Calamita G. Water channel proteins in bile formation and flow in health and disease: when immiscible becomes miscible. Mol Aspects Med 2012; 33:651-64. [PMID: 22487565 DOI: 10.1016/j.mam.2012.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 12/19/2022]
Abstract
An essential function of the liver is the formation and secretion of bile, a complex aqueous solution of organic and inorganic compounds essential as route for the elimination of body cholesterol as unesterified cholesterol or as bile acids. In bile, a considerable amount of otherwise insoluble cholesterol is solubilized by carriers including two other classes of lipids, namely phospholipid and bile acids. Formation of bile and generation of bile flow are driven by the active secretion of bile acids, lipids and electrolytes into the canalicular and bile duct lumens followed by the parallel movement of water. Thus, water has to cross rapidly into and out of the cell interior driven by osmotic forces. Bile as a fluid, results from complicated interplay of hepatocyte and cholangiocyte uptake and secretion, concentration, by involving a number of transporters of lipids, anions, cations, and water. The discovery of the aquaporin water channels, has clarified the mechanisms by which water, the major component of bile (more than 95%), moves across the hepatobiliary epithelia. This review is focusing on novel acquisitions in liver membrane lipidic and water transport and functional participation of aquaporin water channels in multiple aspects of hepatobiliary fluid balance. Involvement of aquaporins in a series of clinically relevant hepatobiliary disorders are also discussed.
Collapse
Affiliation(s)
- Piero Portincasa
- University of Bari Medical School, Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, Policlinico Hospital, 70124 Bari, Italy.
| | | |
Collapse
|
22
|
Lorente-Cebrián S, Bustos M, Marti A, Martinez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid up-regulates apelin secretion and gene expression in 3T3-L1 adipocytes. Mol Nutr Food Res 2010; 54 Suppl 1:S104-11. [DOI: 10.1002/mnfr.200900522] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|